Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = ground motion duration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7748 KB  
Article
Design and Evaluation of Stand-to-Sit and Sit-to-Stand Control Protocols for a HIP–Knee–Ankle–Foot Prosthesis with a Motorized Hip Joint
by Farshad Golshan, Natalie Baddour, Hossein Gholizadeh, David Nielen and Edward D. Lemaire
Bioengineering 2026, 13(1), 48; https://doi.org/10.3390/bioengineering13010048 - 31 Dec 2025
Viewed by 330
Abstract
Background: Sitting and standing with conventional hip–knee–ankle–foot (HKAF) prostheses are demanding tasks for hip disarticulation (HD) amputees due to the passive nature of current prosthetic hip joints that cannot assist with moment generation. This study developed a sitting and standing control strategy for [...] Read more.
Background: Sitting and standing with conventional hip–knee–ankle–foot (HKAF) prostheses are demanding tasks for hip disarticulation (HD) amputees due to the passive nature of current prosthetic hip joints that cannot assist with moment generation. This study developed a sitting and standing control strategy for a motorized hip joint and evaluated whether providing active assistance reduces the intact side demand of these activities. Methods: A dedicated control strategy was developed and implemented for a motorized hip prosthesis (Power Hip) compatible with existing prosthetic knees, feet, and sockets. One HD participant was trained to perform sitting and standing tasks using the Power Hip. Its performance was compared with the participant’s prescribed passive HKAF prosthesis through measurements of ground reaction forces (GRFs), joint moments, and activity durations. GRFs were collected using force plates, kinematics were captured via Theia3D markerless motion capture, and joint moments were computed in Visual3D. Results: The Power Hip enabled more symmetric limb loading and faster stand-to-sit transitions (1.22 ± 0.08 s vs. 2.62 ± 0.41 s), while slightly prolonging sit-to-stand (1.69 ± 0.49 s vs. 1.22 ± 0.40 s) compared to the passive HKAF. The participant exhibited reduced intact-side loading impulses during stand-to-sit (4.97 ± 0.78 N∙s/kg vs. 15.06 ± 2.90 N∙s/kg) and decreased reliance on upper-limb support. Hip moment asymmetries between the intact and prosthetic sides were also reduced during both sit-to-stand (−0.18 ± 0.09 N/kg vs. −0.69 ± 0.67 N/kg) and stand-to-sit transitions (0.77 ± 0.20 N/kg vs. 2.03 ± 0.58 N/kg). Conclusions: The prototype and control strategy demonstrated promising improvements in sitting and standing performance compared to conventional passive prostheses, reducing the physical demand on the intact limb and upper body. Full article
(This article belongs to the Special Issue Joint Biomechanics and Implant Design)
Show Figures

Figure 1

21 pages, 9022 KB  
Article
Stability Analysis and Treatment of Pebble Soil Slopes Under Rainfall and Earthquake Conditions
by Bing Wang, Taian Liu and Yuanyi Li
Sustainability 2025, 17(23), 10754; https://doi.org/10.3390/su172310754 - 1 Dec 2025
Viewed by 315
Abstract
In many mountainous areas of China, frequent geological disasters pose a serious threat to human life and property. The Luding “9.5” earthquake triggered a large number of landslide disasters, causing serious loss of life and property. Therefore, it is extremely urgent to carry [...] Read more.
In many mountainous areas of China, frequent geological disasters pose a serious threat to human life and property. The Luding “9.5” earthquake triggered a large number of landslide disasters, causing serious loss of life and property. Therefore, it is extremely urgent to carry out research on the stability analysis and treatment methods of landslides in the Luding area. In this paper, the Caiyangba landslide in Yanzigou Town, Luding County, is taken as the research object. The slope model is constructed by Midas to study the stability development law of Caiyangba landslide under different rainfall conditions and seismic conditions, and to explore the feasibility of the “anchor lattice treatment method”. The results show that the “anchor lattice treatment method” can effectively improve the stability of the slope under rainfall conditions. The improvement effect of slope stability decreases with the increase in rainfall duration and rainfall. The development law of the slope stability coefficient with rainfall duration in WMG (the working condition of not adopting the “anchor lattice treatment method” is referred to as WMG) and MG (the working condition of adopting the “anchor lattice treatment method” is referred to as MG) conditions conform to the development law of exponential function, and the expression of instantaneous change rate of slope stability coefficient is derived. The above function can also well explain the development law of X-direction displacement and Y-direction displacement of SP (school: monitoring point) and RP (road: monitoring point); the development law of the instantaneous change rate of displacement. Under the influence of ground motion, the improvement effect of the “anchor lattice treatment method” on the slope stability coefficient is limited, but the improvement effect of slope stability increases with the increase in seismic intensity. The slope stability coefficient and the displacement of SP and RP show obvious fluctuation with time, and the fluctuation law is similar to that of ground motion records. It is recommended to add a gravity-retaining wall at the foot of the slope. The teaching building reduces the number of floors and increases the number of pile foundations. Roads should restrict the passage of heavy vehicles, such as cars and strictly stacked items. The above results can provide a theoretical reference for the sustainable treatment and sustainable development of landslides in the Luding area. Full article
(This article belongs to the Special Issue Sustainable Assessment and Risk Analysis on Landslide Hazards)
Show Figures

Figure 1

13 pages, 1587 KB  
Article
Acute Effects of Accelerated Eccentrics and Accentuated Eccentric Loading on Squat Performance and Lower-Limb Biomechanics
by Mingrui Zhang, Hao Zhou, Xiaoyan Xiang and Ran Wang
Sports 2025, 13(12), 418; https://doi.org/10.3390/sports13120418 - 1 Dec 2025
Viewed by 989
Abstract
This study aimed to compare the acute effects of three eccentric training strategies—constant resistance (CR), accentuated eccentric loading (AEL), and accelerated eccentrics (AE)—on the performance and biomechanical characteristics of the concentric phase of the squat, while maintaining a consistent squat depth. Twenty-four experienced [...] Read more.
This study aimed to compare the acute effects of three eccentric training strategies—constant resistance (CR), accentuated eccentric loading (AEL), and accelerated eccentrics (AE)—on the performance and biomechanical characteristics of the concentric phase of the squat, while maintaining a consistent squat depth. Twenty-four experienced resistance-trained male collegiate athletes (age: 21.92 ± 2.66 years; height: 175.88 ± 4.39 cm; body mass: 73.18 ± 8.08 kg) were recruited. A randomized crossover design was employed, where participants completed three squat protocols (eccentric load/concentric load/eccentric duration): AEL (90% 1RM/60% 1RM/2 s), CR (60% 1RM/60% 1RM/2 s), and AE (60% 1RM/60% 1RM/as fast as possible). Throughout the squats, kinematic and kinetic data were synchronously collected using an 8-camera 3D infrared motion capture system and two 3D force plates. The mean concentric barbell velocity in the AE condition was significantly higher than in both the AEL and CR conditions (p < 0.001). Furthermore, the AE condition demonstrated significant advantages in multiple biomechanical variables, including peak ground reaction force, as well as peak angular velocity and peak joint moments of the three lower limb joints (p < 0.05). With identical concentric loads and range of motion, increasing the velocity of the eccentric phase significantly enhances subsequent concentric performance and force output. In contrast, while the AEL strategy increases the mechanical load during the eccentric phase, its potentiating effect on concentric performance is relatively limited. These findings suggest that eccentric velocity may be a more critical variable than eccentric load in strength training. Full article
Show Figures

Figure 1

39 pages, 4100 KB  
Review
Ground-Motion Modification by Soil, Structures, and Topography: A Review of Soil Structure Interaction (SSI) and Its Multi-Scale Extensions
by Sudhir Bikram K C, Lei Zhang and Guobo Wang
Buildings 2025, 15(22), 4170; https://doi.org/10.3390/buildings15224170 - 19 Nov 2025
Viewed by 1220
Abstract
The effect of an earthquake on any structure is primarily determined by both its inherent properties and the surrounding environmental conditions. When seismic waves pass through different media, their characteristics and properties, such as amplitude, frequency content, and duration can change, thereby changing [...] Read more.
The effect of an earthquake on any structure is primarily determined by both its inherent properties and the surrounding environmental conditions. When seismic waves pass through different media, their characteristics and properties, such as amplitude, frequency content, and duration can change, thereby changing the seismic response of both soil and structures. The intensity and distribution of seismic waves can be influenced by several of key factors, including the local geology and stratigraphy, irregular topography, existence of man-made structures, and others. Relevant researches and studies have consistently emphasized the significance of the surrounding environment in seismic wave modification. Historical data also shows that similar types of earthquakes can result in varying degrees of damage depending on geographic location. Hence, a thorough understanding of the interaction between seismic waves and the surrounding environment is necessary for achieving precision in seismic design, risk assessment, and proper seismic mitigation strategies. An overview of contemporary research on seismic wave modification and the resulting interaction effects, presenting significant findings and analytical techniques related to phenomena such as soil-structure interaction (SSI) and its extended forms, including structure–soil–structure interaction (SSSI), soil–structure–cluster interaction (SSCI), and site–city interaction (SCI), is presented in this review article. The underlying mechanisms of these interactions are explored in this study and a detailed assessment of fundamental concepts, practical challenges, and methodologies for preventing and mitigating their effects in site-dependent settings is provided. Further, Topographic soil–structure interaction (TSSI) and topographic–structure–soil–structure interaction (TSSSI) are also discussed within a unified framework that considers the combined influence of topography and SSI extensions. This study focuses on the importance of the surrounding environment in influencing ground motion during earthquakes by identifying the complex interactions that affect the seismic response of both surface and underground structures. Some illustrative figures were generated with Microsoft Copilot and subsequently edited and validated by the authors. Full article
(This article belongs to the Special Issue Advances in Soil-Structure Interaction for Building Structures)
Show Figures

Figure 1

16 pages, 4007 KB  
Article
Strong-Motion Data Processing and Product Generation System for Earthquake Early Warning Network
by Yanqiong Liu, Liye Zou, Qi Zhang and Xumao Li
Appl. Syst. Innov. 2025, 8(6), 172; https://doi.org/10.3390/asi8060172 - 14 Nov 2025
Viewed by 995
Abstract
For processing timeliness, standardizing formats, and reflecting the variety of massive strong motion observation data of the National Seismic Network Center, we developed a strong motion data processing system applicable to different types of strong motion observation stations, which enables rapid data collection, [...] Read more.
For processing timeliness, standardizing formats, and reflecting the variety of massive strong motion observation data of the National Seismic Network Center, we developed a strong motion data processing system applicable to different types of strong motion observation stations, which enables rapid data collection, processing, and archiving. It provides a human–machine interaction data processing interface to preprocess the acceleration record of seismic waveforms and analyzes the acceleration event waveform data by calculating ground motion, including peak ground acceleration, peak ground velocity, peak ground displacement, instrumental intensity, duration, Fourier spectrum, response spectrum, and triple spectrum. The system exports metadata and seismic record waveforms to archive and store the data. The system enables platform unity, function integration, and data completeness, playing an effective role in data processing and management for emergency and damage assessment, and scientific research on earthquakes. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

16 pages, 9022 KB  
Article
Influence of Ground Conditions on Vibration Propagation and Response Under Accidental Impact Loads
by Jae-Kwang Ahn, Yong-Gook Lee, Sang-Rae Lee, Mintaek Yoo, Cheolwoo Park and Jae Sang Moon
Appl. Sci. 2025, 15(22), 12068; https://doi.org/10.3390/app152212068 - 13 Nov 2025
Viewed by 584
Abstract
Vibrations of unknown origin can cause fear and confusion when their sources are unrecognized. In modern construction environments, such vibrations may result not only from earthquakes but also from accidental impacts during industrial operations. However, due to the absence of established safety standards, [...] Read more.
Vibrations of unknown origin can cause fear and confusion when their sources are unrecognized. In modern construction environments, such vibrations may result not only from earthquakes but also from accidental impacts during industrial operations. However, due to the absence of established safety standards, evaluating and compensating for the effects of short-duration, high-intensity vibrations has remained difficult. This study investigates the characteristics of ground motions induced by accidental impact loads through finite element-based numerical simulations. The analyses identify key factors that control vibration propagation under various subsurface conditions. The results show that an impact load produces a single impulsive motion dominated by a vertical component, which decays exponentially with time. The amplitude of vibration increases with drop height and girder mass, confirming the relationship between potential energy and vibration intensity. The attenuation of peak particle velocity (PPV) follows a logarithmic pattern with distance, and the variation in attenuation depends on soil thickness and the presence of a weathered-rock layer. These results demonstrate that both the magnitude of impact and the ground composition control the amplitude, frequency content, and duration of impact-induced vibrations, providing a basis for assessing unmonitored accidental events. Full article
(This article belongs to the Special Issue Soil Dynamics and Earthquake Engineering)
Show Figures

Figure 1

17 pages, 2322 KB  
Article
Assessment of Seismic Intensity Measures on Liquefaction Response: A Case Study of Yinchuan Sandy Soil
by Bowen Hu, Weibo Ji, Yinxin Zhao, Sihan Qiu and Zhehao Zhu
Buildings 2025, 15(20), 3803; https://doi.org/10.3390/buildings15203803 - 21 Oct 2025
Viewed by 603
Abstract
The proliferation of tunnel and subway networks in urban areas has heightened concerns regarding their vulnerability to seismic-induced liquefaction. This phenomenon, wherein saturated sandy soils lose strength and behave like a liquid under seismic waves, poses a catastrophic threat to the structural integrity [...] Read more.
The proliferation of tunnel and subway networks in urban areas has heightened concerns regarding their vulnerability to seismic-induced liquefaction. This phenomenon, wherein saturated sandy soils lose strength and behave like a liquid under seismic waves, poses a catastrophic threat to the structural integrity and stability of underground constructions. While extensive research has been conducted to evaluate liquefaction triggering, most existing approaches rely on single ground motion intensity measures (e.g., PGA, IA), which often fail to capture the combined effects of amplitude, energy, and duration on liquefaction behavior. In this study, the seismic response of saturated sandy soil from Yinchuan was analyzed using the Dafalias–Manzari constitutive model implemented in the OpenSeesPy platform. The model parameters were carefully calibrated using laboratory triaxial results. A total of ten real earthquake records were applied to evaluate two critical engineering demand parameters (EDPs): surface lateral displacement (SLD) and the maximum thickness of the liquefied layer (MTL). The results show that both SLD and MTL exhibit weak correlations with conventional intensity parameters, suggesting limited predictive value for engineering design. However, by applying Partial Least Squares (PLS) regression to combine multiple intensity measures, the prediction accuracy for SLD was significantly improved, with the correlation coefficient increasing to 0.81. In contrast, MTL remained poorly predicted due to its strong dependence on intrinsic soil characteristics such as permeability and fines content. These findings highlight the importance of integrating both seismic loading features and geotechnical soil properties in performance-based liquefaction hazard evaluation. Full article
Show Figures

Figure 1

23 pages, 5055 KB  
Article
Effect of Ground Motion Duration and Frequency Characteristics on the Probabilistic Risk Assessment of a Concrete Gravity Dam
by Tahmina Tasnim Nahar, Md Motiur Rahman and Dookie Kim
Infrastructures 2025, 10(10), 259; https://doi.org/10.3390/infrastructures10100259 - 27 Sep 2025
Cited by 1 | Viewed by 969
Abstract
Evaluation of seismic risk by capturing the influences of strong motion duration and frequency contents of ground motion through probabilistic approaches is the main element of this study. Unlike most existing studies that mainly focus on intensity measures such as peak ground acceleration [...] Read more.
Evaluation of seismic risk by capturing the influences of strong motion duration and frequency contents of ground motion through probabilistic approaches is the main element of this study. Unlike most existing studies that mainly focus on intensity measures such as peak ground acceleration or spectral acceleration, this work highlights how duration and frequency characteristics critically influence dam response. To achieve this, a total of 45 ground motion records, categorized by strong motion duration (long, medium, and short) and frequency content (low, medium, and high), were selected from the PEER database. Nonlinear numerical dynamic analysis was performed by scaling each ground motion from 0.05 g to 0.5 g, with the drift ratio at the dam crest used as the Engineering Demand Parameter. It is revealed that long-duration and low-frequency ground motions induced significantly higher drift demands. The fragility analysis was conducted using a lognormal distribution considering extensive damage threshold drift ratio. Finally, the probabilistic seismic risk was carried out by integrating the site-specific hazard curve and fragility curves which yield the height risk for long durations and low frequencies. The outcomes emphasize the importance of ground motion strong duration and frequency in seismic performance and these findings can be utilized in the dam safety evaluation. Full article
(This article belongs to the Special Issue Advances in Dam Engineering of the 21st Century)
Show Figures

Figure 1

30 pages, 9388 KB  
Article
Task-Parceling and Synchronous Retrieval Scheme for Twin-Arm Orchard Apple Tree Automaton
by Bin Yan and Xiameng Li
Plants 2025, 14(17), 2798; https://doi.org/10.3390/plants14172798 - 6 Sep 2025
Viewed by 808
Abstract
To address suboptimal throughput performance in conventional intelligent apple harvesting systems predominantly employing single manipulators, a dual-arm harvesting robot prototype was engineered. Leveraging the AUBO-i5 manipulator framework and kinematic characteristics, a coordinated workspace arrangement was established. Subsequently, the dual-manipulator harvesting platform was fabricated. [...] Read more.
To address suboptimal throughput performance in conventional intelligent apple harvesting systems predominantly employing single manipulators, a dual-arm harvesting robot prototype was engineered. Leveraging the AUBO-i5 manipulator framework and kinematic characteristics, a coordinated workspace arrangement was established. Subsequently, the dual-manipulator harvesting platform was fabricated. A dynamic task allocation methodology and intelligent fruit sequencing approach were formulated, grounded in U-tube optimization principles. This framework achieved parallel operation ratios between 82.1% and 99%, with combined trajectory lengths spanning 9.24–11.90 m. Building upon established apple harvesting knowledge, a sequencing strategy incorporating dynamic manipulator zoning was developed. Validation was conducted through V-REP kinematic simulations where end-effector poses were continuously tracked, confirming zero limb interference during coordinated motion. Field assessments yielded parallel operation rates of 85.7–93.3%, total harvest durations of 17.8–22.3 s, and inter-manipulator path differentials of 267–541 mm. Throughout testing, collision-free operation was maintained while successfully harvesting all target fruits according to planned sequences. These outcomes validate the efficacy of U-tube-based dynamic zoning and sequencing methodologies for dual-manipulator fruit harvesting in intelligent orchard applications. Full article
Show Figures

Figure 1

15 pages, 1395 KB  
Article
Ground Reaction Forces and Impact Loading Among Runners with Different Acuity of Tibial Stress Injuries: Advanced Waveform Analysis for Running Mechanics
by Ryan M. Nixon, Sharareh Sharififar, Matthew Martenson, Lydia Pezzullo, Kevin R. Vincent and Heather K. Vincent
Bioengineering 2025, 12(8), 802; https://doi.org/10.3390/bioengineering12080802 - 26 Jul 2025
Viewed by 3759
Abstract
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) [...] Read more.
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) and those recovering from tibial stress fractures (TSF; both unilateral [UL] and bilateral [BL]). This cross-sectional analysis of runners (n = 66) included four groups: symptomatic MTSS, recovering from UL or BL TSF, or uninjured case-matched controls. Participants ran at self-selected speed on an instrumented treadmill. Kinematics were collected with a 3D optical motion analysis system. Double-Gaussian models described the biphasic loading pattern of running gait (initial impact, active phases). Gaussian parameters described relative differences in the GRF waveform by injury condition. LR was calculated using the central difference numerical derivative of the raw normalized net force data. During the impact phase (0–20% of stance), controls and BL TSF produced higher GRF amplitudes than UL TSF and MTSS (p < 0.05). BL TSF and controls had greater maximal positive LR and minimum LR than UL TSF and MTSS. Peak medial GRF was 18–43% higher in the BL TSF group than in MTSS and UL TSF (p < 0.05). Correlations existed between tibial pain severity and early stance net GRF (r = 0.512; p = 0.016) and between pain severity and the duration since diagnosis for LR values during the impact phase (r values = 0.389–0.522; all p < 0.05). Collectively, these data suggest that this waveform modeling approach can differentiate injury status and pain acuity in runners. Early stance GRF and LR may offer novel insight into the management of running-related injuries. Full article
Show Figures

Graphical abstract

20 pages, 1461 KB  
Article
Vulnerability-Based Economic Loss Rate Assessment of a Frame Structure Under Stochastic Sequence Ground Motions
by Zheng Zhang, Yunmu Jiang and Zixin Liu
Buildings 2025, 15(15), 2584; https://doi.org/10.3390/buildings15152584 - 22 Jul 2025
Viewed by 592
Abstract
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear [...] Read more.
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear correlations, these methods are typically black box in nature, data-dependent, and difficult to generalize across tectonic settings. More importantly, they tend to focus solely on marginal or joint parameter correlations, which implicitly treat mainshocks and aftershocks as independent stochastic processes, thereby overlooking their inherent spectral interaction. To address these limitations, this study proposes an explicit and parameterized modeling framework based on the evolutionary power spectral density (EPSD) of random ground motions. Using the magnitude difference between a mainshock and an aftershock as the control variable, we derive attenuation relationships for the amplitude, frequency content, and duration. A coherence function model is further developed from real seismic records, treating the mainshock–aftershock pair as a vector-valued stochastic process and thus enabling a more accurate representation of their spectral dependence. Coherence analysis shows that the function remains relatively stable between 0.3 and 0.6 across the 0–30 Rad/s frequency range. Validation results indicate that the simulated response spectra align closely with recorded spectra, achieving R2 values exceeding 0.90 and 0.91. To demonstrate the model’s applicability, a case study is conducted on a representative frame structure to evaluate seismic vulnerability and economic loss. As the mainshock PGA increases from 0.2 g to 1.2 g, the structure progresses from slight damage to complete collapse, with loss rates saturating near 1.0 g. These findings underscore the engineering importance of incorporating mainshock–aftershock spectral interaction in seismic damage and risk modeling, offering a transparent and transferable tool for future seismic resilience assessments. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

10 pages, 478 KB  
Article
Knee Loading Asymmetries During Descent and Ascent Phases of Squatting After ACL Reconstruction
by Manuel Angel Romero Padron, Alyx Jorgensen, David M. Werner, Matthew Alan Tao and Elizabeth Wellsandt
Appl. Sci. 2025, 15(14), 7780; https://doi.org/10.3390/app15147780 - 11 Jul 2025
Cited by 1 | Viewed by 2016
Abstract
Asymmetries are common during squats following anterior cruciate ligament reconstruction (ACLR). This study examined interlimb loading differences between squat phases at 6 months post-ACLR. Thirty-five participants performed bodyweight squats at self-selected speed and were analyzed using 3D motion capture. Vertical ground reaction force [...] Read more.
Asymmetries are common during squats following anterior cruciate ligament reconstruction (ACLR). This study examined interlimb loading differences between squat phases at 6 months post-ACLR. Thirty-five participants performed bodyweight squats at self-selected speed and were analyzed using 3D motion capture. Vertical ground reaction force impulse (vGRFi), external knee flexion moment impulse (KFMi) and hip-to-knee flexion moment impulse ratio (HKRi) were calculated, along with interlimb ratios (ILR). Squat phase durations were also recorded. Paired t-tests and ANCOVA (controlling for time) were used to compare biomechanical variables across squat phases. Greater asymmetry was observed during ascent for vGRFi ILR (p = 0.045), KFMi ILR (p < 0.001) and HKRi ILR (p = 0.006). The ascent phase was faster than descent (p = 0.036). After adjusting for time, phase-related differences in ILRs were no longer significant. These findings suggest that greater limb and knee-specific loading asymmetries occur during the ascent phase of squats but may be influenced by movement speed. Importantly, significant knee-specific loading asymmetries persisted regardless of squat phase. At 6 months post-ACLR, addressing neuromuscular control and movement speed during rehabilitation may help reduce biomechanical imbalances during closed kinetic chain exercises. Full article
(This article belongs to the Special Issue Applied Biomechanics and Sports Sciences)
Show Figures

Figure 1

21 pages, 4595 KB  
Article
Equivalent Input Energy Velocity of Elastoplastic SDOF Systems with Specific Strength
by Baykal Hancıoğlu, Murat Serdar Kirçil and Zekeriya Polat
Buildings 2025, 15(13), 2288; https://doi.org/10.3390/buildings15132288 - 29 Jun 2025
Cited by 1 | Viewed by 629
Abstract
This paper presents the results of statistical analyses carried out for the input energy velocity (equivalent velocity to be used for the determination of the input energy) of equivalent single-degree-of-freedom systems with definite strength. An earthquake ground motion database, which includes 268 far-field [...] Read more.
This paper presents the results of statistical analyses carried out for the input energy velocity (equivalent velocity to be used for the determination of the input energy) of equivalent single-degree-of-freedom systems with definite strength. An earthquake ground motion database, which includes 268 far-field records and two horizontal components from 134 recording stations located on firm sites, is employed for nonlinear time–history analysis. The probabilistic distribution of the input energy velocity is investigated for the candidate distribution models through a chi-square test, and the lognormal distribution was found as the most representative distribution model. Furthermore, the data used for analysis are classified with respect to the considered strength reduction factors of SDOF systems as a structural parameter and the effective duration of the considered strong ground motions as a ground motion parameter. The effect of those parameters on input energy velocity is investigated by using probabilistic techniques such as t-tests and ANOVAs. It is concluded that the strength reduction factor influences the input energy velocity along the particular period ranges of SDOF systems. Furthermore, the effective duration of the ground motion is another effective parameter on input energy velocity for almost all the considered period ranges. An equation is proposed for the determination of input energy velocity in terms of the aforementioned parameters. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

41 pages, 10214 KB  
Review
A Review of Parameters and Methods for Seismic Site Response
by A. S. M. Fahad Hossain, Ali Saeidi, Mohammad Salsabili, Miroslav Nastev, Juliana Ruiz Suescun and Zeinab Bayati
Geosciences 2025, 15(4), 128; https://doi.org/10.3390/geosciences15040128 - 1 Apr 2025
Cited by 7 | Viewed by 7509
Abstract
Prediction of the intensity of earthquake-induced motions at the ground surface attracts extensive attention from the geoscience community due to the significant threat it poses to humans and the built environment. Several factors are involved, including earthquake magnitude, epicentral distance, and local soil [...] Read more.
Prediction of the intensity of earthquake-induced motions at the ground surface attracts extensive attention from the geoscience community due to the significant threat it poses to humans and the built environment. Several factors are involved, including earthquake magnitude, epicentral distance, and local soil conditions. The local site effects, such as resonance amplification, topographic focusing, and basin-edge interactions, can significantly influence the amplitude–frequency content and duration of the incoming seismic waves. They are commonly predicted using site effect proxies or applying more sophisticated analytical and numerical models with advanced constitutive stress–strain relationships. The seismic excitation in numerical simulations consists of a set of input ground motions compatible with the seismo-tectonic settings at the studied location and the probability of exceedance of a specific level of ground shaking over a given period. These motions are applied at the base of the considered soil profiles, and their vertical propagation is simulated using linear and nonlinear approaches in time or frequency domains. This paper provides a comprehensive literature review of the major input parameters for site response analyses, evaluates the efficiency of site response proxies, and discusses the significance of accurate modeling approaches for predicting bedrock motion amplification. The important dynamic soil parameters include shear-wave velocity, shear modulus reduction, and damping ratio curves, along with the selection and scaling of earthquake ground motions, the evaluation of site effects through site response proxies, and experimental and numerical analysis, all of which are described in this article. Full article
(This article belongs to the Special Issue Geotechnical Earthquake Engineering and Geohazard Prevention)
Show Figures

Figure 1

17 pages, 13837 KB  
Article
Mapping, Modeling and Designing a Marble Quarry Using Integrated Electric Resistivity Tomography and Unmanned Aerial Vehicles: A Study of Adaptive Decision-Making
by Zahid Hussain, Hanan ud Din Haider, Jiajie Li, Zhengxing Yu, Jianxin Fu, Siqi Zhang, Sitao Zhu, Wen Ni and Michael Hitch
Drones 2025, 9(4), 266; https://doi.org/10.3390/drones9040266 - 31 Mar 2025
Cited by 6 | Viewed by 1715
Abstract
The characterization of dimensional stone deposits is essential for quarry assessment and design. However, uncertainties in mapping and designing pose significant challenges. To address this issue, an innovative approach is initiated to develop a virtual reality model by integrating unmanned aerial vehicle (UAV) [...] Read more.
The characterization of dimensional stone deposits is essential for quarry assessment and design. However, uncertainties in mapping and designing pose significant challenges. To address this issue, an innovative approach is initiated to develop a virtual reality model by integrating unmanned aerial vehicle (UAV) photogrammetry for surface modeling and Electric Resistivity Tomography (ERT) for subsurface deposit imaging. This strategy offers a cost-effective, time-efficient, and safer alternative to traditional surveying methods for challenging mountainous terrain. UAV methodology involved data collection using a DJI Mavic 2 Pro (20 MP camera) with 4 K resolution images captured at 221 m altitude and 80 min flight duration. Images were taken with 75% frontal and 70% side overlaps. The Structure from Motion (SfM) processing chain generated high-resolution outputs, including point clouds, Digital Elevation Models (DEMs), Digital Surface Models (DSMs), and orthophotos. To ensure accuracy, five ground control points (GCPs) were established by a Real-Time Kinematic Global Navigation Satellite System (RTK GNSS). An ERT method known as vertical electric sounding (VES) revealed subsurface anomalies like solid rock mass, fractured zones and areas of iron leaching within marble deposits. Three Schlumberger (VES-1, 2, 3) and two parallel Wenner (VES-4, 5) arrays to a depth of 60 m were employed. The resistivity signature acquired by PASI RM1 was analyzed using 1D inversion technique software (ZondP1D). The integrated outputs of photogrammetry and subsurface imaging were used to design an optimized quarry with bench heights of 30 feet and widths of 50 feet, utilizing open-source 3D software (Blender, BIM, and InfraWorks). This integrated approach provides a comprehensive understanding of deposit surface and subsurface characteristics, facilitating optimized and sustainable quarry design and extraction. This research demonstrates the value of an innovative approach in synergistic integration of UAV photogrammetry and ERT, which are often used separately, for enhanced characterization, decision-making and promoting sustainable practices in dimensional stone deposits. Full article
Show Figures

Figure 1

Back to TopTop