Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (177)

Search Parameters:
Keywords = ground capacitance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1110 KB  
Article
Management of Zero-Sequence Parameters for Earth Faults on the Power Receiver’s Side in IT-Type Networks
by Gennadiy Pivnyak, Yurii Stepanenko, Kinga Stecuła, Maryna Kyrychenko, Oleksandra Lysenko and Roman Dychkovskyi
Energies 2025, 18(24), 6407; https://doi.org/10.3390/en18246407 - 8 Dec 2025
Viewed by 203
Abstract
This study examines the behavior and control of zero-sequence parameters in IT-type electrical networks under conditions of capacitive insulation asymmetry and complex asymmetric faults on the power receiver side. Existing methods of zero-sequence analysis typically address either symmetrical network conditions or single-phase earth [...] Read more.
This study examines the behavior and control of zero-sequence parameters in IT-type electrical networks under conditions of capacitive insulation asymmetry and complex asymmetric faults on the power receiver side. Existing methods of zero-sequence analysis typically address either symmetrical network conditions or single-phase earth faults in isolation, and they often neglect the combined effects of conductor breakage, transient fault resistance, and capacitive unbalance. To overcome these limitations, this work develops an analytical model based on the general theory of electrical engineering and symmetrical components, enabling a unified description of zero-sequence voltages and currents that incorporates both insulation asymmetry and compound fault scenarios. The model establishes closed-form relationships linking zero-sequence quantities to network parameters, power receiver characteristics, and transient resistances at the fault point. The results demonstrate several previously unreported effects, including a 180° vector shift and nearly 50% reduction in zero-sequence voltage and current magnitudes during simultaneous conductor breakage and earth faults compared with conventional single-phase faults—phenomena that critically influence the correct setting of protection devices. The study further shows that capacitive insulation asymmetry alone may generate zero-sequence voltages sufficient to trigger earth-fault protection regardless of the neutral grounding mode. These findings reveal increased risks of fault escalation, misoperation of existing protection systems, and prolonged unsafe touch voltages. Overall, the derived dependencies provide a new analytical basis for improving the design and coordination of protection systems in IT-type networks. Full article
Show Figures

Figure 1

21 pages, 2007 KB  
Article
A Capacitance-to-Ground Measuring Method for Medium-Voltage Power Grid of a Ship Based on the Combination of High and Low Frequencies
by Shuai Wang, Liang Chen, Zhikang Li and Zhenghe Zhao
Sensors 2025, 25(23), 7310; https://doi.org/10.3390/s25237310 - 1 Dec 2025
Viewed by 285
Abstract
With the increase in capacity of large ship electric power systems, medium-voltage electric power systems have gradually become an inevitable choice. Among China’s large ships, the neutral point of the power system is usually grounded by high resistance, and its grounding parameters need [...] Read more.
With the increase in capacity of large ship electric power systems, medium-voltage electric power systems have gradually become an inevitable choice. Among China’s large ships, the neutral point of the power system is usually grounded by high resistance, and its grounding parameters need to be determined, taking the system’s capacitance to ground as a reference. Under different working conditions, the capacitance to the ground of the system will change, which requires online real-time measurement of the capacitance to the ground to provide a basis. However, the current flowing through the distributed capacitance and the capacitance itself cannot be directly measured by measuring instruments. Currently, the most commonly used method is the signal injection method, which can realize the secondary side measurement. This paper analyzed the traditional signal injection methods and found that all these methods are not suitable for real-time measurement of the capacitance to the ground of the medium-voltage electric power system of a ship. Among the current methods, this paper proposes combining the dual-frequency method and the high-frequency method. Through error analysis, for systems with different capacitances to ground, the frequency selection of the dual-frequency method will affect the measurement accuracy. To ensure the measurement accuracy, it is necessary to adopt the principle of “one low frequency + one high frequency”. Therefore, based on the dual-frequency method and the high-frequency method, the paper proposed an improved dual-frequency method, taking a combination method of high frequency and low frequency for capacitance measurement of medium-voltage power systems with high resistance grounding. Then the paper studied the high- and low-frequency selection scheme by simulation comparison and finally determined the frequency selection scheme of 5000/120 Hz. The paper also carried out simulation and experimental verification and finally proved that under the selected frequency selection scheme, the proposed method can accurately measure the capacitance to ground in a medium-voltage power grid with high resistance grounding. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

25 pages, 11669 KB  
Article
Cyber–Physical–Human System for Elderly Exercises Based on Flexible Piezoelectric Sensor Array
by Qingwei Song, Chyan Zheng Siow, Takenori Obo and Naoyuki Kubota
Appl. Sci. 2025, 15(23), 12519; https://doi.org/10.3390/app152312519 - 25 Nov 2025
Viewed by 227
Abstract
Developing flexible, cost-effective, and durable sensors is a key challenge for integrating Cyber–Physical–Human Systems (CPHSs) into smart homes. This paper introduces a flexible pressure sensor array designed for CPHS applications, addressing the need for cost-effective and durable sensors in smart homes. Our approach [...] Read more.
Developing flexible, cost-effective, and durable sensors is a key challenge for integrating Cyber–Physical–Human Systems (CPHSs) into smart homes. This paper introduces a flexible pressure sensor array designed for CPHS applications, addressing the need for cost-effective and durable sensors in smart homes. Our approach combines flexible piezoelectric materials with Swept Frequency Capacitive Sensing (SFCS). Unlike previous pressure sensors made of flexible piezoelectric materials, which can only measure dynamic pressure due to charge leakage, by using SFCS, the piezoelectric material is not directly in the circuit, and our sensor can effectively measure static pressure. While traditional arrays require multiple I/O ports or a matrix configuration, our design measures four distinct locations using only a single I/O port. The sensor is also mechanically flexible and exhibits high durability, capable of functioning even after being cut or torn, provided the electrode contact area remains largely intact. To decode the complex, multiplexed signal from this single channel, we developed a two-stage deep learning pipeline. We utilized data from thin-film resistive pressure sensors as ground truth. A classification model determines which of the four sensors are being touched. Then a regression model uses this touch-state information to estimate the corresponding pressure values. This pipeline employs a hybrid architecture that integrates Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. The results show that the system can estimate pressure values at each location. To demonstrate its application, the sensor system was integrated into a power recliner, thereby transforming the chair into an interactive tool for daily exercise designed to improve the well-being of older adults. This successful implementation establishes a viable pathway for the development of intelligent, interactive furniture for in-home exercise and rehabilitation within the CPHS paradigm. Full article
Show Figures

Figure 1

31 pages, 5448 KB  
Article
Research on Board-Level Simultaneous Switching Noise-Suppression Method Based on Seagull Optimization Algorithm
by Shuhao Ma, Jie Li, Shuangchao Ge, Debiao Zhang, Chenjun Hu, Kaiqiang Feng, Xiaorui Zhang and Peng Zhao
Appl. Sci. 2025, 15(22), 12100; https://doi.org/10.3390/app152212100 - 14 Nov 2025
Viewed by 344
Abstract
In recent years, with the development of electronic products toward high frequency and high speed, Printed Circuit Board (PCB) routing technology has been continuously evolving to meet the requirements of complex signal transmission. Meanwhile, the increase in circuit frequency and device density has [...] Read more.
In recent years, with the development of electronic products toward high frequency and high speed, Printed Circuit Board (PCB) routing technology has been continuously evolving to meet the requirements of complex signal transmission. Meanwhile, the increase in circuit frequency and device density has led to a sharp deterioration of simultaneous switching noise (SSN), which has escalated from a minor interference to a core bottleneck. SSN not only impairs signal integrity and increases bit error rate, but also interferes with circuit operation, causes device failure, and even leads to system collapse, becoming a “fatal obstacle” to the performance and reliability of high-frequency products. The SSN problem has become increasingly severe due to the rise in circuit operating frequency and device density, posing a key challenge in high-speed circuit design. To address the challenge of suppressing SSN at the PCB board level in high-speed digital circuits, this paper proposes a collaborative optimization scheme integrating simulation analysis and the Seagull Optimization Algorithm (SOA). In this study, a multi-physical field coupling model of SSN is established to reveal that SSN essentially arises from the electromagnetic interaction between the parasitic inductance of the power distribution network (PDN) and high-speed transient current. Based on the research on frequency-domain impedance analysis, time-domain response prediction, and decoupling capacitor suppression mechanism, the limitations of traditional capacitor placement in suppressing GHz-level high-frequency noise are overcome. This method enables precise power integrity (PI) design via simulation analysis frequency-domain parameter extraction and power–ground noise simulation quantify PDN impedance characteristics and the coprocessor switching current spectrum; resonance analysis locates key frequency points and establishes an SSN–planar resonance correlation model to guide decoupling design; finally, noise coupling analysis optimizes signal–power plane spacing, markedly reducing mutual inductance coupling. On this basis, the SOA is innovatively introduced to construct a multi-objective optimization model, with capacitor frequency, capacitance value, and package size as variables. A spiral search algorithm is used to balance noise-suppression performance and cost constraints. Simulation results show that this scheme can reduce the SSN amplitude by 37.5%, effectively suppressing the signal integrity degradation caused by SSN and providing a feasible solution for SSN suppression. Full article
Show Figures

Figure 1

19 pages, 2299 KB  
Article
Capacitance Characteristics of Glass-Embedded Interdigitated Capacitors for Touch Sensing Applications
by Apichart Kaewcharoen, Kirote Arpanutud, Prayoot Akkaraekthalin, Phongsaphak Sittimart and Suramate Chalermwisutkul
Sensors 2025, 25(22), 6941; https://doi.org/10.3390/s25226941 - 13 Nov 2025
Viewed by 793
Abstract
This paper investigates the capacitance characteristics of a glass-embedded interdigitated capacitive sensor (IDCS) for touch-sensing applications. The study analyzes both baseline (no-touch) and touch-induced capacitance variations through a combination of analytical modeling and experimental validation. A multilayer analytical model is first employed to [...] Read more.
This paper investigates the capacitance characteristics of a glass-embedded interdigitated capacitive sensor (IDCS) for touch-sensing applications. The study analyzes both baseline (no-touch) and touch-induced capacitance variations through a combination of analytical modeling and experimental validation. A multilayer analytical model is first employed to calculate the baseline capacitance of the proposed structure, followed by experimental measurements for model verification. Subsequently, an equivalent circuit model of the touched state is introduced to represent the interaction between the human fingertip, sensor electrodes, and earth-ground, explaining the observed capacitance reduction during a finger touch. Sensor prototypes with electrode finger widths of 1.4, 2.0, 2.4, and 3.0 mm were fabricated within a 40 × 40 mm2 sensing area. The baseline capacitance decreased from 28.6 pF at 1.4 mm to 12 pF at 3.0 mm electrode finger width, while the capacitance change upon touch ranged from 0.6–0.9 pF. Touch sensitivity for three test persons increased from about 1.7–4.6% at 1.4 mm to 5–7.6% at 3.0 mm electrode finger width. The results confirm that narrower-electrode designs yield higher absolute capacitance, whereas wider electrodes enhance touch sensitivity and provide greater uniformity within the defined sensing area. Overall, the findings validate the proposed IDCS configuration as a practical approach for realizing glass-integrated touch sensors and offer practical guidelines for optimizing electrode geometry in touch-based smart-glass applications. Full article
(This article belongs to the Special Issue Electromagnetic Sensors and Their Applications)
Show Figures

Figure 1

93 pages, 25131 KB  
Article
A Selective Method for Identifying Single-Phase Ground Faults with Transient Resistance in Isolated Neutral Medium-Voltage Networks
by Merey Jetpissov, Kazhybek Tergemes, Saken Sheryazov, Algazy Zhauyt, Toleuserik Sadykbek, Abdissattar Berdibekov and Gulbarshyn Smailova
Energies 2025, 18(21), 5699; https://doi.org/10.3390/en18215699 - 30 Oct 2025
Viewed by 494
Abstract
Single-phase ground faults (SPGFs) in isolated neutral medium-voltage networks are difficult to detect, especially under high transient resistance. This paper proposes a centralized ground fault protection unit (CGFPU) that combines zero-sequence current (ZSC) magnitude and phase-angle analysis to enhance selectivity. Simulation results show [...] Read more.
Single-phase ground faults (SPGFs) in isolated neutral medium-voltage networks are difficult to detect, especially under high transient resistance. This paper proposes a centralized ground fault protection unit (CGFPU) that combines zero-sequence current (ZSC) magnitude and phase-angle analysis to enhance selectivity. Simulation results show that as transient resistance increases from 1 Ohm to 10 kOhm, fault currents decrease significantly, yet the CGFPU reliably identifies the faulty feeder by exploiting the characteristic 180° phase shift of ZSC phasors. The method remains selective with angular deviations up to ±20° and distinguishes between feeder and busbar faults. Compared with conventional amplitude- or model-based techniques, the proposed approach achieves faster detection, lower computational complexity, and robustness against unbalanced and charging currents. Furthermore, the CGFPU operates adaptively in alarm or trip mode depending on fault severity, thus preserving continuity for high-resistance faults and ensuring rapid isolation of bolted faults. These contributions establish a practical, scalable, and future-ready solution for SPGF protection in medium-voltage isolated neutral networks. Full article
Show Figures

Figure 1

20 pages, 5333 KB  
Article
Shielded Capacitive Power Transmission (S-CPT) System Using Cast Iron
by Eiichi Tateishi, Hao Chen, Naoki Kojo, Yuta Ide, Nobuhiro Kai, Toru Hashimoto, Kota Uchio, Tatsuya Yamaguchi, Reiji Hattori and Haruichi Kanaya
Energies 2025, 18(19), 5288; https://doi.org/10.3390/en18195288 - 6 Oct 2025
Viewed by 599
Abstract
In this study, we investigate a shielded capacitive power transfer (S-CPT) system that employs cast iron road covers as transmission electrodes for both dynamic and static charging of electric vehicles. Coupling capacitance was evaluated from S-parameters using copper, aluminum, ductile cast iron, structural [...] Read more.
In this study, we investigate a shielded capacitive power transfer (S-CPT) system that employs cast iron road covers as transmission electrodes for both dynamic and static charging of electric vehicles. Coupling capacitance was evaluated from S-parameters using copper, aluminum, ductile cast iron, structural steel, and carbon steel electrodes, with additional comparisons of ductile iron surface conditions (casting, machining, electrocoating). In a four-plate S-CPT system operating at 13.56 MHz, capacitance decreased with electrode spacing, yet ductile cast iron reached ~70 pF at 2 mm, demonstrating a performance comparable to that of copper and aluminum despite having higher resistivity and permeability. Power transmission experiments using a Ø330 mm cast iron cover meeting road load standards achieved 58% efficiency at 100 W, maintained around 40% efficiency at power levels above 200 W, and retained 45% efficiency under 200 mm lateral displacement, confirming robust dynamic performance. Simulations showed that shield electrodes enhance grounding, stabilize potential, and reduce return-path impedance. Finite element analysis confirmed that the ductile cast iron electrodes can withstand a 25-ton design load. The proposed S-CPT concept integrates an existing cast iron infrastructure with thin aluminum receiving plates, enabling high efficiency, mechanical durability, EMI mitigation, and reduced installation costs, offering a cost-effective approach to urban wireless charging. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

16 pages, 5890 KB  
Article
Wideband Multi-Layered Dielectric Resonator Antenna with Small Form Factor for 5G Millimeter-Wave Mobile Applications
by Sung Yong An and Boumseock Kim
Electronics 2025, 14(19), 3756; https://doi.org/10.3390/electronics14193756 - 23 Sep 2025
Viewed by 468
Abstract
A ceramic-based wideband capacitive-fed patch-loaded multi-layered rectangular dielectric resonator antenna (CFPL-ML-RDRA) with a compact form factor is proposed in this paper. The proposed antenna is composed of two ceramic substrates and a polymer as an adhesive. A capacitive-fed metallic patch structure is located [...] Read more.
A ceramic-based wideband capacitive-fed patch-loaded multi-layered rectangular dielectric resonator antenna (CFPL-ML-RDRA) with a compact form factor is proposed in this paper. The proposed antenna is composed of two ceramic substrates and a polymer as an adhesive. A capacitive-fed metallic patch structure is located on the top side of the bottom ceramic substrate. This novel structure generates two distinct resonant modes: the fundamental resonant mode of the RDRA and a hybrid resonant mode, which was confirmed through electric field (E-field) analysis and parametric studies. By merging these two resonant modes, the proposed antenna achieves a wide impedance bandwidth of 5.5 GHz, sufficient to cover the fifth-generation (5G) millimeter-wave (mmWave) frequency bands n257, n258, and n261 (5.25 GHz), while reducing the height of the DRA by 38.5% compared to the conventional probe-fed RDRA (PF-RDRA). Additionally, the 4 dBi realized gain bandwidth of the proposed CFPL-ML-RDRA is 5.4 GHz, which is 28.6% broader than that of the conventional PF-RDRA. To experimentally verify the antenna’s performance, the CFPL-ML-RDRA mounted on a test printed circuit board with a small ground size of 3.2 × 3.2 mm2 was fabricated and characterized. The measured data align well with the simulated data. Furthermore, excellent antenna array performance was achieved based on array simulations. Therefore, the proposed antenna structure is well-suited for 5G mmWave mobile applications. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

25 pages, 2949 KB  
Article
Strategic Vertiport Placement for Airport Access: Utilizing Urban Air Mobility for Accelerated and Reliable Transportation
by Vasileios Volakakis and Hani S. Mahmassani
Infrastructures 2025, 10(9), 242; https://doi.org/10.3390/infrastructures10090242 - 14 Sep 2025
Cited by 1 | Viewed by 2276
Abstract
Airport-bound access and egress trips comprise a significant portion of total ground transportation trips, especially in regions served by large airports. Connecting urban areas with airports under minimal travel delays can be challenging, with traffic congestion along busy connecting corridors being a common [...] Read more.
Airport-bound access and egress trips comprise a significant portion of total ground transportation trips, especially in regions served by large airports. Connecting urban areas with airports under minimal travel delays can be challenging, with traffic congestion along busy connecting corridors being a common phenomenon. Urban Air Mobility (UAM) is a new transportation mode envisioned to reduce travel times using specific aircraft, such as electric (and non-electric) Vertical or Short Take-off and Landing aircraft (e/VTOLs and STOLs, respectively). The operation of these aircraft requires take-off and landing infrastructure known as vertiports. A strategic infrastructure placement framework was introduced, utilizing and adapting the Capacitated Facility Location Problem (a-CFLP) and the Maximal Covering Location Problem (a-MCLP) with capacity constraints. An adapted capacitated k-means algorithm and a greedy heuristic were considered for the solution of the a-CFLP, while the a-MCLP was formulated as a mixed-integer linear programming problem. The proposed framework was applied in the Chicago Metropolitan Area, revealing that various trade-offs regarding coverage and accessibility, versus operational costs (number of facilities, facility capacity, and service radius), exist. The results showed that, depending on vertiport capacity and service radius capabilities, a range of 5 to 12 vertiports can sufficiently address the demand (above 95% demand coverage) and, with respect to accessibility, serve a moderate UAM demand scenario of 6124 daily requests, as identified for this region. Full article
Show Figures

Figure 1

24 pages, 4575 KB  
Article
High-Impedance Grounding Fault Protection in Distribution Networks Based on Single-Phase Isolation Transformer and Phase-Edge Additional Capacitance
by Hua Zhang, Xueneng Su, Zongmin Yu, Jing Wang and Cheng Long
Energies 2025, 18(18), 4797; https://doi.org/10.3390/en18184797 - 9 Sep 2025
Viewed by 837
Abstract
High impedance grounding faults (HIGFs) are a common yet difficult-to-detect issue in distribution networks. Characterized by low fault currents and prolonged durations, they pose a significant risk of triggering secondary hazards such as wildfires. Existing HIGF prevention and control technologies face challenges in [...] Read more.
High impedance grounding faults (HIGFs) are a common yet difficult-to-detect issue in distribution networks. Characterized by low fault currents and prolonged durations, they pose a significant risk of triggering secondary hazards such as wildfires. Existing HIGF prevention and control technologies face challenges in effectively addressing arc ignition, fault current limitation, and wildfire mitigation. To tackle these limitations, this paper proposes a novel asymmetric operational structure incorporating a single-phase isolation transformer and supplementary edge-phase capacitance. Through theoretical modeling and simulation analysis, the interrelations among fault current, phase voltage, zero-sequence voltage, and HIGF characteristics are systematically explored. A coordinated control strategy is developed to optimize three-phase voltage distribution within the distribution network. Simulation results demonstrate that the proposed configuration significantly reduces edge-phase voltages, suppresses fault current levels, prevents arc initiation, extends arc ignition delay times, and consequently mitigates wildfire risk. This study presents a new technical pathway for HIGF prevention and control, offering both practical engineering value and theoretical insight. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

25 pages, 6720 KB  
Article
Charge Redistribution Mitigation and Optimization for Sensor–ADC Interfacing in Low Cost Embedded Applications
by Boyan Shabanski and Angel Marinov
Sensors 2025, 25(16), 4960; https://doi.org/10.3390/s25164960 - 11 Aug 2025
Cited by 1 | Viewed by 834
Abstract
This paper proposes a cost-effective five-component discrete capacitive pre-charging circuit designed to mitigate charge redistribution effects in Analog-to-Digital Converter (ADC) inputs, particularly for low-cost embedded applications involving multiplexed high-output-resistance sources. The paper presents an analysis and experimental validation of this approach, comparing its [...] Read more.
This paper proposes a cost-effective five-component discrete capacitive pre-charging circuit designed to mitigate charge redistribution effects in Analog-to-Digital Converter (ADC) inputs, particularly for low-cost embedded applications involving multiplexed high-output-resistance sources. The paper presents an analysis and experimental validation of this approach, comparing its performance against traditional methods like grounding or leaving unused multiplexer inputs floating. The proposed solution leverages external components (two capacitors and three switches) and multiplexer features to pre-charge ADC inputs to approximately half the reference voltage, which could be taken directly from the multiplexer supply rail, significantly reducing transient glitches and settling times. The experimental results demonstrate a clear improvement, achieving settling times up to 1.4 µs shorter than conventional approaches during specific multiplexer transitions. Component selection guidelines are outlined, including compensation capacitor sizing and transistor choice, addressing practical concerns such as charge injection effects. Despite certain experimental constraints noted during testing, the developed discrete pre-charging method consistently exhibited substantial performance gains. Our findings confirm that this practical, minimal-component strategy effectively addresses charge redistribution challenges, presenting an efficient solution for enhancing ADC input accuracy and response speed in resource-limited embedded sensor systems. Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

12 pages, 1677 KB  
Article
Validating Capacitive Pressure Sensors for Mobile Gait Assessment
by John Carver Middleton, David Saucier, Samaneh Davarzani, Erin Parker, Tristen Sellers, James Chalmers, Reuben F. Burch, John E. Ball, Charles Edward Freeman, Brian Smith and Harish Chander
Biomechanics 2025, 5(3), 54; https://doi.org/10.3390/biomechanics5030054 - 1 Aug 2025
Viewed by 990
Abstract
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler [...] Read more.
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler force plates in collecting ground force reaction data. Methods: Nineteen participants performed walking trials while wearing the smart sock with and without shoes. Data was collected simultaneously with the sock and the force plates for each gait phase including foot-flat, heel-off, and midstance. The correlation between the smart sock and force plates was analyzed using Pearson’s correlation coefficient and R-squared values. Results: Overall, the strength of the relationship between the smart sock’s SRS data and the vertical ground reaction force (GRF) data from the force plates showed a strong correlation, with a Pearson’s correlation coefficient of 0.85 ± 0.1; 86% of the trials had a value higher than 0.75. The linear regression models also showed a strong correlation, with an R-squared value of 0.88 ± 0.12, which improved to 0.90 ± 0.07 when including a stretch-SRS for measuring ankle flexion. Conclusions: With these strong correlation results, there is potential for capacitive pressure sensors to be integrated into the proposed device and utilized in telehealth and sports performance applications. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

40 pages, 7119 KB  
Article
Optimizing Intermodal Port–Inland Hub Systems in Spain: A Capacitated Multiple-Allocation Model for Strategic and Sustainable Freight Planning
by José Moyano Retamero and Alberto Camarero Orive
J. Mar. Sci. Eng. 2025, 13(7), 1301; https://doi.org/10.3390/jmse13071301 - 2 Jul 2025
Viewed by 1429
Abstract
This paper presents an enhanced hub location model tailored to port–hinterland logistics planning, grounded in the Capacitated Multiple-Allocation Hub Location Problem (CMAHLP). The formulation incorporates nonlinear cost structures, hub-specific operating costs, adaptive capacity constraints, and a feasibility condition based on the Social Net [...] Read more.
This paper presents an enhanced hub location model tailored to port–hinterland logistics planning, grounded in the Capacitated Multiple-Allocation Hub Location Problem (CMAHLP). The formulation incorporates nonlinear cost structures, hub-specific operating costs, adaptive capacity constraints, and a feasibility condition based on the Social Net Present Value (NPVsocial) to support the design of intermodal freight networks under asymmetric spatial and socio-environmental conditions. The empirical case focuses on Spain, leveraging its strategic position between Asia, North Africa, and Europe. The model includes four major ports—Barcelona, Valencia, Málaga, and Algeciras—as intermodal gateways connected to the 47 provinces of peninsular Spain through calibrated cost matrices based on real distances and mode-specific road and rail costs. A Genetic Algorithm is applied to evaluate 120 scenarios, varying the number of active hubs (4, 6, 8, 10, 12), transshipment discounts (α = 0.2 and 1.0), and internal parameters. The most efficient configuration involved 300 generations, 150 individuals, a crossover rate of 0.85, and a mutation rate of 0.40. The algorithm integrates guided mutation, elitist reinsertion, and local search on the top 15% of individuals. Results confirm the central role of Madrid, Valencia, and Barcelona, frequently accompanied by high-performance inland hubs such as Málaga, Córdoba, Jaén, Palencia, León, and Zaragoza. Cities with active ports such as Cartagena, Seville, and Alicante appear in several of the most efficient network configurations. Their recurring presence underscores the strategic role of inland hubs located near seaports in supporting logistical cohesion and operational resilience across the system. The COVID-19 crisis, the Suez Canal incident, and the persistent tensions in the Red Sea have made clear the fragility of traditional freight corridors linking Asia and Europe. These shocks have brought renewed strategic attention to southern Spain—particularly the Mediterranean and Andalusian axes—as viable alternatives that offer both geographic and intermodal advantages. In this evolving context, the contribution of southern hubs gains further support through strong system-wide performance indicators such as entropy, cluster diversity, and Pareto efficiency, which allow for the assessment of spatial balance, structural robustness, and optimal trade-offs in intermodal freight planning. Southern hubs, particularly in coordination with North African partners, are poised to gain prominence in an emerging Euro–Maghreb logistics interface that demands a territorial balance and resilient port–hinterland integration. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

16 pages, 1810 KB  
Article
Insulation Online Monitoring Method for Dry-Type Current Transformers Based on Virtual Voltage
by Junjie Zhang, Yu Peng, Xiaohui Hu, Zhipeng Li, Li Yan, Can Ding and Ruihua Zhao
Energies 2025, 18(13), 3499; https://doi.org/10.3390/en18133499 - 2 Jul 2025
Viewed by 495
Abstract
To improve the accuracy of insulation state online monitoring for capacitive dry-type current transformers (CTs) and to address the limitations of traditional methods relying on potential transformer (PT) voltage signals and reference devices, a virtual voltage-based online monitoring method is proposed. First, the [...] Read more.
To improve the accuracy of insulation state online monitoring for capacitive dry-type current transformers (CTs) and to address the limitations of traditional methods relying on potential transformer (PT) voltage signals and reference devices, a virtual voltage-based online monitoring method is proposed. First, the leakage current is collected through a core-type current transformer on the end-screen grounding line. Combined with group measurement data from surge arresters and dry-type CTs on the same busbar, phase constraints are established, and a least mean square (LMS) algorithm is utilized to iteratively train the virtual voltage reference phase. Subsequently, the resistive current and dielectric loss factor (tan δ) are calculated based on the virtual voltage reference phase to achieve online insulation state monitoring. Simulation results demonstrate that the proposed method can accurately obtain the virtual voltage reference phase and effectively identify the degradation trend of dry-type CTs. Field applications validate the feasibility of the method, with monitoring data fluctuations (±20 μA for the resistive current and ±0.002 for the dielectric loss) meeting engineering requirements. This method eliminates the need for PT signals and reference devices, thus providing a novel approach for the online insulation monitoring of dry-type CTs. Full article
Show Figures

Figure 1

10 pages, 2516 KB  
Communication
A Design of a Leaf-Shaped Biomimetic Flexible Wideband Antenna
by Siwei Tan, Linsen Zhang, Qiang Sun, Bo Tang and Qiyang Wang
Electronics 2025, 14(13), 2620; https://doi.org/10.3390/electronics14132620 - 28 Jun 2025
Cited by 1 | Viewed by 675
Abstract
In low-detectability application scenarios such as covert reconnaissance, wildlife behavior observation, and battlefield detection, antennas not only need to have wideband performance but also require good biomimetic camouflage characteristics. To address this issue, this article proposes a leaf-shaped biomimetic flexible wideband antenna. The [...] Read more.
In low-detectability application scenarios such as covert reconnaissance, wildlife behavior observation, and battlefield detection, antennas not only need to have wideband performance but also require good biomimetic camouflage characteristics. To address this issue, this article proposes a leaf-shaped biomimetic flexible wideband antenna. The design concept of the antenna is inspired by the symmetrical vein structure of aquifoliaceae leaves, incorporating vein-like slots into the radiation patch to form multiple inter-slot capacitances, which improves the high-frequency resonance behavior and expands the antenna’s operating bandwidth. In addition, the traditional rectangular grounding plane is replaced with a semi-elliptical shape, optimizing the electric field distribution between the feed line and the radiation part, thereby improving impedance matching. The measured results show that the leaf-shaped antenna achieves a relative bandwidth of 100% (2.4 GHz–7.1 GHz), with its operating frequency bands covering several common communication bands such as n41, n78, n79, and ISM 5.8 GHz, with a maximum gain of 5.4 dBi. Additionally, the leaf-shaped antenna has a good resemblance to the shape of aquifoliaceae leaves. The antenna’s performance remains relatively stable with bending radii of 40 mm, 50 mm, and 60 mm, demonstrating an important role in camouflage application scenarios. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

Back to TopTop