You are currently viewing a new version of our website. To view the old version click .
Applied Sciences
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

25 November 2025

Cyber–Physical–Human System for Elderly Exercises Based on Flexible Piezoelectric Sensor Array

,
,
and
Department of System Design, Tokyo Metropolitan University, Hino-shi 191-0065, Tokyo, Japan
*
Author to whom correspondence should be addressed.

Abstract

Developing flexible, cost-effective, and durable sensors is a key challenge for integrating Cyber–Physical–Human Systems (CPHSs) into smart homes. This paper introduces a flexible pressure sensor array designed for CPHS applications, addressing the need for cost-effective and durable sensors in smart homes. Our approach combines flexible piezoelectric materials with Swept Frequency Capacitive Sensing (SFCS). Unlike previous pressure sensors made of flexible piezoelectric materials, which can only measure dynamic pressure due to charge leakage, by using SFCS, the piezoelectric material is not directly in the circuit, and our sensor can effectively measure static pressure. While traditional arrays require multiple I/O ports or a matrix configuration, our design measures four distinct locations using only a single I/O port. The sensor is also mechanically flexible and exhibits high durability, capable of functioning even after being cut or torn, provided the electrode contact area remains largely intact. To decode the complex, multiplexed signal from this single channel, we developed a two-stage deep learning pipeline. We utilized data from thin-film resistive pressure sensors as ground truth. A classification model determines which of the four sensors are being touched. Then a regression model uses this touch-state information to estimate the corresponding pressure values. This pipeline employs a hybrid architecture that integrates Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. The results show that the system can estimate pressure values at each location. To demonstrate its application, the sensor system was integrated into a power recliner, thereby transforming the chair into an interactive tool for daily exercise designed to improve the well-being of older adults. This successful implementation establishes a viable pathway for the development of intelligent, interactive furniture for in-home exercise and rehabilitation within the CPHS paradigm.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.