Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = gripper sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7910 KB  
Article
Automatic Grasping System and Hybrid Controller Towards Multi-Drone Parcel Delivery
by Bruno J. Guerreiro, Francisco Azevedo, Paulo Oliveira and Rita Cunha
Sensors 2026, 26(2), 653; https://doi.org/10.3390/s26020653 - 18 Jan 2026
Viewed by 218
Abstract
This paper presents the development of an autonomous grasping mechanism for drone-based parcel delivery systems towards developing capabilities for in-flight package transfer. The approach integrates a mechanical gripper fitted with sensors and a pose estimation method for parcels, all coordinated through a hybrid [...] Read more.
This paper presents the development of an autonomous grasping mechanism for drone-based parcel delivery systems towards developing capabilities for in-flight package transfer. The approach integrates a mechanical gripper fitted with sensors and a pose estimation method for parcels, all coordinated through a hybrid Model Predictive Control (MPC) architecture. The gripper’s mechanical structure and prototype are developed using 3D printing technology for both the main framework and gear components. A hybrid dynamical model is formulated that integrates the gripper mechanics with simplified drone dynamics, capturing distinct operational phases including package acquisition, transport, and release. The hybrid MPC framework computes reference trajectories for both the gripper arm configuration and the drone’s spatial path toward designated target positions. Experimental validation is conducted using the operational gripper prototype and pose estimation system, while drone behavior is represented through simulation. Full article
Show Figures

Figure 1

29 pages, 4242 KB  
Article
Electro-Actuated Customizable Stacked Fin Ray Gripper for Adaptive Object Handling
by Ratchatin Chancharoen, Kantawatchr Chaiprabha, Worathris Chungsangsatiporn, Pimolkan Piankitrungreang, Supatpromrungsee Saetia, Tanarawin Viravan and Gridsada Phanomchoeng
Actuators 2026, 15(1), 52; https://doi.org/10.3390/act15010052 - 13 Jan 2026
Viewed by 164
Abstract
Soft robotic grippers provide compliant and adaptive manipulation, but most existing designs address actuation speed, adaptability, modularity, or sensing individually rather than in combination. This paper presents an electro-actuated customizable stacked Fin Ray gripper that integrates these capabilities within a single design. The [...] Read more.
Soft robotic grippers provide compliant and adaptive manipulation, but most existing designs address actuation speed, adaptability, modularity, or sensing individually rather than in combination. This paper presents an electro-actuated customizable stacked Fin Ray gripper that integrates these capabilities within a single design. The gripper employs a compact solenoid for fast grasping, multiple vertically stacked Fin Ray segments for improved 3D conformity, and interchangeable silicone or TPU fins that can be tuned for task-specific stiffness and geometry. In addition, a light-guided, vision-based sensing approach is introduced to capture deformation without embedded sensors. Experimental studies—including free-fall object capture and optical shape sensing—demonstrate rapid solenoid-driven actuation, adaptive grasping behavior, and clear visual detectability of fin deformation. Complementary simulations using Cosserat-rod modeling and bond-graph analysis characterize the deformation mechanics and force response. Overall, the proposed gripper provides a practical soft-robotic solution that combines speed, adaptability, modular construction, and straightforward sensing for diverse object-handling scenarios. Full article
(This article belongs to the Special Issue Soft Actuators and Robotics—2nd Edition)
Show Figures

Figure 1

23 pages, 12295 KB  
Article
A Support End-Effector for Banana Bunches Based on Contact Mechanics Constraints
by Bowei Xie, Xinxiao Wu, Guohui Lu, Ziping Wan, Mingliang Wu, Jieli Duan and Lewei Tang
Agronomy 2025, 15(12), 2907; https://doi.org/10.3390/agronomy15122907 - 17 Dec 2025
Viewed by 422
Abstract
Banana harvesting relies heavily on manual labor, which is labor-intensive and prone to fruit damage due to insufficient control of contact forces. This paper presents a systematic methodology for the design and optimization of adaptive flexible end-effectors for banana bunch harvesting, focusing on [...] Read more.
Banana harvesting relies heavily on manual labor, which is labor-intensive and prone to fruit damage due to insufficient control of contact forces. This paper presents a systematic methodology for the design and optimization of adaptive flexible end-effectors for banana bunch harvesting, focusing on contact behavior and mechanical constraints. By integrating response surface methodology (RSM) with multi-objective genetic algorithm (MOGA) optimization, the relationships between finger geometry parameters and key performance metrics—contact area, contact stress, and radial stiffness—were quantified, and Pareto-optimal structural configurations were identified. Experimental and simulation results demonstrate that the optimized flexible fingers effectively improve handling performance: contact area increased by 13–28%, contact stress reduced by 45–56%, and radial stiffness enhanced by 193%, while the maximum shear stress on the fruit stalk decreased by 90%, ensuring harvesting stability during dynamic loading. The optimization effectively distributes contact pressure, minimizes fruit damage, and enhances grasping reliability. The proposed contact-behavior-constrained design framework enables passive adaptation to fruit morphology without complex sensors, offering a generalizable solution for soft robotic handling of fragile and irregular agricultural products. This work bridges the gap between bio-inspired gripper design and practical agricultural application, providing both theoretical insights and engineering guidance for automated, low-damage fruit harvesting systems. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture—2nd Edition)
Show Figures

Figure 1

14 pages, 4161 KB  
Article
Diffusion-Plating Al2O3 Film for Friction and Corrosion Protection of Marine Sensors
by Yaoyao Liu, Longbo Li, Daling Wei, Kangwei Xu, Liangliang Liu, Long Li and Zhongzhen Wu
Micromachines 2025, 16(12), 1344; https://doi.org/10.3390/mi16121344 - 28 Nov 2025
Viewed by 386
Abstract
To extend the service life of sensors in seawater, this work prepared an integrated diffusion-plated Al2O3 film using high-power impulse magnetron sputtering (HiPIMS). The tribological properties of the Al2O3 film in a marine environment were tested using [...] Read more.
To extend the service life of sensors in seawater, this work prepared an integrated diffusion-plated Al2O3 film using high-power impulse magnetron sputtering (HiPIMS). The tribological properties of the Al2O3 film in a marine environment were tested using a tribometer. The morphology and evolution of the Al2O3 film before and after the friction tests were investigated by characterization techniques such as field emission scanning electron microscopy (FESEM). The results demonstrate that the Al2O3 film exhibits excellent tribological performance in the marine environment, significantly enhancing the wear resistance of the substrate material. Furthermore, with the protection of the Al2O3 film, the designed pressure sensor achieved high-sensitivity detection of minute operational forces underwater. When applied to a robotic gripper for manipulation tasks, the coated underwater sensor enabled accurate perception of subtle motion states of the grasped objects. Full article
(This article belongs to the Special Issue Micro-Energy Harvesting Technologies and Self-Powered Sensing Systems)
Show Figures

Figure 1

33 pages, 22059 KB  
Review
Resistive Sensing in Soft Robotic Grippers: A Comprehensive Review of Strain, Tactile, and Ionic Sensors
by Donya Mostaghniyazdi and Shahab Edin Nodehi
Electronics 2025, 14(21), 4290; https://doi.org/10.3390/electronics14214290 - 31 Oct 2025
Viewed by 3101
Abstract
Soft robotic grippers have emerged as crucial tools for safe and adaptive manipulation of delicate and different objects, enabled by their compliant structures. These grippers need embedded sensing that offers proprioceptive and exteroceptive feedback in order to function consistently. Resistive sensing is unique [...] Read more.
Soft robotic grippers have emerged as crucial tools for safe and adaptive manipulation of delicate and different objects, enabled by their compliant structures. These grippers need embedded sensing that offers proprioceptive and exteroceptive feedback in order to function consistently. Resistive sensing is unique among transduction processes since it is easy to use, scalable, and compatible with deformable materials. The three main classes of resistive sensors used in soft robotic grippers are systematically examined in this review: ionic sensors, which are emerging multimodal devices that can capture both mechanical and environmental cues; tactile sensors, which detect contact, pressure distribution, and slip; and strain sensors, which monitor deformation and actuation states. Their methods of operation, material systems, fabrication techniques, performance metrics, and integration plans are all compared in the survey. The results show that sensitivity, linearity, durability, and scalability are all trade-offs across sensor categories, with ionic sensors showing promise as a new development for multipurpose soft grippers. There is also a discussion of difficulties, including hysteresis, long-term stability, and signal processing complexity. In order to move resistive sensing from lab prototypes to reliable, practical applications in domains like healthcare, food handling, and human–robot collaboration, the review concludes that developments in hybrid material systems, additive manufacturing, and AI-enhanced signal interpretation will be crucial. Full article
Show Figures

Figure 1

16 pages, 2934 KB  
Article
A Universal Tool Interaction Force Estimation Approach for Robotic Tool Manipulation
by Diyun Wen, Jiangtao Xiao, Yu Xie, Tao Luo, Jinhui Zhang and Wei Zhou
Sensors 2025, 25(21), 6619; https://doi.org/10.3390/s25216619 - 28 Oct 2025
Viewed by 1154
Abstract
The six-degree-of-freedom (6-DoF) interaction forces/torque of the tool-end play an important role in the robotic tool manipulation using a gripper, which are usually indirectly measured by a robot wrist force/torque sensor. However, the real-time decoupling of the tool’s inertial force remains a challenge [...] Read more.
The six-degree-of-freedom (6-DoF) interaction forces/torque of the tool-end play an important role in the robotic tool manipulation using a gripper, which are usually indirectly measured by a robot wrist force/torque sensor. However, the real-time decoupling of the tool’s inertial force remains a challenge when different tools and grasping postures are involved. This paper presents a universal tool-end interaction forces estimation approach, which is capable of handling diverse grippers and tools. Firstly, to address uncertainties from varying tools and grasping postures, an online-identifiable tool dynamics model was built based on the Newton–Euler approach for the integrated gripper–tool system. Sensor zero-drift caused by factors such as the tool weight and prolonged operation is incorporated into the dynamic model and identified online in real time, enabling a coarse estimation of the interaction forces. Secondly, a spiking neural network (SNN) is specially employed to compensate for uncertainties caused by the wrist sensor creep effect, since its temporal processing and event-driven characteristics match the time-varying creep effects introduced by tool changes. The proposed method is experimentally validated on a robotic arm with a gripper, and the results show that the root mean square errors of the estimated tool-end interaction forces are below 0.5 N with x, y, and z axes and 0.03 Nm with τx, τy, and τz axes, which has a comparable precision with the in situ measurement of the interaction forces at the tool-end. The proposed method is further applied to robotic scraper manipulation with impedance control, achieving the interaction forces feedback during compliant operation precisely and rapidly. Full article
Show Figures

Figure 1

24 pages, 3478 KB  
Article
Measurement of Force and Position Using a Cantilever Beam and Multiple Strain Gauges: Sensing Principles and Design Considerations
by Carter T. Noh, Kenneth Smith, Christian L. Shamo, Jordan Porter, Kirsten Steele, Nathan D. Ludlow, Ryan W. Hall, Maeson G. Holst, Alex R. Williams and Douglas D. Cook
Sensors 2025, 25(21), 6561; https://doi.org/10.3390/s25216561 - 24 Oct 2025
Cited by 1 | Viewed by 1457
Abstract
Simultaneous measurement of force and position often relies on delicate tactile sensing systems that only measure small forces at discrete positions. This study proposes a compact, durable sensor which can provide simultaneous and continuous measurements of force and position using multiple strain gauges [...] Read more.
Simultaneous measurement of force and position often relies on delicate tactile sensing systems that only measure small forces at discrete positions. This study proposes a compact, durable sensor which can provide simultaneous and continuous measurements of force and position using multiple strain gauges mounted on a cantilever beam. When a point force is applied to the cantilever, the strain gauges are used to determine the magnitude of the applied force and its position along the beam. A major advantage of the force-position sensor concept is its compact electronics and durable sensing surface. We designed, tested, and evaluated three different prototypes for the force-position sensor concept. The prototypes achieved an average percent error of 1.71% and were highly linear. We also conducted a thorough analysis of design variables and their effects on performance. The force and position measurement ranges can be adjusted by tuning the material and geometric properties of the beam and the spacing of the strain gauges. The accuracy of force measurements is dependent upon applied load, but insensitive to the location of the applied load. Accuracy of position measurements is also dependent upon applied load and weakly dependent upon position of the applied load. Full article
(This article belongs to the Collection Tactile Sensors, Sensing and Systems)
Show Figures

Figure 1

5 pages, 1075 KB  
Proceeding Paper
Soft Gripper Gloves with Mirroring System Design for Hand Rehabilitation
by Helmy Dewanto Bryantono, Cheng-Yan Su, Ju-Kai Huang, Tan-Wen Xin and Shi-Chang Tseng
Eng. Proc. 2025, 103(1), 29; https://doi.org/10.3390/engproc2025103029 - 18 Sep 2025
Viewed by 611
Abstract
Over the last decade, soft robotic gripper systems, such as grippers, have been used in a variety of applications, particularly in human rehabilitation. This study aims to enhance the rehabilitation process by creating a mirroring system glove for hand paralysis patients due to [...] Read more.
Over the last decade, soft robotic gripper systems, such as grippers, have been used in a variety of applications, particularly in human rehabilitation. This study aims to enhance the rehabilitation process by creating a mirroring system glove for hand paralysis patients due to injury, stroke, hemiplegia, and others. A soft and flexible liquid silicone rubber (LSR) was used to develop and build a pair of gloves to improve comfort and safety compared with rigid rehabilitation equipment. The non-affected hand’s sensory glove, equipped with flex sensors, detects motion by measuring the bending angle at each finger. The other glove uses Arduino and a pneumatic system to help the afflicted hand accomplish training exercises. The new design of a gripper is important for manufacturing gloves that provide acceptable gripping behavior. Full article
(This article belongs to the Proceedings of The 8th Eurasian Conference on Educational Innovation 2025)
Show Figures

Figure 1

18 pages, 20480 KB  
Article
Design of a PEBA–Silicone Composite Magneto-Sensitive Airbag Sensor for Simultaneous Contact Force and Motion Detection
by Zhirui Zhao, Chun Xia, Xinyu Zeng, Xinyu Hou, Lina Hao, Dexing Shan and Jiqian Xu
Sensors 2025, 25(18), 5823; https://doi.org/10.3390/s25185823 - 18 Sep 2025
Viewed by 831
Abstract
Considering that soft airbag sensors made from soft materials are limited to detecting only normal forces, a novel PEBA–silicone composite magneto-sensitive airbag sensor is proposed for simultaneously detecting normal contact force and horizontal motion during human–robot interaction. In terms of structural design, the [...] Read more.
Considering that soft airbag sensors made from soft materials are limited to detecting only normal forces, a novel PEBA–silicone composite magneto-sensitive airbag sensor is proposed for simultaneously detecting normal contact force and horizontal motion during human–robot interaction. In terms of structural design, the PEBA–silicone composite airbag is manufactured using fused deposition modeling, 3D printing, and silicone casting, achieving a balance between high airtightness and adjustable stiffness. Beneath the airbag, a magneto-sensitive substrate with several NdFeB magnets is embedded, while a fixed Hall sensor detects spatially varying magnetic fields to determine horizontal displacements without contact. The results of contact-force and motion experiments show that the proposed sensor achieves a force resolution of 20 g, a force range of 0 to 1100 g, a fitting sensitivity of 7.54 N/Pa, an average static stiffness of 4.82 N/mm, and a horizontal motion detection range of 0.125 to 1 cm/s. In addition, the prototype of the sensor is lightweight (with the complete assembly weighing 81.25 g and the sensing part weighing 56.13 g) and low-cost, giving it potential application value in exoskeletons and industrial grippers. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

16 pages, 11849 KB  
Article
A Modular Soft Gripper with Embedded Force Sensing and an Iris-Type Cutting Mechanism for Harvesting Medium-Sized Crops
by Eduardo Navas, Kai Blanco, Daniel Rodríguez-Nieto and Roemi Fernández
Actuators 2025, 14(9), 432; https://doi.org/10.3390/act14090432 - 2 Sep 2025
Cited by 1 | Viewed by 1869
Abstract
Agriculture is facing increasing challenges due to labor shortages, rising productivity demands, and the need to operate in unstructured environments. Robotics, particularly soft robotics, offers promising solutions for automating delicate tasks such as fruit harvesting. While numerous soft grippers have been proposed, most [...] Read more.
Agriculture is facing increasing challenges due to labor shortages, rising productivity demands, and the need to operate in unstructured environments. Robotics, particularly soft robotics, offers promising solutions for automating delicate tasks such as fruit harvesting. While numerous soft grippers have been proposed, most focus on grasping and lack the capability to detach fruits with rigid peduncles, which require cutting. This paper presents a novel modular hexagonal soft gripper that integrates soft pneumatic actuators, embedded mechano-optical force sensors for real-time contact monitoring, and a self-centering iris-type cutting mechanism. The entire system is 3D-printed, enabling low-cost fabrication and rapid customization. Experimental validation demonstrates successful harvesting of bell peppers and identifies cutting limitations in tougher crops such as aubergine, primarily due to material constraints in the actuation system. This dual-capability design contributes to the development of multifunctional robotic harvesters capable of adapting to a wide range of fruit types with minimal requirements for perception and mechanical reconfiguration. Full article
(This article belongs to the Special Issue Soft Actuators and Robotics—2nd Edition)
Show Figures

Figure 1

16 pages, 23926 KB  
Article
Electrical Connector Assembly Based on Compliant Tactile Finger with Fingernail
by Wenhui Yang, Hongliang Zhao, Chengxiao He and Longhui Qin
Biomimetics 2025, 10(8), 512; https://doi.org/10.3390/biomimetics10080512 - 5 Aug 2025
Viewed by 1219
Abstract
Robotic assembly of electrical connectors enables the automation of high-efficiency production of electronic products. A rigid gripper is adopted as the end-effector by the majority of existing works with a force–torque sensor installed at the wrist, which suffers from very limited perception capability [...] Read more.
Robotic assembly of electrical connectors enables the automation of high-efficiency production of electronic products. A rigid gripper is adopted as the end-effector by the majority of existing works with a force–torque sensor installed at the wrist, which suffers from very limited perception capability of the manipulated objects. Moreover, the grasping and movement actions, as well as the inconsistency between the robot base and the end-effector frame, tend to result in angular misalignment, usually leading to assembly failure. Bio-inspired by the human finger, we designed a tactile finger in this paper with three characteristics: (1) Compliance: A soft ‘skin’ layer provides passive compliance for plenty of manipulation actions, thus increasing the tolerance for alignment errors. (2) Tactile Perception: Two types of sensing elements are embedded into the soft skin to tactilely sense the involved contact status. (3) Enhanced manipulation force: A rigid fingernail is designed to enhance the manipulation force and enable potential delicate operations. Moreover, a tactile-based alignment algorithm is proposed to search for the optimal orientation angle about the z axis. In the application of U-disk insertion, the three characteristics are validated and a success rate of 100% is achieved, whose generalization capability is also validated through the assembly of three types of electrical connectors. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

23 pages, 3542 KB  
Article
An Intuitive and Efficient Teleoperation Human–Robot Interface Based on a Wearable Myoelectric Armband
by Long Wang, Zhangyi Chen, Songyuan Han, Yao Luo, Xiaoling Li and Yang Liu
Biomimetics 2025, 10(7), 464; https://doi.org/10.3390/biomimetics10070464 - 15 Jul 2025
Viewed by 1008
Abstract
Although artificial intelligence technologies have significantly enhanced autonomous robots’ capabilities in perception, decision-making, and planning, their autonomy may still fail when faced with complex, dynamic, or unpredictable environments. Therefore, it is critical to enable users to take over robot control in real-time and [...] Read more.
Although artificial intelligence technologies have significantly enhanced autonomous robots’ capabilities in perception, decision-making, and planning, their autonomy may still fail when faced with complex, dynamic, or unpredictable environments. Therefore, it is critical to enable users to take over robot control in real-time and efficiently through teleoperation. The lightweight, wearable myoelectric armband, due to its portability and environmental robustness, provides a natural human–robot gesture interaction interface. However, current myoelectric teleoperation gesture control faces two major challenges: (1) poor intuitiveness due to visual-motor misalignment; and (2) low efficiency from discrete, single-degree-of-freedom control modes. To address these challenges, this study proposes an integrated myoelectric teleoperation interface. The interface integrates the following: (1) a novel hybrid reference frame aimed at effectively mitigating visual-motor misalignment; and (2) a finite state machine (FSM)-based control logic designed to enhance control efficiency and smoothness. Four experimental tasks were designed using different end-effectors (gripper/dexterous hand) and camera viewpoints (front/side view). Compared to benchmark methods, the proposed interface demonstrates significant advantages in task completion time, movement path efficiency, and subjective workload. This work demonstrates the potential of the proposed interface to significantly advance the practical application of wearable myoelectric sensors in human–robot interaction. Full article
(This article belongs to the Special Issue Intelligent Human–Robot Interaction: 4th Edition)
Show Figures

Figure 1

13 pages, 3491 KB  
Article
Design and Implementation of Flexible Four-Bar-Mechanism-Based Long-Stroke Micro-Gripper
by Liangyu Cui, Haonan Zhu, Xiaofan Deng and Yuanyuan Chai
Actuators 2025, 14(7), 338; https://doi.org/10.3390/act14070338 - 7 Jul 2025
Viewed by 3299
Abstract
To meet the demand for submillimeter-level gripping capabilities in micro-grippers, an amplification mechanism based on a flexible four-bar linkage is proposed. The micro-gripper designed using this mechanism features a large gripping stroke in the millimeter range. First, the amplification effect of the flexible [...] Read more.
To meet the demand for submillimeter-level gripping capabilities in micro-grippers, an amplification mechanism based on a flexible four-bar linkage is proposed. The micro-gripper designed using this mechanism features a large gripping stroke in the millimeter range. First, the amplification effect of the flexible four-bar linkage was structurally designed and theoretically analyzed. Through kinematic analysis, a theoretical model was developed, demonstrating that the flexible four-bar linkage can achieve an extremely high amplification factor, thus providing a theoretical foundation for the design of the micro-gripper. Then, kinematic and mechanical simulations of the micro-gripper were conducted and validated using ANSYS 2025 simulation software, confirming the correctness of the theoretical analysis. Finally, an experimental platform was set up to analyze the characteristics of the micro-gripper, including its stroke, resolution, and gripping force. The results show that the displacement amplification factor of the gripper designed based on the flexible four-bar linkage can reach 40, with a displacement resolution of 50 nm and a gripping range of 0–880 μm. By using capacitive displacement sensors and strain sensors, integrated force and displacement control can be realized. The large-stroke micro-gripper based on the flexible four-bar linkage is compact, with a large stroke, and has broad application prospects. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

17 pages, 3934 KB  
Article
A Piezoelectric Sensor Based on MWCNT-Enhanced Polyvinyl Chloride Gel for Contact Perception of Grippers
by Qiyun Zhong, Qingsong He, Diyi Liu, Xinyu Lu, Siyuan Liu, Yuze Ye and Yefu Wang
Biomimetics 2025, 10(6), 363; https://doi.org/10.3390/biomimetics10060363 - 3 Jun 2025
Cited by 4 | Viewed by 1230
Abstract
In contrast to traditional hydrogels, which are susceptible to water evaporation and structural degradation, non-hydrogel materials are engineered for superior stability and consistent performance. Here, we report an innovative piezoelectric polyvinyl chloride/multi-walled carbon nanotube polymer gel (PVC/MWCNT polymer gel, PMPG) with exceptional linearity [...] Read more.
In contrast to traditional hydrogels, which are susceptible to water evaporation and structural degradation, non-hydrogel materials are engineered for superior stability and consistent performance. Here, we report an innovative piezoelectric polyvinyl chloride/multi-walled carbon nanotube polymer gel (PVC/MWCNT polymer gel, PMPG) with exceptional linearity (as low as 1.31%), high sensitivity (50–310.17 mV), rapid response (172–189 ms), and thermal stability. Under strain induction, ordered rearrangement of dipoles in PMPG and the enhancement of MWCNTs generate a potential difference. Increasing MWCNT content enhances output voltage, sensitivity, conductivity, maximum stress, Young’s modulus, and toughness, while reducing nonlinear error. Higher dibutyl adipate (DBA) content increases output voltage and slightly improves sensitivity but decreases mechanical strength. The optimal PMPG (PVC:DBA = 1:5, 1 wt% MWCNTs) exhibited outstanding performance. It exhibits a nonlinear error as low as 1.31%, a conductivity of 25.4 μS/cm, an 80% compressive strain tolerance (273 kPa stress), and dimensional stability for 90 days in air. By integrating PMPG with machine learning algorithms, soft robotic grippers gain advanced contact perception capabilities, enabling applications in medicine, rescue, exploration, and other fields requiring fine manipulation and adaptability. This work highlights PMPG’s potential as a stable, high-performance material for soft robotics and beyond. Full article
(This article belongs to the Special Issue Bioinspired Nature-Based Adhesives: Design and Applications)
Show Figures

Figure 1

26 pages, 2959 KB  
Review
Intelligent Recognition and Automated Production of Chili Peppers: A Review Addressing Varietal Diversity and Technological Requirements
by Sheng Tai, Zhong Tang, Bin Li, Shiguo Wang and Xiaohu Guo
Agriculture 2025, 15(11), 1200; https://doi.org/10.3390/agriculture15111200 - 31 May 2025
Cited by 6 | Viewed by 3445
Abstract
Chili pepper (Capsicum annuum L.), a globally important economic crop, faces production challenges characterized by high labor intensity, cost, and inefficiency. Intelligent technologies offer key opportunities for sector transformation. This review begins by outlining the diversity of major chili pepper cultivars, differences [...] Read more.
Chili pepper (Capsicum annuum L.), a globally important economic crop, faces production challenges characterized by high labor intensity, cost, and inefficiency. Intelligent technologies offer key opportunities for sector transformation. This review begins by outlining the diversity of major chili pepper cultivars, differences in key quality indicators, and the resulting specific harvesting needs. It then reviews recent progress in intelligent perception, recognition, and automation within the chili pepper industry. For perception and recognition, the review covers the evolution from traditional image processing to deep learning-based methods (e.g., YOLO and Mask R-CNN achieving a mAP > 90% in specific studies) for pepper detection, segmentation, and fine-grained cultivar identification, analyzing the performance and optimization in complex environments. In terms of automation, we systematically discuss the principles and feasibility of different mechanized harvesting machines, consider the potential of vision-based keypoint detection for the point localization of picking, and explore motion planning and control for harvesting robots (e.g., robotic systems incorporating diverse end-effectors like soft grippers or cutting mechanisms and motion planning algorithms such as RRT) as well as seed cleaning/separation techniques and simulations (e.g., CFD and DEM) for equipment optimization. The main current research challenges are listed including the environmental adaptability/robustness, efficiency/real-time performance, multi-cultivar adaptability/flexibility, system integration, and cost-effectiveness. Finally, future directions are given (e.g., multimodal sensor fusion, lightweight models, and edge computing applications) in the hope of guiding the intelligent growth of the chili pepper industry. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop