Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (186)

Search Parameters:
Keywords = grid-forming power converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5548 KiB  
Article
A State-of-Charge-Frequency Control Strategy for Grid-Forming Battery Energy Storage Systems in Black Start
by Yunuo Yuan and Yongheng Yang
Batteries 2025, 11(8), 296; https://doi.org/10.3390/batteries11080296 - 4 Aug 2025
Viewed by 166
Abstract
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In [...] Read more.
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In this context, a state-of-charge (SOC)-frequency control strategy for grid-forming BESSs is proposed to enhance their role in stabilizing grid frequency and improving overall system performance. In the system, the DC-link capacitor is regulated to maintain the angular frequency through a matching control scheme, emulating the characteristics of the rotor dynamics of a synchronous generator (SG). Thereby, the active power control is implemented in the control of the DC/DC converter to further regulate the grid frequency. More specifically, the relationship between the active power and the frequency is established through the SOC of the battery. In addition, owing to the inevitable presence of differential operators in the control loop, a high-gain observer (HGO) is employed, and the corresponding parameter design of the proposed method is elaborated. The proposed strategy simultaneously achieves frequency regulation and implicit energy management by autonomously balancing power output with available battery capacity, demonstrating a novel dual benefit for sustainable grid operation. To verify the effectiveness of the proposed control strategy, a 0.5-Hz frequency change and a 10% power change are carried out through simulations and also on a hardware-in-the-loop (HIL) platform. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

19 pages, 4860 KiB  
Article
Load-Flow-Based Calculation of Initial Short-Circuit Currents for Converter-Based Power System
by Deepak Deepak, Anisatur Rizqi Oetoyo, Krzysztof Rudion, Christoph John and Hans Abele
Energies 2025, 18(15), 4045; https://doi.org/10.3390/en18154045 - 30 Jul 2025
Viewed by 345
Abstract
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These [...] Read more.
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These units have different fault current characteristics due to their physical properties and operation strategies. Consequently, the network’s short-circuit current profile is changing, both in terms of magnitude and injection time. Therefore, accurately estimating fault currents is crucial for reliable power system planning and operation. Traditionally, two calculation methods are employed: the equivalent voltage source (IEC 60909/VDE 0102) and the superimposition (complete) method. In this work, the assumptions, simplifications, and limitations from both types of methods are addressed. As a result, a new load-flow-based method is presented, improving the static modeling of generating units and the accuracy in the estimation of short-circuit currents. The method is tested for mixed generation types comprising of synchronous generators, and grid-following (current source) and grid-forming (voltage source before and current source after the current limit) converters. All methods are compared against detailed time-domain RMS simulations using a modified IEEE-39 bus system and a real network from ENTSO-E. It is shown that the proposed method provides the best accuracy in the calculation of initial short-circuit currents for converter-based power systems. Full article
Show Figures

Figure 1

18 pages, 1760 KiB  
Article
Converter-Based Power Line Emulators for Testing Grid-Forming Converters Under Various Grid Strength Conditions
by Chul-Sang Hwang, Young-Woo Youn, Heung-Kwan Choi and Tae-Jin Kim
Sustainability 2025, 17(15), 6690; https://doi.org/10.3390/su17156690 - 22 Jul 2025
Viewed by 373
Abstract
Grid-forming (GFM) converters have been critical in DER-dominant power systems, ensuring stability, but their performance is highly sensitive to grid conditions such as system strength. Testing GFM converters under a wide range of grid strengths (from strong high-inertia systems to very weak grids) [...] Read more.
Grid-forming (GFM) converters have been critical in DER-dominant power systems, ensuring stability, but their performance is highly sensitive to grid conditions such as system strength. Testing GFM converters under a wide range of grid strengths (from strong high-inertia systems to very weak grids) and fault scenarios is challenging, as traditional test facilities and static grid simulators have limitations. To address this problem, this paper proposes a converter-based power line emulator that provides a flexible, programmable grid environment for GFM converter testing. The emulator uses power electronic converters to mimic transmission line characteristics, allowing for the adjustment of effective grid strength (e.g., short-circuit ratio changes). The proposed approach is validated through detailed PSCAD simulations, demonstrating its ability to provide scalable weak-grid emulation and comprehensive validation of GFM converter control strategies and stability under various grid conditions. This research highlights that the converter-based emulator offers enhanced flexibility and cost-effectiveness over traditional testing setups, making it an effective tool for GFM converter performance test. Full article
Show Figures

Figure 1

32 pages, 10857 KiB  
Article
Improved Fault Resilience of GFM-GFL Converters in Ultra-Weak Grids Using Active Disturbance Rejection Control and Virtual Inertia Control
by Monigaa Nagaboopathy, Kumudini Devi Raguru Pandu, Ashmitha Selvaraj and Anbuselvi Shanmugam Velu
Sustainability 2025, 17(14), 6619; https://doi.org/10.3390/su17146619 - 20 Jul 2025
Viewed by 374
Abstract
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair [...] Read more.
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair voltage and frequency stability, imposing challenging conditions for Inverter-Based Resources. To address these challenges, this paper considers a 110 KVA, three-phase, two-level Voltage Source Converter, interfacing a 700 V DC link to a 415 V AC ultra-weak grid. X/R = 1 is controlled using Sinusoidal Pulse Width Modulation, where the Grid-Connected Converter operates in Grid-Forming Mode to maintain voltage and frequency stability under a steady state. During symmetrical and asymmetrical faults, the converter transitions to Grid-Following mode with current control to safely limit fault currents and protect the system integrity. After fault clearance, the system seamlessly reverts to Grid-Forming Mode to resume voltage regulation. This paper proposes an improved control strategy that integrates voltage feedforward reactive power support and virtual capacitor-based virtual inertia using Active Disturbance Rejection Control, a robust, model-independent controller, which rapidly rejects disturbances by regulating d and q-axes currents. To test the practicality of the proposed system, real-time implementation is carried out using the OPAL-RT OP4610 platform, and the results are experimentally validated. The results demonstrate improved fault current limitation and enhanced DC link voltage stability compared to a conventional PI controller, validating the system’s robust Fault Ride-Through performance under ultra-weak grid conditions. Full article
Show Figures

Figure 1

21 pages, 6897 KiB  
Article
Performance Analysis of HVDC Operational Control Strategies for Supplying Offshore Oil Platforms
by Alex Reis, José Carlos Oliveira, Carlos Alberto Villegas Guerrero, Johnny Orozco Nivelo, Lúcio José da Motta, Marcos Rogério de Paula Júnior, José Maria de Carvalho Filho, Vinicius Zimmermann Silva, Carlos Andre Carreiro Cavaliere and José Mauro Teixeira Marinho
Energies 2025, 18(14), 3733; https://doi.org/10.3390/en18143733 - 15 Jul 2025
Viewed by 220
Abstract
Driven by the environmental benefits associated with reduced greenhouse gas emissions, oil companies have intensified research efforts into reassessing the strategies used to meet the electrical demands of offshore production platforms. Among the various alternatives available, the deployment of onshore–offshore interconnections via High-Voltage [...] Read more.
Driven by the environmental benefits associated with reduced greenhouse gas emissions, oil companies have intensified research efforts into reassessing the strategies used to meet the electrical demands of offshore production platforms. Among the various alternatives available, the deployment of onshore–offshore interconnections via High-Voltage Direct Current (HVDC) transmission systems has emerged as a promising solution, offering both economic and operational advantages. In addition to reliably meeting the electrical demand of offshore facilities, this approach enables enhanced operational flexibility due to the advanced control and regulation capabilities inherent to HVDC converter stations. Based on the use of interconnection through an HVDC link, aiming to evaluate the operation of the electrical system as a whole, this study focuses on evaluating dynamic events using the PSCAD software version 5.0.2 to analyze the direct online starting of a large induction motor and the sudden loss of a local synchronous generating unit. The simulation results are then analyzed to assess the effectiveness of both Grid-Following (GFL) and Grid-Forming (GFM) control strategies for the converters, while the synchronous generators are evaluated under both voltage regulation and constant power factor control operation, with a particular focus on system stability and restoration of normal operating conditions in the sequence of events. Full article
(This article belongs to the Special Issue Advanced Electric Power Systems, 2nd Edition)
Show Figures

Figure 1

27 pages, 14158 KiB  
Article
Application of Repetitive Control to Grid-Forming Converters in Centralized AC Microgrids
by Hélio Marcos André Antunes, Ramon Ravani Del Piero and Sidelmo Magalhães Silva
Energies 2025, 18(13), 3427; https://doi.org/10.3390/en18133427 - 30 Jun 2025
Viewed by 250
Abstract
The electrical grid is undergoing increasing integration of decentralized power sources connected to the low-voltage network. In this context, the concept of a microgrid has emerged as a system comprising small-scale energy sources, loads, and storage devices, coordinated to operate as a single [...] Read more.
The electrical grid is undergoing increasing integration of decentralized power sources connected to the low-voltage network. In this context, the concept of a microgrid has emerged as a system comprising small-scale energy sources, loads, and storage devices, coordinated to operate as a single controllable entity capable of functioning in either grid-connected or islanded mode. The microgrid may be organized in a centralized configuration, such as a master-slave scheme, wherein the centralized converter, i.e., the grid-forming converter (GFC), plays a pivotal role in ensuring system stability and control. This paper introduces a plug-in repetitive controller (RC) strategy tuned to even harmonic orders for application in a three-phase GFC, diverging from the conventional approach that focuses on odd harmonics. The proposed control is designed within a synchronous reference frame and is targeted at centralized AC microgrids, particularly during islanded operation. Simulation results are presented to assess the microgrid’s power flow and power quality, thereby evaluating the performance of the GFC. Additionally, the proposed control was implemented on a Texas Instruments TMS320F28335 digital signal processor and validated through hardware-in-the-loop (HIL) simulation using the Typhoon HIL 600 platform, considering multiple scenarios with both linear and nonlinear loads. The main results highlight that the RC improves voltage regulation, mitigates harmonic distortion, and increases power delivery capability, thus validating its effectiveness for GFC operation. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

21 pages, 583 KiB  
Article
Discrete-Time Impedance Model-Based Dynamic Analysis and Parameter Design for VSG-Controlled Grid-Forming DG System
by Thiago F. do Nascimento, Josenalde B. Oliveira, Elmer R. L. Villarreal and Andrés O. Salazar
Energies 2025, 18(13), 3400; https://doi.org/10.3390/en18133400 - 27 Jun 2025
Viewed by 270
Abstract
The virtual synchronous generator (VSG) scheme has proven to be an attractive solution in grid-forming converter applications integrated into distributed generation (DG) systems. Thus, this paper presents the dynamic performance of power flow control using the VSG approach under Thevenin impedance variations seen [...] Read more.
The virtual synchronous generator (VSG) scheme has proven to be an attractive solution in grid-forming converter applications integrated into distributed generation (DG) systems. Thus, this paper presents the dynamic performance of power flow control using the VSG approach under Thevenin impedance variations seen by the grid-forming converter. The dynamic analysis is based on a discrete-time model that describes the power flow transient characteristics of the system operating in medium- and high-voltage networks. Based on the proposed model, a controller design procedure for the discrete-time VSG scheme is presented. This methodology aims to assist researchers in implementing VSG control in digital environments. Then, the Thevenin impedance parameters’ influence on the discrete-time VSG strategy dynamic performance is discussed. The VSG technique’s performance in different operating scenarios is assessed by means of simulation results. A case study is provided to validate the effectiveness of the theoretical analysis and the discrete-time VSG control scheme. The results assess the effectiveness of the theoretical analysis performed. Full article
(This article belongs to the Special Issue Advanced Application of Mathematical Methods in Energy Systems)
Show Figures

Figure 1

17 pages, 1549 KiB  
Article
Neural Network-Based Coordinated Virtual Inertia Allocation Method for Multi-Region Distribution Systems
by Heng Liu, Jingtao Zhao, Zhi Wu and Shu Zheng
Appl. Sci. 2025, 15(12), 6493; https://doi.org/10.3390/app15126493 - 9 Jun 2025
Viewed by 344
Abstract
Virtual inertia is a measure of the capability of distributed sources and loads within power supply units to resist system frequency variations through additional control strategies applied to converters. The reasonable allocation of virtual inertia is beneficial for enhancing system stability. In response [...] Read more.
Virtual inertia is a measure of the capability of distributed sources and loads within power supply units to resist system frequency variations through additional control strategies applied to converters. The reasonable allocation of virtual inertia is beneficial for enhancing system stability. In response to the insufficient consideration of multi-regional coordination and difficulties in balancing frequency change rates in existing virtual inertia allocation methods, this paper proposes a neural network-based coordinated virtual inertia allocation method for multiple regions. First, a data-driven model is constructed based on the RBFNN neural networks to map the feasible region boundaries of virtual inertia for distributed resources under different disturbance scenarios. Second, a multi-area virtual inertia optimization allocation model is established, aiming to minimize both the inter-area frequency change rates and the differences between them, while considering the regulation capabilities of grid-forming PV systems and ESS. Following this, a genetic algorithm-based solving strategy is designed to achieve the global optimal allocation of virtual inertia. Finally, simulations verify the effectiveness of the coordinated allocation strategy in enhancing frequency stability across multiple autonomous regions. This optimization method reduces the frequency variation rate in both regions and maintains relative stability between the regions, thereby enhancing the system’s disturbance rejection capability. The results showed that after optimizing the virtual inertia allocation using the method proposed in this paper, the frequencies of the two regions increased by 0.11 Hz and 0.14 Hz, respectively, and the dynamic rate of frequency change decreased by 50.2% and 52.1%. Therefore, this study provides a foundational method and a feasible approach to multi-area virtual inertia optimization allocation in the new distribution system, contributing to frequency support via virtual inertia in distribution network optimization operation. Full article
Show Figures

Figure 1

24 pages, 5402 KiB  
Review
Grid-Forming Converter Fault Control Strategy and Its Impact on Relay Protection: Challenges and Adaptability Analysis
by Xiaopeng Li, Jiaqi Yao, Wei Chen, Wenyue Zhou, Zhaowei Zhou, Hao Wang, Zhenchao Jiang, Wei Dai and Zhongqing Wang
Energies 2025, 18(11), 2933; https://doi.org/10.3390/en18112933 - 3 Jun 2025
Viewed by 539
Abstract
As the proportion of new energy generation continues to rise, power systems are confronted with novel challenges. Grid-forming converters, which possess voltage source characteristics and can support the grid, typically employ a VSG control strategy during normal operation to emulate the behavior of [...] Read more.
As the proportion of new energy generation continues to rise, power systems are confronted with novel challenges. Grid-forming converters, which possess voltage source characteristics and can support the grid, typically employ a VSG control strategy during normal operation to emulate the behavior of synchronous generators. This approach enhances frequency response and system stability in modern power systems. This review article systematically examines two typical fault control strategies for grid-forming converters: the switching strategy and the virtual impedance strategy. These different control strategies result in distinct fault response characteristics of the converter. Based on the analysis of fault control strategies for grid-forming converters, this study investigates the impact of the converter’s fault response characteristics on overcurrent protection, pilot protection, distance protection, and differential protection and investigates and prospects corresponding countermeasures. Finally, through simulation modeling, the fault response characteristics under different control strategies and their effects on protection are verified and analyzed. Focusing on grid-forming converters, this paper dissects the influence of their fault control strategies on relay protection, providing strong support for the wide application and promotion of grid-forming converters in new types of power systems. Full article
(This article belongs to the Special Issue Renewable Energy System Technologies: 2nd Edition)
Show Figures

Figure 1

21 pages, 3404 KiB  
Article
Stability Analysis of a Receiving-End VSC-HVDC System with Parallel-Connected VSCs
by Zijun Bin, Xiangping Kong, Kai Zhao, Xi Wu, Yubo Yuan and Xuchao Ren
Electronics 2025, 14(11), 2178; https://doi.org/10.3390/electronics14112178 - 27 May 2025
Viewed by 391
Abstract
Voltage source converter-based high-voltage direct current (VSC-HVDC) systems integrated into weak AC grids may exhibit oscillation-induced instability, posing significant threats to power system security. With increasing structural complexity and diverse control strategies, the stability characteristics of VSC-HVDC system require further investigation. This paper [...] Read more.
Voltage source converter-based high-voltage direct current (VSC-HVDC) systems integrated into weak AC grids may exhibit oscillation-induced instability, posing significant threats to power system security. With increasing structural complexity and diverse control strategies, the stability characteristics of VSC-HVDC system require further investigation. This paper focuses on the stability of a receiving-end VSC-HVDC system consisting of a DC voltage-controlled VSC parallel-connected to a power-controlled VSC, under various operating conditions. First, small-signal models of each subsystem were developed and a linearized full-system model was constructed based on port relationships. Then, eigenvalue and participation factor analyses were utilized to evaluate the influence of control strategy, asymmetrical grid strength, power flow direction, and tie line on the system’s small-signal stability. A feasible short-circuit ratio (SCR) region was established based on joint power–topology joint, forming a stable operating space for the system. Finally, the correctness of the theoretical analysis was validated via MATLAB/Simulink time-domain simulations. Results indicate that, in comparison to the power control strategy, the DC voltage control strategy was more sensitive to variations in the AC system and demands a strong grid, and this disparity was predominantly caused by the DC voltage control. Furthermore, the feasible region of the short-circuit ratio (SCR) diminished with the increase in the length of the tie-line and alterations in power flow direction under the mutual-support power mode, leading to a gradual reduction in the system’s stability margin. Full article
Show Figures

Figure 1

17 pages, 3108 KiB  
Article
Optimal Transient Control Scheme for Grid-Forming Permanent Magnet Synchronous Generator-Based Wind Farms
by Pan Hu, Dan Liu, Kan Cao and Lai Wei
Technologies 2025, 13(6), 215; https://doi.org/10.3390/technologies13060215 - 26 May 2025
Viewed by 319
Abstract
In this paper, an optimal transient control (OTC) scheme is proposed to improve the transient stability of the grid-forming (GFM) wind farm (WF) based on the transient stability of the WTs. The converter’s current operating safety range is considered to quantify the maximum [...] Read more.
In this paper, an optimal transient control (OTC) scheme is proposed to improve the transient stability of the grid-forming (GFM) wind farm (WF) based on the transient stability of the WTs. The converter’s current operating safety range is considered to quantify the maximum KES capabilities of the WTs. At the WF control level, the global transient voltage control problem is solved by optimizing the output reactive power of different WTs of the WF. At the WT control level, the transient stability of WT is improved by regulating the output power and weak magnetic current. The simulation results in MATLAB/Simulink show that the proposed control scheme can more efficiently improve the transient stability of WT by suppressing the DC bus voltage fluctuations and enhancing the voltage support capability of WT compared with the traditional control schemes. Full article
(This article belongs to the Special Issue Next-Generation Distribution System Planning, Operation, and Control)
Show Figures

Figure 1

12 pages, 1314 KiB  
Article
Doubly Fed Induction Generator Robust Design for Avoiding Converter-Driven Instability: Perspective
by Elena Sáiz-Marín, Mohammad Ebrahim Zarei, Diego Medina, Óscar Curbelo, Almudena Muñoz Babiano, Alberto Berrueta, Alfredo Ursúa and Pablo Sanchis
Energies 2025, 18(11), 2736; https://doi.org/10.3390/en18112736 - 24 May 2025
Viewed by 485
Abstract
Renewable power generation has experienced significant global deployment, leading to the replacement of synchronous generators, which traditionally defined the slow dynamics of power systems. As a result, stability issues related to converter dynamics are becoming increasingly prominent. It is crucial for the grid [...] Read more.
Renewable power generation has experienced significant global deployment, leading to the replacement of synchronous generators, which traditionally defined the slow dynamics of power systems. As a result, stability issues related to converter dynamics are becoming increasingly prominent. It is crucial for the grid system to be sure that the renewable generation is robust with regard to the converter dynamics to avoid instability issues. This paper focuses on enhancing wind farm robustness to minimize the risk of converter-driven stability phenomena, considering both grid-feeding and grid-forming control schemes. Three software solutions to improve the stability criteria at the wind turbine level are evaluated, assessing their impact on system performance across various frequency ranges. Additionally, a second solution at the plant level, separate from the software solutions, is also included in the scope of the paper. Moreover, a trade-off analysis was carried out to evaluate these different solutions. Finally, the results showed that the stability criteria can be improved by adopting software solutions without additional costs, but the filter as a plant solution could mitigate the harmonic emission and provide extra reactive power capabilities. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

17 pages, 4009 KiB  
Article
Modeling and Control of Grid-Forming Active Power Filters for Harmonic Suppression and Enhanced Power Quality
by Muhammad Waqas Qaisar, Jiang Lai and Jingyang Fang
Appl. Sci. 2025, 15(11), 5927; https://doi.org/10.3390/app15115927 - 24 May 2025
Viewed by 508
Abstract
Grid-forming converters (GFMCs) have gained significant attention for their functionality in grid voltage formation and grid-supportive services. However, managing harmonic distortions caused by nonlinear loads remains a critical challenge in weak grids. This paper presents a novel grid-forming active power filter (GFMC APF) [...] Read more.
Grid-forming converters (GFMCs) have gained significant attention for their functionality in grid voltage formation and grid-supportive services. However, managing harmonic distortions caused by nonlinear loads remains a critical challenge in weak grids. This paper presents a novel grid-forming active power filter (GFMC APF) that integrates voltage and frequency regulation with effective harmonic control. The proposed control method generates harmonic voltage commands by detecting voltage at the point of common coupling. The GFMC APF compensates harmonic voltages by creating a near short-circuit impedance path for harmonics, thereby preventing harmonic currents from propagating into the grid. In addition to improving harmonic performances, the system enhances grid stability by enhancing inertia, damping, and short-circuit capacity while suppressing wide-frequency oscillations. The proposed method avoids complex parameter tuning, ensuring simplicity and scalability. Simulation results validate the effectiveness of the GFMC APF in delivering precise harmonic control, improved power quality, and enhanced grid-forming capabilities. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

21 pages, 4354 KiB  
Article
Design and Validation of a SiC-Based Single-to-Three-Phase Converter for Low-Voltage Distribution Systems
by Boohyun Shin, Changhwan Kim, Hyeseon Lee and Sungyun Choi
Appl. Sci. 2025, 15(10), 5590; https://doi.org/10.3390/app15105590 - 16 May 2025
Cited by 1 | Viewed by 366
Abstract
In areas such as remote, rural, and mountainous regions, supplying low-voltage three-phase power has traditionally required distribution line extension and transformer installation. However, these areas often yield low electricity revenues, making cost recovery difficult for utilities. To address this challenge, this paper proposes [...] Read more.
In areas such as remote, rural, and mountainous regions, supplying low-voltage three-phase power has traditionally required distribution line extension and transformer installation. However, these areas often yield low electricity revenues, making cost recovery difficult for utilities. To address this challenge, this paper proposes a Single-to-Three-Phase Converter (STPC) capable of converting single-phase low-voltage input into three-phase output for use in low-voltage distribution systems. The STPC topology employs a single-phase half-bridge AC–DC stage and a three-phase full-bridge inverter stage using SiC-MOSFETs. To validate the system, simulations and experiments were conducted under various load conditions, including unbalanced, nonlinear, and motor loads. The results show that STPC maintains output stability while minimizing impact on the existing grid. The findings demonstrate STPC’s feasibility as an alternative to conventional line extension and transformer installation, with potential for application in grid-forming and low-voltage distribution current (LVDC) systems. Full article
(This article belongs to the Special Issue Current Research and Future Trends in Power Electronics Applications)
Show Figures

Figure 1

25 pages, 3018 KiB  
Article
Virtual Flux Control Methods for Grid-Forming Converters: A Four-Method Comparison
by Juan Dolado Fernández, Joaquín Eloy-García, Santiago Arnaltes Gómez, Samir Kouro, Hugues Renaudineau and José Luis Rodríguez Amenedo
Appl. Sci. 2025, 15(9), 5157; https://doi.org/10.3390/app15095157 - 6 May 2025
Viewed by 663
Abstract
The increasing penetration of renewable energy generation in recent years has introduced significant changes and challenges to modern power systems. One of the most critical challenges is the reduction in system inertia, which decreases grid stability and subsequently weakens the electrical network. To [...] Read more.
The increasing penetration of renewable energy generation in recent years has introduced significant changes and challenges to modern power systems. One of the most critical challenges is the reduction in system inertia, which decreases grid stability and subsequently weakens the electrical network. To address this issue, grid-forming (GFM) converters have emerged as a promising solution to maintain stability in weak grids. This paper proposes three novel control schemes for GFM converters and compares them with the performance of another topology recently published by the same authors. The four evaluated control schemes are based on the virtual flux variable which allows current limiting without using internal current loops, improving the stability of the control system. The assessment includes methods based on PI regulators, using the mathematical flatness property of differential algebra, direct control (DC), and model predictive control (MPC). The results demonstrate the robustness and correct operation of all four control strategies as GFM converters. Furthermore, through tests involving disturbances such as frequency variations, voltage sags, phase jumps, and transitions to islanded mode, their differences in terms of dynamic response, switching frequency, and current quality are clearly evidenced. Full article
(This article belongs to the Special Issue Advances in New Sources of Energy and Fuels)
Show Figures

Figure 1

Back to TopTop