Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = grid thermodynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3056 KiB  
Article
Analysis of Weather Conditions and Synoptic Systems During Different Stages of Power Grid Icing in Northeastern Yunnan
by Hongwu Wang, Ruidong Zheng, Gang Luo and Guirong Tan
Atmosphere 2025, 16(7), 884; https://doi.org/10.3390/atmos16070884 - 18 Jul 2025
Viewed by 184
Abstract
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted [...] Read more.
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted to diagnose an icing process under a cold surge during 16–23 December 2023 in northeastern Yunnan Province. The results show that: (1) in the early stage of the process, mainly the freezing types, such as GG (temperature > 0 °C, relative humidity ≥ 75%) and DG (temperature < 0 °C, relative humidity ≥ 75%), occur. At the end of the process, an increase in icing type as GD (temperature > 0 °C, relative humidity < 75%) appears. (2) Significant differences exist in the elements during different stages of icing, and the atmospheric thermal, dynamic, and water vapor conditions are conducive to the occurrence of freezing rain during ice accretion. The main impact weather systems of this process include a strong high ridge in the mid to high latitudes of East Asia, transverse troughs in front of the high ridge south to Lake Baikal, low altitude troughs, and ground fronts. The transverse trough in front of the high ridge can cause cold air to accumulate and then move eastward and southward. The southerly flows, surface fronts, and other low-pressure systems can provide powerful thermodynamic and moisture conditions for ice accumulation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

44 pages, 5275 KiB  
Review
The Power Regulation Characteristics, Key Challenges, and Solution Pathways of Typical Flexible Resources in Regional Energy Systems
by Houze Jiang, Shilei Lu, Boyang Li and Ran Wang
Energies 2025, 18(14), 3830; https://doi.org/10.3390/en18143830 - 18 Jul 2025
Viewed by 463
Abstract
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the [...] Read more.
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the flexible resources of building energy systems and vehicle-to-grid (V2G) interaction technologies, and mainly focuses on the regulation characteristics and coordination mechanisms of distributed energy supply (renewable energy and multi-energy cogeneration), energy storage (electric/thermal/cooling), and flexible loads (air conditioning and electric vehicles) within regional energy systems. The study reveals that distributed renewable energy and multi-energy cogeneration technologies form an integrated architecture through a complementary “output fluctuation mitigation–cascade energy supply” mechanism, enabling the coordinated optimization of building energy efficiency and grid regulation. Electricity and thermal energy storage serve as dual pillars of flexibility along the “fast response–economic storage” dimension. Air conditioning loads and electric vehicles (EVs) complement each other via thermodynamic regulation and Vehicle-to-Everything (V2X) technologies, constructing a dual-dimensional regulation mode in terms of both power and time. Ultimately, a dynamic balance system integrating sources, loads, and storage is established, driven by the spatiotemporal complementarity of multi-energy flows. This paper proposes an innovative framework that optimizes energy consumption and enhances grid stability by coordinating distributed renewable energy, energy storage, and flexible loads across multiple time scales. This approach offers a new perspective for achieving sustainable and flexible building energy systems. In addition, this paper explores the application of demand response policies in building energy systems, analyzing the role of policy incentives and market mechanisms in promoting building energy flexibility. Full article
Show Figures

Figure 1

17 pages, 877 KiB  
Article
Challenges in CFD Model Validation: A Case Study Approach Using ANSYS CFX and TurboGrid
by Jordan Dickenson, James M. Buick, Jovana Radulovic and James Bull
Machines 2025, 13(7), 593; https://doi.org/10.3390/machines13070593 - 8 Jul 2025
Viewed by 308
Abstract
Model validation is an essential part of CFD-based projects. Despite being successfully employed for decades, the level and extent of CFD model validation details vary significantly in the published literature, which, in turn, adversely affects the repeatability and usefulness of published models and [...] Read more.
Model validation is an essential part of CFD-based projects. Despite being successfully employed for decades, the level and extent of CFD model validation details vary significantly in the published literature, which, in turn, adversely affects the repeatability and usefulness of published models and data. This study explores the various challenges associated with validating CFD models of thermodynamic components, namely, the compressors and their performance evaluation. The methodology involves blade generation through TurboGrid and BladeGen, mesh generation to ensure computational efficiency, and pre-processing with CFX to define boundary conditions and turbulence models, all within ANSYS 2024 R1. Three case studies are discussed, each assessing different compressor configurations and common challenges encountered during the model validation stage. Based on the case studies, a number of recommendations are presented relating to best practices in terms of both the use of published materials to validate new models and the level of detail required for experimental or simulation publication to ensure they can be replicated or used to validate a new model. Full article
(This article belongs to the Special Issue Theoretical and Experimental Study on Compressor Performance)
Show Figures

Figure 1

18 pages, 7323 KiB  
Article
Graphene Oxide-Doped CNT Membrane for Dye Adsorption
by Mariafrancesca Baratta, Fiore Pasquale Nicoletta and Giovanni De Filpo
Nanomaterials 2025, 15(11), 782; https://doi.org/10.3390/nano15110782 - 22 May 2025
Viewed by 436
Abstract
Recently, graphene oxide (GO) has been largely investigated as a potential adsorbent towards dyes. However, the major obstacle to its full employment is linked to its natural powder consistence, which greatly complexifies the operations of recovery and reuse. With the aim to overcome [...] Read more.
Recently, graphene oxide (GO) has been largely investigated as a potential adsorbent towards dyes. However, the major obstacle to its full employment is linked to its natural powder consistence, which greatly complexifies the operations of recovery and reuse. With the aim to overcome this issue, the present work reports on the design of GO-modified carbon nanotubes buckypapers (BPs), in which the main component, GO, is entirely entrapped in the BP grid generated by CNTs for the double purpose of (a) increasing adsorption performance of GO-BPs and (b) ensure a fast process of regeneration and reuse. Adsorption experiments were performed towards several dyes: Acid Blue 29 (AB29), Crystal Violet (CV), Eosyn Y (EY), Malachite Green (MG), and Rhodamine B (RB) (Ci = 50 ppm, pH = 6). Results demonstrated that adsorption is strictly dependent on the charge occurring both on GO-BP and dye surfaces, observing great adsorption capacities towards MG (493.44 mg g−1), RB (467.35 mg g−1), and CV (374.53 mg g−1), due to the best coupling of dye cationic form with negative GO-BP surface. Adsorption isotherms revealed that dyes capture onto GO-BPs is thermodynamically favored (ΔG < 0), becoming more negative at 313 K. Kinetic studies evidenced that the process can be described through a pseudo-first-order model, with MG, RB, and CV exhibiting the highest values of k1. In view of these results, the following trend in GO-BP adsorption performance has been derived: MG ≈ RB > CV > AB29 > EY. Full article
Show Figures

Graphical abstract

22 pages, 4510 KiB  
Article
Molten-Salt-Based Thermal Storage for Thermal Power Unit Plant Peaking
by Fengying Ren, Fanxing Meng, Hao Liu, Haiyan Yu, Li Xu and Xiaohan Ren
Energies 2025, 18(10), 2522; https://doi.org/10.3390/en18102522 - 13 May 2025
Viewed by 440
Abstract
As the integration of renewable energy sources continues to increase, thermal power units are increasingly required to enhance their operational flexibility to accommodate grid fluctuations. However, frequent load variations in conventional thermal power plants result in decreased efficiency, accelerated equipment wear, and high [...] Read more.
As the integration of renewable energy sources continues to increase, thermal power units are increasingly required to enhance their operational flexibility to accommodate grid fluctuations. However, frequent load variations in conventional thermal power plants result in decreased efficiency, accelerated equipment wear, and high operational costs. In this context, molten-salt thermal energy storage (TES) has emerged as a promising solution due to its high specific heat capacity and thermal stability. By enabling the storage of surplus energy and its regulated release during peak demand periods, molten salt TES contributes to improved grid stability, reduced start-up frequency, and minimized operational disturbances. This study employs comprehensive thermodynamic simulations to investigate three representative schemes for heat storage and release. The results indicate that the dual steam extraction configuration (Scheme 3) offers the highest thermal storage capacity and peak-load regulation potential, albeit at the cost of increased heat consumption. Conversely, the single steam extraction configurations (Scheme 1 and 2) demonstrate improved thermal efficiency and reduced system complexity. Furthermore, Scheme 3, which involves extracting feedwater from the condenser outlet, provides enhanced operational flexibility but necessitates a higher initial investment. These findings offer critical insights into the optimal integration of molten-salt thermal-storage systems with conventional thermal power units. The outcomes not only highlight the trade-offs among different design strategies but also support the broader objective of enhancing the efficiency and adaptability of thermal power generation in a renewable-dominated energy landscape. Full article
Show Figures

Figure 1

33 pages, 4339 KiB  
Review
Review of Electrochemical Systems for Grid Scale Power Generation and Conversion: Low- and High-Temperature Fuel Cells and Electrolysis Processes
by Tingke Fang, Annette von Jouanne and Alex Yokochi
Energies 2025, 18(10), 2493; https://doi.org/10.3390/en18102493 - 12 May 2025
Viewed by 831
Abstract
This review paper presents an overview of fuel cell electrochemical systems that can be used for clean large-scale power generation and energy storage as global energy concerns regarding emissions and greenhouse gases escalate. The fundamental thermochemical and operational principles of fuel cell power [...] Read more.
This review paper presents an overview of fuel cell electrochemical systems that can be used for clean large-scale power generation and energy storage as global energy concerns regarding emissions and greenhouse gases escalate. The fundamental thermochemical and operational principles of fuel cell power generation and electrolyzer technologies are discussed with a focus on high-temperature solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) that are best suited for grid scale energy generation. SOFCs and SOECs share similar promising characteristics and have the potential to revolutionize energy conversion and storage due to improved energy efficiency and reduced carbon emissions. Electrochemical and thermodynamic foundations are presented while exploring energy conversion mechanisms, electric parameters, and efficiency in comparison with conventional power generation systems. Methods of converting hydrocarbon fuels to chemicals that can serve as fuel cell fuels are also presented. Key fuel cell challenges are also discussed, including degradation, thermal cycling, and long-term stability. The latest advancements, including in materials selection research, design, and manufacturing methods, are also presented, as they are essential for unlocking the full potential of these technologies and achieving a sustainable, near zero-emission energy future. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 4445 KiB  
Article
Research on Dual-Mode Self-Calibration Tensioning System
by Xuling Liu, Yusong Zhang, Chaofeng Peng, Le Bo, Kaiyi Zhang, Guoyong Ye, Jinggan Shao, Jinghui Peng and Songjing Li
Fluids 2025, 10(5), 115; https://doi.org/10.3390/fluids10050115 - 30 Apr 2025
Viewed by 451
Abstract
In this paper, a double-mode self-calibration tension system is proposed, which adopts the conversion of hydraulic meter tension and the monitoring of standard force sensors. According to the material characteristics of the jack and the viscosity and temperature characteristics of the hydraulic oil, [...] Read more.
In this paper, a double-mode self-calibration tension system is proposed, which adopts the conversion of hydraulic meter tension and the monitoring of standard force sensors. According to the material characteristics of the jack and the viscosity and temperature characteristics of the hydraulic oil, the differential model of heat conduction in the hydraulic cylinder and the mathematical model of oil film friction heat generation are established, and the internal thermodynamic characteristics of the jack are theoretically analyzed, which provides theoretical support for the temperature compensation of the hydraulic oil pressure gauge of the jack. A simulation analysis was conducted on the thermodynamic characteristics of the hydraulic jack, and the distribution patterns of the temperature field, thermal stress field, and thermal strain field inside the hydraulic cylinder during normal operation were determined by measuring the temperature changes in five different parts of the jack at different times (t = 200 s, 2600 s, 5000 s, 7400 s, and 10,000 s). For the issue of heat generation due to oil film friction in the hydraulic jack, a simulation calculation model is developed by integrating Computational Fluid Dynamics (CFD) techniques with dynamic grid and slip grid methods. By simulating and analyzing frictional heating under conditions where the inlet pressures are 0.1 MPa, 0.3 MPa, 0.5 MPa, 0.7 MPa, and 0.9 MPa, respectively, we can obtain the temperature distribution on the jack, determine the frictional resistance, and subsequently conduct a theoretical analysis of the simulation results. Using the high-precision standard force sensor after data processing and the hydraulic oil gauge after temperature compensation, the online self-calibration of the tensioning system is carried out, and the regression equation of the tensioning system under different oil temperatures is obtained. The double-mode self-calibration tensioning system with temperature compensation is used to verify the compensation accuracy of the proposed double-mode self-calibration tensioning system. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

23 pages, 5430 KiB  
Article
Pre-Solve Methodologies for Short-Run Identification of Critical Sectors in the ACSR Overhead Lines While Using Dynamic Line Rating Models for Resource Sustainability
by Hugo Algarvio
Sustainability 2025, 17(8), 3758; https://doi.org/10.3390/su17083758 - 21 Apr 2025
Viewed by 556
Abstract
Most transmission system operators (TSOs) use seasonally static models considering extreme weather conditions, serving as a reference for computing the transmission capacity of power lines. The use of dynamic line rating (DLR) models can avoid the construction of new lines, market splitting, false [...] Read more.
Most transmission system operators (TSOs) use seasonally static models considering extreme weather conditions, serving as a reference for computing the transmission capacity of power lines. The use of dynamic line rating (DLR) models can avoid the construction of new lines, market splitting, false congestions and the degradation of lines in a cost-effective way. The operation of power systems is planned based on market results, which consider transactions hours ahead of real-time operation using forecasts with errors. The same is true for the DLR. So, during real-time operation TSOs should rapidly compute the DLR of overhead lines to avoid considering an ampacity above their lines’ design, reflecting the real-time weather conditions. Considering that the DLR of the lines can affect the power flow of an entire region, the use of the complete indirect DLR methodology has a high computation burden for all sectors and lines in a region. So, this article presents and tests three pre-solve methodologies able to rapidly identify the critical sector of each line. These methodologies solve the problem of the high computation burden of the CIGRÉ thermodynamic model of overhead lines. They have been tested by using real data of the transmission grid and the weather conditions for two different regions in Portugal, leading to errors in the computation of the DLR lower than 1% in relation to the complete CIGRÉ model, identifying the critical sector in significantly less time. Full article
Show Figures

Figure 1

34 pages, 38166 KiB  
Review
Gas Generation in Lithium-Ion Batteries: Mechanisms, Failure Pathways, and Thermal Safety Implications
by Tianyu Gong, Xuzhi Duan, Yan Shan and Lang Huang
Batteries 2025, 11(4), 152; https://doi.org/10.3390/batteries11040152 - 13 Apr 2025
Cited by 2 | Viewed by 3364
Abstract
Gas evolution in lithium-ion batteries represents a pivotal yet underaddressed concern, significantly compromising long-term cyclability and safety through complex interfacial dynamics and material degradation across both normal operation and extreme thermal scenarios. While extensive research has focused on isolated gas generation mechanisms in [...] Read more.
Gas evolution in lithium-ion batteries represents a pivotal yet underaddressed concern, significantly compromising long-term cyclability and safety through complex interfacial dynamics and material degradation across both normal operation and extreme thermal scenarios. While extensive research has focused on isolated gas generation mechanisms in specific components, critical knowledge gaps persist in understanding cross-component interactions and the cascading failure pathways it induced. This review systematically decouples gas generation mechanisms at cathodes (e.g., lattice oxygen-driven CO2/CO in high-nickel layered oxides), anodes (e.g., stress-triggered solvent reduction in silicon composites), electrolytes (solvent decomposition), and auxiliary materials (binder/separator degradation), while uniquely establishing their synergistic impacts on battery stability. Distinct from prior modular analyses, we emphasize that: (1) emerging systems exhibit fundamentally different gas evolution thermodynamics compared to conventional materials, exemplified by sulfide solid electrolytes releasing H2S/SO2 via unique anionic redox pathways; (2) gas crosstalk between components creates compounding risks—retained gases induce electrolyte dry-out and ion transport barriers during cycling, while combustible gas–O2 mixtures accelerate thermal runaway through chain reactions. This review proposes three key strategies to suppress gas generation: (1) oxygen lattice stabilization via dopant engineering, (2) solvent decomposition mitigation through tailored interphases engineering, and (3) gas-selective adaptive separator development. Furthermore, it establishes a multiscale design framework spanning atomic defect control to pack-level thermal management, providing actionable guidelines for battery engineering. By correlating early gas detection metrics with degradation patterns, the work enables predictive safety systems and standardized protocols, directly guiding the development of reliable high-energy batteries for electric vehicles and grid storage. Full article
(This article belongs to the Special Issue High-Safety Lithium-Ion Batteries: Basics, Progress and Challenges)
Show Figures

Figure 1

32 pages, 5841 KiB  
Review
Computational Methods, Artificial Intelligence, Modeling, and Simulation Applications in Green Hydrogen Production Through Water Electrolysis: A Review
by Ahmed Y. Shash, Noha M. Abdeltawab, Doaa M. Hassan, Mohamed Darweesh and Y. G. Hegazy
Hydrogen 2025, 6(2), 21; https://doi.org/10.3390/hydrogen6020021 - 25 Mar 2025
Cited by 3 | Viewed by 5094
Abstract
Green hydrogen production is emerging as a crucial component in global decarbonization efforts. This review focuses on the role of computational approaches and artificial intelligence (AI) in optimizing green hydrogen technologies. Key approaches to improving electrolyzer efficiency and scalability include computational fluid dynamics [...] Read more.
Green hydrogen production is emerging as a crucial component in global decarbonization efforts. This review focuses on the role of computational approaches and artificial intelligence (AI) in optimizing green hydrogen technologies. Key approaches to improving electrolyzer efficiency and scalability include computational fluid dynamics (CFD), thermodynamic modeling, and machine learning (ML). As an instance, CFD has achieved over 95% accuracy in estimating flow distribution and polarization curves, but AI-driven optimization can lower operational expenses by up to 24%. Proton exchange membrane electrolyzers achieve efficiencies of 65–82% at 70–90 °C, but solid oxide electrolyzers reach up to 90% efficiency at temperatures ranging from 650 to 1000 °C. According to studies, combining renewable energy with hydrogen production reduces emissions and improves grid reliability, with curtailment rates of less than 1% for biomass-driven systems. This integration of computational approaches and renewable energy ensures a long-term transition to green hydrogen while also addressing energy security and environmental concerns. Full article
Show Figures

Graphical abstract

9 pages, 687 KiB  
Proceeding Paper
Dynamic Modeling of Fuel Cells for Applications in Aviation
by Niclas A. Dotzauer
Eng. Proc. 2025, 90(1), 68; https://doi.org/10.3390/engproc2025090068 - 20 Mar 2025
Viewed by 441
Abstract
In the development of more electric aircraft, hydrogen powered fuel cells are one possible solution to progress towards emission reductions in aviation. Currently, there are numerous concepts for integrating fuel cells into future aircraft. The goal of this work was to develop a [...] Read more.
In the development of more electric aircraft, hydrogen powered fuel cells are one possible solution to progress towards emission reductions in aviation. Currently, there are numerous concepts for integrating fuel cells into future aircraft. The goal of this work was to develop a dynamic fuel cell model for simulations of the powertrain. The Modelica language together with the ThermoFluidStream (TFS) library from the German Aerospace Center (DLR) provided a suitable framework. The fuel cell model takes into account the electrochemical as well as thermodynamic behavior. Hence, the proposed multi-physics model allows simulating the whole fuel cell system, from the hydrogen tank to the electric grid. Under certain simplifications, this enables performing mission simulations of the complete powertrain of future aircraft. As such, polymer electrolyte membrane (PEM) fuel cells and solid oxide fuel cells (SOFC) were considered. The fuel cell models are checked for plausibility in a simple test case against data from the literature. Furthermore, two setups of possible applications are introduced: one for each fuel cell type, which come from two projects. The preliminary control systems of these architectures are presented. Afterwards, the first results of the fuel cell systems are discussed. These results show that the models ran robustly in various environments and operational states. They provided the desired accuracy to predict the behavior of a fuel cell, while maintaining low CPU times and being capable of enabling real-time simulations in the future. Full article
Show Figures

Figure 1

19 pages, 14484 KiB  
Article
SPH Simulation of Gear Meshing with Lubricating Fluid–Solid Coupling and Heat-Transfer Process
by Chunxiang Shi, Xiangkun Song, Weipeng Xu, Ying Tian, Liu Yang, Xiangwei Dong and Qiang Zhang
Processes 2025, 13(3), 730; https://doi.org/10.3390/pr13030730 - 3 Mar 2025
Viewed by 1126
Abstract
This study employs the meshfree Smoothed Particle Hydrodynamics (SPH) method to simulate the fluid–solid coupling process of gear meshing rotation with lubricating oil or oil jet lubrication fluids, considering the heat-transfer process under preset initial temperature conditions. While traditional grid methods face challenges [...] Read more.
This study employs the meshfree Smoothed Particle Hydrodynamics (SPH) method to simulate the fluid–solid coupling process of gear meshing rotation with lubricating oil or oil jet lubrication fluids, considering the heat-transfer process under preset initial temperature conditions. While traditional grid methods face challenges in simulating the dynamic interaction between gear-meshing rotation and lubricating fluids, such as time-dependent contact in fluid–solid coupling and heat transfer, difficulties in handling meshing gaps, and the complexity of dynamic mesh setup, our approach leverages the unique advantages of meshless methods. In the established fluid–solid–heat coupling model, gears are considered as rigid bodies, and both fluids and gears are discretized into SPH particles, achieving fluid–solid coupling through the interaction between fluid particles and solid SPH particles. The model considers three cooling scenarios: oil pool cooling, oil jet cooling, and combined cooling. Simulation results show that oil pool cooling is more effective than oil jet cooling, but oil jet cooling can achieve localized spot cooling. The model exhibits good computational stability and efficiency in simulating the fluid–solid coupling and heat-transfer processes of gear rotation, oil jetting, and oil pool fluids. This study provides an effective numerical simulation method for gear lubrication cooling and has significant application potential for simulating complex scenarios such as gear operation and oil pool sloshing in coal mining machine arms. Compared to previous SPH work, this study couples a thermodynamic model in the simulation, thus enabling the modeling of fluid–thermal–solid coupled processes. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

18 pages, 5617 KiB  
Article
Base-Load Nuclear Reactors for Fully Dispatchable Electricity: Nuclear Air-Brayton Combined Cycles, Firebrick Heat Storage, Hydrogen Storage, and Hydrocarbon Biofuels
by Charles Forsberg
Energies 2025, 18(4), 821; https://doi.org/10.3390/en18040821 - 10 Feb 2025
Viewed by 1024
Abstract
Three partly coupled integrated nuclear energy systems are described. These enable base-load nuclear reactors to provide fully dispatchable electricity without greenhouse-gas emissions, thus replacing gas turbines burning natural gas and batteries storing electricity. These hybrid systems link the industrial sector to the electricity [...] Read more.
Three partly coupled integrated nuclear energy systems are described. These enable base-load nuclear reactors to provide fully dispatchable electricity without greenhouse-gas emissions, thus replacing gas turbines burning natural gas and batteries storing electricity. These hybrid systems link the industrial sector to the electricity sector. Firstly, electricity-to-high-temperature (1800 °C) gigawatt-hour firebrick heat storage converts low-price electricity to high-temperature stored heat to provide dispatchable heat for industry and power generation. Secondly, Nuclear Air-Brayton Combined Cycles (NACC) with thermodynamic topping cycles using high-temperature stored heat or combustible fuel to provide dispatchable electricity. Peak power output can be two to five times the base-load electricity production. The heat-to-electricity efficiency of the thermodynamic topping cycles exceeds 70%. Thirdly, nuclear hydrogen production for industrial markets enables the production of dispatchable electricity where hydrogen is used for energy storage but not to produce heat and electricity. Base-load nuclear reactors send electricity to the grid and/or electrolyzers for hydrogen production depending upon electricity prices. Low-cost hydrogen storage enables us to meet steady-state industrial hydrogen demands, even though hydrogen and grid electricity production is varied. Hydrogen production for industrial uses (ammonia fertilizer, direct reduction of iron ore to iron replacing coke, cellulosic liquid hydrocarbon biofuels replacing crude oil) may exceed 20% of total energy demand and may be a massive source of dispatchable electricity. The biofuels provide storable energy when heat storage is depleted. Full article
(This article belongs to the Special Issue Advances in Nuclear Power for Integrated Energy Systems)
Show Figures

Graphical abstract

22 pages, 1507 KiB  
Article
Computational Approaches to Compressible Micropolar Fluid Flow in Moving Parallel Plate Configurations
by Nelida Črnjarić
Mathematics 2025, 13(3), 500; https://doi.org/10.3390/math13030500 - 2 Feb 2025
Viewed by 678
Abstract
In this paper, we consider the unsteady flow of a compressible micropolar fluid between two moving, thermally isolated parallel plates. The fluid is characterized as viscous and thermally conductive, with polytropic thermodynamic properties. Although the mathematical model is inherently three-dimensional, we assume that [...] Read more.
In this paper, we consider the unsteady flow of a compressible micropolar fluid between two moving, thermally isolated parallel plates. The fluid is characterized as viscous and thermally conductive, with polytropic thermodynamic properties. Although the mathematical model is inherently three-dimensional, we assume that the variables depend on only a single spatial dimension, reducing the problem to a one-dimensional formulation. The non-homogeneous boundary conditions representing the movement of the plates lead to moving domain boundaries. The model is formulated in mass Lagrangian coordinates, which leads to a time-invariant domain. This work focuses on numerical simulations of the fluid flow for different configurations. Two computational approaches are used and compared. The first is based on the finite difference method and the second is based on the Faedo–Galerkin method. To apply the Faedo–Galerkin method, the boundary conditions must first be homogenized and the model equations reformulated. On the other hand, in the finite difference method, the non-homogeneous boundary conditions are implemented directly, which reduces the computational complexity of the numerical scheme. In the performed numerical experiments, it was observed that, for the same accuracy, the Faedo–Galerkin method was approximately 40 times more computationally expensive compared to the finite difference method. However, on a dense numerical grid, the finite difference method required a very small time step, which could lead to an accumulation of round-off errors. On the other hand, the Faedo–Galerkin method showed the convergence of the solutions as the number of expansion terms increased, despite the higher computational cost. Comparisons of the obtained results show good agreement between the two approaches, which confirms the consistency and validity of the numerical solutions. Full article
Show Figures

Figure 1

6 pages, 736 KiB  
Proceeding Paper
The Effect of Curing Mode on the Parameters of Molecular Meshes of Epoxy and Polyester Copolymers
by Irina N. Vikhareva
Chem. Proc. 2024, 16(1), 34; https://doi.org/10.3390/ecsoc-28-20192 - 14 Nov 2024
Viewed by 312
Abstract
The establishment of the patterns of formation and structure of mesh polymers, as well as the methods of their controlled synthesis, makes it possible to rationally manage the technological processes of obtaining and processing materials based on them. This paper determines the possibility [...] Read more.
The establishment of the patterns of formation and structure of mesh polymers, as well as the methods of their controlled synthesis, makes it possible to rationally manage the technological processes of obtaining and processing materials based on them. This paper determines the possibility of directional variation in the parameters of the molecular grid of epoxy and polyester resin copolymers using a polyamide hardener. For this purpose, the influence of temperature regimes on the curing mixing technology of the original components was studied. The values of the Huggins constants were initially calculated. For this purpose, the swelling of copolymers in chloroform, xylene, dimethylformamide and acetone was studied. Taking into account the thermodynamic criteria, based on the results obtained, a solvent was selected that provides optimal swelling conditions for the synthesized copolymer. Experimental data describing the process of collecting copolymer samples were obtained. Using the Florey equation, the parameters of the structural grids of the developed polymer compositions were calculated. Full article
Show Figures

Figure 1

Back to TopTop