Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = grid service of HVDC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4602 KB  
Article
New Synthetic Partial Discharge Calibrator for Qualification of Partial Discharge Analyzers for Insulation Diagnosis of HVDC and HVAC Grids
by Abderrahim Khamlichi, Fernando Garnacho and Pascual Simón
Sensors 2023, 23(13), 5955; https://doi.org/10.3390/s23135955 - 27 Jun 2023
Cited by 7 | Viewed by 2245
Abstract
A synthetic partial discharge (PD) calibrator has been developed to qualify PD analyzers used for insulation diagnosis of HVAC and HVDC grids including cable systems, AIS, GIS, GIL, power transformers, and HVDC converters. PD analyzers that use high-frequency current transformers (HFCT) can be [...] Read more.
A synthetic partial discharge (PD) calibrator has been developed to qualify PD analyzers used for insulation diagnosis of HVAC and HVDC grids including cable systems, AIS, GIS, GIL, power transformers, and HVDC converters. PD analyzers that use high-frequency current transformers (HFCT) can be qualified by means of the metrological and diagnosis tests arranged in this calibrator. This synthetic PD calibrator can reproduce PD pulse trains of the same sequence as actual representative defects (cavity, surface, floating potential, corona, SF6 protrusion, SF6 jumping particles, bubbles in oil, etc.) acquired in HV equipment in service or by means of measurements made in HV laboratory test cells. The diagnostic capabilities and PD measurement errors of the PD analyzers using HFCT sensors can be determined. A new time parameter, “PD Time”, associated with any arbitrary PD current pulse i(t) is introduced for calibration purposes. It is defined as the equivalent width of a rectangular PD pulse with the same charge value and amplitude as the actual PD current pulse. The synthetic PD calibrator consists of a pulse generator that operates on a current loop matched to 50 Ω impedance to avoid unwanted reflections. The injected current is measured by a reference measurement system built into the PD calibrator that uses two HFCT sensors to ensure that the current signal is the same at the input and output of the calibration cage where the HFCT of the PD analyzer is being calibrated. Signal reconstruction of the HFCT output signal to achieve the input signal is achieved by applying state variable theory using the transfer impedance of the HFCT sensor in the frequency domain. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

21 pages, 9480 KB  
Article
Study of Discharge Inception and Propagation in Liquid–Solid Insulation System under DC–LI Superimposed Constraints
by Younes Moufakkir, Ayyoub Zouaghi and Christian Vollaire
Energies 2023, 16(1), 172; https://doi.org/10.3390/en16010172 - 23 Dec 2022
Cited by 1 | Viewed by 1603
Abstract
High-voltage direct current (HVDC) links are starting to become widely implemented thanks to their interesting advantages such as reduced operation losses, the absence of reactive power, which allows energy transport via underground cables over long distances, and improved power control. The latter advantage [...] Read more.
High-voltage direct current (HVDC) links are starting to become widely implemented thanks to their interesting advantages such as reduced operation losses, the absence of reactive power, which allows energy transport via underground cables over long distances, and improved power control. The latter advantage is very essential for renewable energy resource integration into power grids. However, a thorough understanding of the behavior of insulation systems for HVDC components is critical so as to ensure a more reliable service. Indeed, the existence of the direct current (DC) voltage in HVDC components may induce surface and space charge accumulation that can stress insulation further or even promote discharge inception and propagation. As such, this work focuses on showcasing the effect of surface charge on streamers that develop on the interface of liquid–solid insulation due to the advent of lightning impulse (LI) voltage in the HVDC link. This study was performed using finite-element-based numerical simulations that include a quasi-electrostatic model for surface charge accumulation and an electrohydrodynamic fluid model for streamer initiation and propagation. The geometry used was point–plane configuration where the high voltage is applied to the needle electrode located above the liquid–solid interface. The obtained results suggest that streamer initiation is affected by both the accumulated surface charge density and polarity. For a positive streamer, an accumulation of positive surface charge increases the discharge inception voltage as a result of a weakening in the electric field, while an accumulation of negative surface charge decreases the discharge inception voltage due to an intensification in the electric field. Moreover, streamer travel distance and velocity are also both shown to be affected by surface charge accumulation. Full article
(This article belongs to the Topic High Voltage Engineering)
Show Figures

Figure 1

19 pages, 2152 KB  
Review
VSC-HVDC and Its Applications for Black Start Restoration Processes
by Rafael Sanchez Garciarivas, Diego Rasilla Gonzalez, Javier Agustin Navarro, Luis Arturo Soriano, José de Jesús Rubio, Maria Victoria Gomez, Victor Garcia and Jaime Pacheco
Appl. Sci. 2021, 11(12), 5648; https://doi.org/10.3390/app11125648 - 18 Jun 2021
Cited by 16 | Viewed by 6643
Abstract
System reliability is a measure of an electric grid system’s ability to deliver uninterrupted service at the proper voltage and frequency. This property of the electric system is commonly affected by critical processes, such as a total blackout. The electric system restoration is [...] Read more.
System reliability is a measure of an electric grid system’s ability to deliver uninterrupted service at the proper voltage and frequency. This property of the electric system is commonly affected by critical processes, such as a total blackout. The electric system restoration is a complex process which consists of returning generators, transmission system elements, and restoring load following an outage of the electric system. However, the absence of a generator or unit of black start capabilities may worsen the duration and effects of blackouts, having severe consequences. Black start capability is important as it can reduce the interruption time, decrease the economic loss, and restart the power supply fast and efficiently. In recent years, several works have reported advances about the High Voltage Direct Current (HVDC) technology based on the Voltage-Source Converter (VSC) as an attractive and promising technology to increase black start capability. This paper is a review of the current studies of VSC-HVDC as black start power and discusses the advantages and limitations of recent methods. The major points addressed in this paper are as follows: the current theoretical approach of the black start process and the used HVDC technologies, the advantages of VSC-HVDC as black start power, a compressive review of the literature about the black start capabilities using VSC-HVDC technologies, and a description of the main methods recently used to provide an enhancement for restoration processes. Finally, this paper discusses new challenges and perspectives for VSC-HVDC links in order to provide an enhancement for restoration processes. Full article
(This article belongs to the Special Issue Applications and Protections of High Voltage Power)
Show Figures

Figure 1

24 pages, 803 KB  
Article
Effects of Cyber Attacks on AC and High-Voltage DC Interconnected Power Systems with Emulated Inertia
by Kaikai Pan, Jingwei Dong, Elyas Rakhshani and Peter Palensky
Energies 2020, 13(21), 5583; https://doi.org/10.3390/en13215583 - 26 Oct 2020
Cited by 16 | Viewed by 3049
Abstract
The high penetration of renewable energy resources and power electronic-based components has led to a low-inertia power grid which would bring challenges to system operations. The new model of load frequency control (LFC) must be able to handle the modern scenario where controlled [...] Read more.
The high penetration of renewable energy resources and power electronic-based components has led to a low-inertia power grid which would bring challenges to system operations. The new model of load frequency control (LFC) must be able to handle the modern scenario where controlled areas are interconnected by parallel AC/HVDC links and storage devices are added to provide virtual inertia. Notably, vulnerabilities within the communication channels for wide-area data exchange in LFC loops may make them exposed to various cyber attacks, while it still remains largely unexplored how the new LFC in the AC/HVDC interconnected system with emulated inertia would be affected under malicious intrusions. Thus, in this article, we are motivated to explore possible effects of the major types of data availability and integrity attacks—Denial of Service (DoS) and false data injection (FDI) attacks—on such a new LFC system. By using a system-theoretic approach, we explore the optimal strategies that attackers can exploit to launch DoS or FDI attacks to corrupt the system stability. Besides, a comparison study is performed to learn the impact of these two types of attacks on LFC models of power systems with or without HVDC link and emulated inertia. The simulation results on the the exemplary two-area system illustrate that both DoS and FDI attacks can cause large frequency deviations or even make the system unstable; moreover, the LFC system with AC/HVDC interconnections and emulated inertia could be more vulnerable to these two types of attacks in many adversarial scenarios. Full article
(This article belongs to the Special Issue Power Converter Control Applications in Low-Inertia Power Systems)
Show Figures

Figure 1

22 pages, 1722 KB  
Review
Grid Integration as a Strategy of Med-TSO in the Mediterranean Area in the Framework of Climate Change and Energy Transition
by Antonio Moretti, Charalampos Pitas, George Christofi, Emmanuel Bué and Modesto Gabrieli Francescato
Energies 2020, 13(20), 5307; https://doi.org/10.3390/en13205307 - 12 Oct 2020
Cited by 7 | Viewed by 4243
Abstract
The paper presents a survey on the situation in terms of solutions for grid integration throughout the Mediterranean area in the framework of climate change and energy transition. The objective of the study is focused on Mediterranean region connectivity initiatives in the context [...] Read more.
The paper presents a survey on the situation in terms of solutions for grid integration throughout the Mediterranean area in the framework of climate change and energy transition. The objective of the study is focused on Mediterranean region connectivity initiatives in the context of the broader vision of an interconnected European–Mediterranean (Euro–Med) power system for a future low-carbon energy system as the fundamental objective of Med-TSO, the Association of the Mediterranean Transmission System Operators (TSOs) for electricity. The analysis examines how the power grid connectivity evolves from now on to 2030, describing the progress made to date in integrating the power grids of the Mediterranean region as well as the future possibilities for a more integrated power grid covering the whole region. The research, conducted within Mediterranean Project II of Med-TSO, includes an overview on the current situation of the interconnections and the proposal for the 2030 interconnections Master Plan, coherent with the national development plans (NDPs) and shared energy scenarios for the whole region at the same horizon of 2030. It conducts an assessment of the gap between the current and the 2030 expected situation, taking into account the energy transition toward 2030 objectives resulting from the achievements of climate change pledges, local governmental policies and EU strategy for neighboring countries and Africa. The solutions survey includes technical solutions, procedures and rules to improve systems’ integration and increase regional electricity exchanges in Med-TSO countries, and is aimed at achieving a higher quality of services and better efficiency of energy supply in Med-TSO member countries in the framework of the expected energy transition. The main scope is to present solutions that will be made available due to maturity and experience in the coming decade, specifically: high voltage direct current (HVDC) transmission technologies, energy storage, sectors coupling, smart grid technologies and services, inter-TSO and transmission–distribution cooperation platforms, etc. The article presents two case studies: the island paradigm and a new cross-border interconnection project of common interest. Finally, the post-pandemic core role of TSOs, which has become more relevant than ever, is transformed into a key-enabler of energy transition towards a sustainable, resilient and innovative climate-neutral recovery. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

20 pages, 4919 KB  
Article
Methodology for Tuning MTDC Supervisory and Frequency-Response Control Systems at Terminal Level under Over-Frequency Events
by Marta Haro-Larrode, Maider Santos-Mugica, Agurtzane Etxegarai and Pablo Eguia
Energies 2020, 13(11), 2807; https://doi.org/10.3390/en13112807 - 1 Jun 2020
Cited by 6 | Viewed by 3108
Abstract
This paper proposes a methodology for tuning a supervisory and frequency-response outer loop control system of a multi-terminal direct current (MTDC) grid designed to transmit offshore wind energy to an onshore AC grid, and to provide frequency support during over-frequency events. The control [...] Read more.
This paper proposes a methodology for tuning a supervisory and frequency-response outer loop control system of a multi-terminal direct current (MTDC) grid designed to transmit offshore wind energy to an onshore AC grid, and to provide frequency support during over-frequency events. The control structure is based on a master–slave scheme and ensures the achievement of frequency response, with specific implementation of the UK national grid code limited-frequency sensitive (LFSM) and frequency-sensitive (FSM) modes. The onshore AC grid is modelled with an equivalent frequency-response model to simulate the onshore AC grid dynamics under frequency deviations. The main innovation of this paper is the development of a methodology for tuning simultaneously two hierarchical levels of a MTDC coordinated control structure, i.e., the MTDC supervisor, given by the active power set point for slave terminal, and the slope of frequency-response functions at onshore terminals. Based on these two hierarchical levels, different strategies are evaluated in terms of frequency peak reductions and change of the frequency order type. Moreover, tuning guidance is given when a different MTDC control structure or different synchronous generator characteristics of the onshore AC grid are considered. Full article
(This article belongs to the Special Issue HVDC Power Transmission: Technology, Systems, and Grid Interaction)
Show Figures

Figure 1

21 pages, 6848 KB  
Article
Dynamic Wind Power Plant Control for System Integration Using the Generator Response Following Concept
by David Campos-Gaona, Adam Stock, Olimpo Anaya-Lara and William Leithead
Energies 2020, 13(7), 1804; https://doi.org/10.3390/en13071804 - 8 Apr 2020
Cited by 8 | Viewed by 4086
Abstract
In this paper, a novel concept to integrate High Voltage Direct Current (HVDC)-connected offshore wind power plants with the onshore grid is presented. The concept makes use of a holistic wind farm controller along with a fully instrumented conventional synchronous generator at the [...] Read more.
In this paper, a novel concept to integrate High Voltage Direct Current (HVDC)-connected offshore wind power plants with the onshore grid is presented. The concept makes use of a holistic wind farm controller along with a fully instrumented conventional synchronous generator at the point of common coupling. In our approach, the wind farm is able to replicate the natural response of the generator to a system, even enabling the wind farm to reproduce, in a scaled up manner, a range of ancillary services without having to rely on indirect frequency measurements which are prone to noise and delays. Simulation results are presented to validate the proposed solution. Full article
(This article belongs to the Special Issue Control Schemes for Wind Electricity Systems)
Show Figures

Figure 1

13 pages, 5754 KB  
Article
Analysis of the DC Bias Effects on the UHV Autotransformer with Rated Load Based on a Reduced-Scale Model Experiment
by Bing Li, Zezhong Wang, Mingyang Li and Suxin Guo
Appl. Sci. 2020, 10(4), 1529; https://doi.org/10.3390/app10041529 - 24 Feb 2020
Cited by 7 | Viewed by 3763
Abstract
The DC bias of transformers as a result of geomagnetically induced currents (GIC), monopole operation of high voltage direct current (HVDC) transmission and the increasing power electronic devices in the power grid, creates a high magnitude of fundamental and harmonic components in winding [...] Read more.
The DC bias of transformers as a result of geomagnetically induced currents (GIC), monopole operation of high voltage direct current (HVDC) transmission and the increasing power electronic devices in the power grid, creates a high magnitude of fundamental and harmonic components in winding currents, reactive power, and vibro-acoustic noise. For transformers with large capacity, it is very expensive and difficult to carry out an in-depth DC bias effects investigation on a practical equipment, especially for the ultra-high voltage (UHV) transformer. In this paper, a reduced-scale model (RSM) based on the principle of identical saturation degree is proposed, and the equivalent relationship of DC bias current is obtained. Furthermore, the DC bias platform with the RSM is established, experiments have been conducted to analyze the characteristics of the transformer under DC bias. It turns out from the experiments that the current of high voltage side and excitation are less tolerated to the DC bias current, the distortion occurs during the first half of the cycle and peaking at the quarter. Besides, the no-load loss and total harmonic distortion (THD) increase significantly with an increasing DC bias. The results of the characteristics of RSM with load under DC bias may provide great services in protecting and reducing the DC bias effects on the UHV transformer in actual operation. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

3 pages, 155 KB  
Editorial
Special Issue on HVDC for Grid Services in Electric Power Systems
by Gilsoo Jang
Appl. Sci. 2019, 9(20), 4292; https://doi.org/10.3390/app9204292 - 12 Oct 2019
Viewed by 1694
Abstract
The modern electric power system has evolved into a huge nonlinear complex system, due to the interconnection of a lot of generation and transmission systems [...] Full article
(This article belongs to the Special Issue HVDC for Grid Services in Electric Power Systems)
19 pages, 5197 KB  
Article
Development of A Loss Minimization Based Operation Strategy for Embedded BTB VSC HVDC
by Jaehyeong Lee, Minhan Yoon, Sungchul Hwang, Soseul Jeong, Seungmin Jung and Gilsoo Jang
Appl. Sci. 2019, 9(11), 2234; https://doi.org/10.3390/app9112234 - 30 May 2019
Cited by 4 | Viewed by 3170
Abstract
Recently, there have been many cases in which direct current (DC) facilities have been placed in alternating current (AC) systems for various reasons. In particular, in Korea, studies are being conducted to install a back-to-back (BTB) voltage-sourced converter (VSC) high-voltage direct current (HVDC) [...] Read more.
Recently, there have been many cases in which direct current (DC) facilities have been placed in alternating current (AC) systems for various reasons. In particular, in Korea, studies are being conducted to install a back-to-back (BTB) voltage-sourced converter (VSC) high-voltage direct current (HVDC) to solve the fault current problem of the meshed system, and discussions on how to operate it have been made accordingly. It is possible to provide grid services such as minimizing grid loss by changing the HVDC operating point, but it also may violate reliability standards without proper HVDC operation according to the system condition. Especially, unlike the AC system, DC may adversely affect the AC system because the operating point does not change even after a disturbance has occurred, so strategies to change the operating point after the contingency are required. In this paper, a method for finding the operating point of embedded HVDC that minimizes losses within the range of compliance with the reliability criterion is proposed. We use the Power Transfer Distribution Factor (PTDF) to reduce the number of buses to be monitored during HVDC control, reduce unnecessary checks, and determine the setpoints for the active/reactive power of the HVDC through system total loss minimization (STLM) control to search for the minimum loss point using Powell’s direct set. We also propose an algorithm to search for the operating point that minimizes the loss automatically and solves the overload occurring in an emergency through security-constrained loss minimization (SCLM) control. To verify the feasibility of the algorithm, we conducted a case study using an actual Korean power system and verified the effect of systematic loss reduction and overload relief in a contingency. The simulations are conducted by a commercial power system analysis tool, Power System Simulator for Engineering (PSS/E). Full article
(This article belongs to the Special Issue HVDC for Grid Services in Electric Power Systems)
Show Figures

Figure 1

14 pages, 2535 KB  
Article
A Frequency–Power Droop Coefficient Determination Method of Mixed Line-Commutated and Voltage-Sourced Converter Multi-Infeed, High-Voltage, Direct Current Systems: An Actual Case Study in Korea
by Gyusub Lee, Seungil Moon and Pyeongik Hwang
Appl. Sci. 2019, 9(3), 606; https://doi.org/10.3390/app9030606 - 12 Feb 2019
Cited by 7 | Viewed by 4184
Abstract
Among the grid service applications of high-voltage direct current (HVDC) systems, frequency–power droop control for islanded networks is one of the most widely used schemes. In this paper, a new frequency-power droop coefficient determination method for a mixed line-commutated converter (LCC) and voltage-sourced [...] Read more.
Among the grid service applications of high-voltage direct current (HVDC) systems, frequency–power droop control for islanded networks is one of the most widely used schemes. In this paper, a new frequency-power droop coefficient determination method for a mixed line-commutated converter (LCC) and voltage-sourced converter (VSC)-based multi-infeed HVDC (MIDC) system is proposed. The proposed method is designed for the minimization of power loss. An interior-point method is used as an optimization algorithm to implement the proposed scheduling method, and the droop coefficients of the HVDCs are determined graphically using the Monte Carlo sampling method. Two test systems—the modified Institute of Electrical and Electronics Engineers (IEEE) 14-bus system and an actual Jeju Island network in Korea—were utilized for MATLAB simulation case studies, to demonstrate that the proposed method is effective for reducing power system loss during frequency control. Full article
(This article belongs to the Special Issue HVDC for Grid Services in Electric Power Systems)
Show Figures

Figure 1

Back to TopTop