Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,693)

Search Parameters:
Keywords = green-removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1984 KiB  
Article
The Effect of Copper Adsorption on Iron Oxide Magnetic Nanoparticles Embedded in a Sodium Alginate Bead
by Michele Modestino, Armando Galluzzi, Marco Barozzi, Sabrina Copelli, Francesco Daniele, Eleonora Russo, Elisabetta Sieni, Paolo Sgarbossa, Patrizia Lamberti and Massimiliano Polichetti
Nanomaterials 2025, 15(15), 1196; https://doi.org/10.3390/nano15151196 - 5 Aug 2025
Abstract
The preparation and use of iron oxide magnetic nanoparticles for water remediation is a widely investigated research field. To improve the efficacy of such nanomaterials, different synthetic processes and functionalization methods have been developed in the framework of green chemistry to exploit their [...] Read more.
The preparation and use of iron oxide magnetic nanoparticles for water remediation is a widely investigated research field. To improve the efficacy of such nanomaterials, different synthetic processes and functionalization methods have been developed in the framework of green chemistry to exploit their magnetic properties and adsorption capacity in a sustainable way. In this work, iron oxide magnetic nanoparticles embedded in cross-linked sodium alginate beads designed to clean water from metal ions were magnetically characterized. In particular, the effect of copper adsorption on their magnetic properties was investigated. The magnetic characterization in a DC field of the beads before adsorption showed the presence of a superparamagnetic state at 300 K—a state that was also preserved after copper adsorption. The main differences in terms of magnetic properties before and after Cu2+ adsorption were the reduction of the magnetic signal (observed by comparing the saturation magnetization) and a different shape of the blocking temperature distribution obtained by magnetization versus temperature measurements. The evaluation of the reduction in magnetization can be important from the application perspective since it can affect the efficiency of the beads’ removal from the water medium after treatment. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Figure 1

38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

17 pages, 5565 KiB  
Article
Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete
by Shunquan Zhang and Yifan Zhang
Materials 2025, 18(15), 3673; https://doi.org/10.3390/ma18153673 - 5 Aug 2025
Abstract
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on [...] Read more.
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on the resultant concrete properties require careful consideration. This investigation systematically evaluates the effects of varying concentrations of dilute acetic acid solutions, commonly used in RCA treatment protocols, through a multi-methodological approach that includes comprehensive physical characterization, stylus and 3D optical profilometry, scanning electron microscopy (SEM), and nanoindentation analysis. The results show that even dilute acid solutions have an upper concentration limit, as excessive acid concentration, specifically 0.4 M, induces significant textural dislocations on NCA surfaces, creating millimeter-scale erosion pits that increase aggregate water absorption by 18.5%. These morphological changes significantly impair concrete workability and reduce compressive strength performance. Furthermore, microstructural analysis reveals a 45.24% expansion in interfacial transition zone (ITZ) thickness, accompanied by notable reductions in elastic modulus and microhardness characteristics. In practical RCA treatment applications, for RCA containing limestone-based NCA, it is recommended to use acetic acid concentrations between 0.1 and 0.3 M to avoid substantial physical and microstructural degradation of aggregates and concrete. Full article
Show Figures

Graphical abstract

14 pages, 1567 KiB  
Article
Determining the Benzo[a]pyrene Degradation, Tolerance, and Adsorption Mechanisms of Kefir-Derived Bacterium Bacillus mojavensis TC-5
by Zhixian Duo, Haohao Li, Zeyu Wang, Zhiwei Zhang, Zhuonan Yang, Aofei Jin, Minwei Zhang, Rui Zhang and Yanan Qin
Foods 2025, 14(15), 2727; https://doi.org/10.3390/foods14152727 - 4 Aug 2025
Abstract
Microbial detoxification, as an environmentally friendly strategy, has been widely applied for benzo[a]pyrene (BaP) degradation. Within this approach, food-derived microbial strains offer unique advantages in safety, specificity, and sustainability for detoxifying food-borne BaP. In this study, we aimed to explore the potential of [...] Read more.
Microbial detoxification, as an environmentally friendly strategy, has been widely applied for benzo[a]pyrene (BaP) degradation. Within this approach, food-derived microbial strains offer unique advantages in safety, specificity, and sustainability for detoxifying food-borne BaP. In this study, we aimed to explore the potential of such strains in BaP degradation. Bacillus mojavensis TC-5, a strain that degrades BaP, was isolated from kefir grains. Surprisingly, 12 genes encoding dehydrogenases, synthases, and oxygenases, including betB, fabHB, qdoI, cdoA, and bioI, which are related to BaP degradation, were up-regulated by 2.01-fold to 4.52-fold in TC-5. Two potential degradation pathways were deduced. In pathway I, dioxygenase, betaine aldehyde dehydrogenase, and beta-ketoacyl-ACP synthase III FabHB act sequentially on BaP to form 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl via the phthalic acid pathway. In the presence of the cytochrome P450 enzyme, BaP progressively mediates ring cleavage via the anthracene pathway, eventually forming 3-methyl-5-propylnonane in pathway II. Notably, TC-5 achieved an impressive BaP removal efficiency of up to 63.94%, with a degradation efficiency of 32.89%. These results suggest that TC-5 has significant potential for application in addressing food-borne BaP contamination. Moreover, our findings expand the application possibilities of Xinjiang fermented milk products and add to the available green strategies for BaP degradation in food systems. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

26 pages, 5007 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 - 1 Aug 2025
Viewed by 218
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of −0.46 mA·cm−2 at −0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

27 pages, 10150 KiB  
Article
Numerical Simulation and Experimental Study of the Thermal Wick-Debinding Used in Low-Pressure Powder Injection Molding
by Mohamed Amine Turki, Dorian Delbergue, Gabriel Marcil-St-Onge and Vincent Demers
Powders 2025, 4(3), 22; https://doi.org/10.3390/powders4030022 - 1 Aug 2025
Viewed by 112
Abstract
Thermal wick-debinding, commonly used in low-pressure injection molding, remains challenging due to complex interactions between binder transport, capillary forces, and thermal effects. This study presents a numerical simulation of binder removal kinetics by coupling Darcy’s law with the Phase Transport in Porous Media [...] Read more.
Thermal wick-debinding, commonly used in low-pressure injection molding, remains challenging due to complex interactions between binder transport, capillary forces, and thermal effects. This study presents a numerical simulation of binder removal kinetics by coupling Darcy’s law with the Phase Transport in Porous Media interface in COMSOL Multiphysics. The model was validated and subsequently used to study the influence of key debinding parameters. Contrary to the Level Set method, which predicts isolated binder clusters, the Multiphase Flow in Porous Media method proposed in this work more accurately reflects the physical behavior of the process, capturing a continuous binder extraction throughout the green part and a uniform binder distribution within the wicking medium. The model successfully predicted the experimentally observed decrease in binder saturation with increasing debinding temperature or time, with deviation limited 3–10 vol. % (attributed to a mandatory brushing operation, which may underestimate the residual binder mass). The model was then used to optimize the debinding process: for a temperature of 100 °C and an inter-part gap distance of 5 mm, the debinding time was minimized to 7 h. These findings highlight the model’s practical utility for process design, offering a valuable tool for determining optimal debinding parameters and improving productivity. Full article
Show Figures

Graphical abstract

17 pages, 9519 KiB  
Article
Lead Recovery from Flue Dust by Using Ultrasonic-Enhanced Hydrogen Peroxide Water Washing
by Tian Wang, Yuxi Xie, Phan Duc Lenh, Thiquynhxuan Le and Libo Zhang
Recycling 2025, 10(4), 150; https://doi.org/10.3390/recycling10040150 - 1 Aug 2025
Viewed by 171
Abstract
An ultrasonic-enhanced hydrogen peroxide water-washing process was developed to recover lead from raw flue dust (RFD) under neutral conditions. At optimal parameters (40 °C, 30 min, 4 mL H2O2, liquid-to-solid ratio 2:1, 240 W ultrasound), the Pb mass fraction [...] Read more.
An ultrasonic-enhanced hydrogen peroxide water-washing process was developed to recover lead from raw flue dust (RFD) under neutral conditions. At optimal parameters (40 °C, 30 min, 4 mL H2O2, liquid-to-solid ratio 2:1, 240 W ultrasound), the Pb mass fraction in the solid residue increased from 41.68% in the RFD to 68.11%, accompanied by a Pb recovery rate of 97.1%. These values are significantly higher than those obtained under identical conditions without ultrasound (64.07% and 95.93%, respectively). Ultrasound promotes de-agglomeration and generates •OH radicals that accelerate the oxidation of PbSO3 to insoluble PbSO4 while concurrently removing impurity cadmium. This research offers a green and efficient alternative to traditional lead recovery methods, fostering sustainable development in the metallurgical industry. Full article
Show Figures

Figure 1

20 pages, 3578 KiB  
Article
Performance Improvement of Proton Exchange Membrane Fuel Cell by a New Coupling Channel in Bipolar Plate
by Qingsong Song, Shuochen Yang, Hongtao Li, Yunguang Ji, Dajun Cai, Guangyu Wang and Yuan Liufu
Energies 2025, 18(15), 4068; https://doi.org/10.3390/en18154068 - 31 Jul 2025
Viewed by 133
Abstract
The geometric design of flow channels in bipolar plates is one of the critical features of proton exchange membrane fuel cells (PEMFCs), as it determines the power output of the fuel cell and has a significant impact on its performance and durability. The [...] Read more.
The geometric design of flow channels in bipolar plates is one of the critical features of proton exchange membrane fuel cells (PEMFCs), as it determines the power output of the fuel cell and has a significant impact on its performance and durability. The function of the bipolar plate is to guide the transfer of reactant gases to the gas diffusion layer and catalytic layer inside the PEMFC, while removing unreacted gases and gas–liquid byproducts. Therefore, the design of the bipolar plate flow channel is directly related to the water and thermal management of the PEMFC. In order to improve the comprehensive performance of PEMFCs and ensure their safe and stable operation, it is necessary to design the flow channels in bipolar plates rationally and effectively. This study addresses the limitations of existing bipolar plate flow channels by proposing a new coupling of serpentine and radial channels. The distribution of oxygen, water concentrations, and temperature inside the channel is simulated using the multi-physics simulation software COMSOL Multiphysics 6.0. The performance of this novel design is compared with conventional flow channels, with a particular focus on the pressure drop and current density to evaluate changes in the output performance of the PEMFC. The results show that the maximum current density of this novel design is increased by 67.36% and 10.43% compared to straight channel and single serpentine channels, respectively. The main contribution of this research is the innovative design of a new coupling of serpentine and radial channels in bipolar plates, which improves the overall performance of the PEMFC. This study provides theoretical support for the design of bipolar plate flow channels in PEMFCs and holds significant importance for the green development of energy. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

12 pages, 3315 KiB  
Article
NeRF-RE: An Improved Neural Radiance Field Model Based on Object Removal and Efficient Reconstruction
by Ziyang Li, Yongjian Huai, Qingkuo Meng and Shiquan Dong
Information 2025, 16(8), 654; https://doi.org/10.3390/info16080654 - 31 Jul 2025
Viewed by 145
Abstract
High-quality green gardens can markedly enhance the quality of life and mental well-being of their users. However, health and lifestyle constraints make it difficult for people to enjoy urban gardens, and traditional methods struggle to offer the high-fidelity experiences they need. This study [...] Read more.
High-quality green gardens can markedly enhance the quality of life and mental well-being of their users. However, health and lifestyle constraints make it difficult for people to enjoy urban gardens, and traditional methods struggle to offer the high-fidelity experiences they need. This study introduces a 3D scene reconstruction and rendering strategy based on implicit neural representation through the efficient and removable neural radiation fields model (NeRF-RE). Leveraging neural radiance fields (NeRF), the model incorporates a multi-resolution hash grid and proposal network to improve training efficiency and modeling accuracy, while integrating a segment-anything model to safeguard public privacy. Take the crabapple tree, extensively utilized in urban garden design across temperate regions of the Northern Hemisphere. A dataset comprising 660 images of crabapple trees exhibiting three distinct geometric forms is collected to assess the NeRF-RE model’s performance. The results demonstrated that the ‘harvest gold’ crabapple scene had the highest reconstruction accuracy, with PSNR, LPIPS and SSIM of 24.80 dB, 0.34 and 0.74, respectively. Compared to the Mip-NeRF 360 model, the NeRF-RE model not only showed an up to 21-fold increase in training efficiency for three types of crabapple trees, but also exhibited a less pronounced impact of dataset size on reconstruction accuracy. This study reconstructs real scenes with high fidelity using virtual reality technology. It not only facilitates people’s personal enjoyment of the beauty of natural gardens at home, but also makes certain contributions to the publicity and promotion of urban landscapes. Full article
(This article belongs to the Special Issue Extended Reality and Its Applications)
Show Figures

Figure 1

17 pages, 1261 KiB  
Article
Innovative Valorization of Wood Panel Waste into Activated Biochar for Efficient Phenol Adsorption
by Aziz Bentis, Laura Daniela Ceron Daza, Mamadou Dia, Ahmed Koubaa and Flavia Lega Braghiroli
Appl. Sci. 2025, 15(15), 8518; https://doi.org/10.3390/app15158518 (registering DOI) - 31 Jul 2025
Viewed by 141
Abstract
Construction and demolition byproducts include substantial amounts of wood panel waste (WPW) that pose environmental challenges. They also create opportunities for sustainable resource recovery. This study investigates the potential of WPW-derived biochar as an efficient adsorbent for phenol removal from aqueous solutions. Biochar [...] Read more.
Construction and demolition byproducts include substantial amounts of wood panel waste (WPW) that pose environmental challenges. They also create opportunities for sustainable resource recovery. This study investigates the potential of WPW-derived biochar as an efficient adsorbent for phenol removal from aqueous solutions. Biochar was produced via pyrolysis at 450 °C and subsequent activation at 750, 850, and 950 °C. The biochar’s physicochemical properties, including surface area, pore volume, and elemental composition, were characterized using advanced methods, including BET analysis, elemental analysis, and adsorption isotherm analysis. Activated biochar demonstrated up to nine times higher adsorption capacity than raw biochar, with a maximum of 171.9 mg/g at 950 °C under optimal conditions: pH of 6 at 25 °C, initial phenol concentration of 200 mg/L, and biochar dosage of 1 g/L of solution for 48 h. Kinetic and isotherm studies revealed that phenol adsorption followed a pseudo-second-order model and fit the Langmuir isotherm, indicating chemisorption and monolayer adsorption mechanisms. Leaching tests confirmed the biochar’s environmental safety, with heavy metal concentrations well below regulatory limits. Based on these findings, WPW biochar offers a promising, eco-friendly solution for wastewater treatment in line with circular economy and green chemistry principles. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

37 pages, 4320 KiB  
Article
Proof of Concept for Enhanced Sugar Yields and Inhibitors Reduction from Aspen Biomass via Novel, Single-Step Nitrogen Explosive Decompression (NED 3.0) Pretreatment Method
by Damaris Okafor, Lisandra Rocha-Meneses, Vahur Rooni and Timo Kikas
Energies 2025, 18(15), 4026; https://doi.org/10.3390/en18154026 - 29 Jul 2025
Viewed by 248
Abstract
The transition to sustainable energy sources has intensified interest in lignocellulosic biomass (LCB) as a feedstock for second-generation biofuels. However, the inherent structural recalcitrance of LCB requires the utilization of an effective pretreatment to enhance enzymatic hydrolysis and subsequent fermentation yields. This manuscript [...] Read more.
The transition to sustainable energy sources has intensified interest in lignocellulosic biomass (LCB) as a feedstock for second-generation biofuels. However, the inherent structural recalcitrance of LCB requires the utilization of an effective pretreatment to enhance enzymatic hydrolysis and subsequent fermentation yields. This manuscript presents a novel, single-step, and optimized nitrogen explosive decompression system (NED 3.0) designed to address the critical limitations of earlier NED versions by enabling the in situ removal of inhibitory compounds from biomass slurry and fermentation inefficiency at elevated temperatures, thereby reducing or eliminating the need for post-treatment detoxification. Aspen wood (Populus tremula) was pretreated by NED 3.0 at 200 °C, followed by enzymatic hydrolysis and fermentation. The analytical results confirmed substantial reductions in common fermentation inhibitors, such as acetic acid (up to 2.18 g/100 g dry biomass) and furfural (0.18 g/100 g dry biomass), during early filtrate recovery. Hydrolysate analysis revealed a glucose yield of 26.41 g/100 g dry biomass, corresponding to a hydrolysis efficiency of 41.3%. Fermentation yielded up to 8.05 g ethanol/100 g dry biomass and achieved a fermentation efficiency of 59.8%. Inhibitor concentrations in both hydrolysate and fermentation broth remained within tolerable limits, allowing for effective glucose release and sustained fermentation performance. Compared with earlier NED configurations, the optimized system improved sugar recovery and ethanol production. These findings confirm the operational advantages of NED 3.0, including reduced inhibitory stress, simplified process integration, and chemical-free operation, underscoring its potential for scalability in line with the EU Green Deal for bioethanol production from woody biomass. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

20 pages, 11785 KiB  
Article
Spatiotemporal Variation in NDVI in the Sunkoshi River Watershed During 2000–2021 and Its Response to Climate Factors and Soil Moisture
by Zhipeng Jian, Qinli Yang, Junming Shao, Guoqing Wang and Vishnu Prasad Pandey
Water 2025, 17(15), 2232; https://doi.org/10.3390/w17152232 - 26 Jul 2025
Viewed by 453
Abstract
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference [...] Read more.
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference Vegetation Index (NDVI), during 2000–2021 and identify the dominant driving factors of vegetation change. Based on the NDVI dataset (MOD13A1), we used the simple linear trend model, seasonal and trend decomposition using loess (STL) method, and Mann–Kendall test to investigate the spatiotemporal variation features of NDVI during 2000–2021 on multiple scales (annual, seasonal, monthly). We used the partial correlation coefficient (PCC) to quantify the response of the NDVI to land surface temperature (LST), precipitation, humidity, and soil moisture. The results indicate that the annual NDVI in 52.6% of the study area (with elevation of 1–3 km) increased significantly, while 0.9% of the study area (due to urbanization) degraded significantly during 2000–2021. Daytime LST dominates NDVI changes on spring, summer, and winter scales, while precipitation, soil moisture, and nighttime LST are the primary impact factors on annual NDVI changes. After removing the influence of soil moisture, the contributions of climate factors to NDVI change are enhanced. Precipitation shows a 3-month lag effect and a 5-month cumulative effect on the NDVI; both daytime LST and soil moisture have a 4-month lag effect on the NDVI; and humidity exhibits a 2-month cumulative effect on the NDVI. Overall, the study area turned green during 2000–2021. The dominant driving factors of NDVI change may vary on different time scales. The findings will be beneficial for climate change impact assessment on the regional eco-environment, and for integrated watershed management. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

23 pages, 1784 KiB  
Article
Study on the Adsorption Characteristics of Spirulina Dry Powder Biomass for Rare Earth Element Praseodymium(III): Adsorption Isotherms, Kinetics, and Thermodynamics Analysis
by Zhenxiang Hu, Caixia Zhang and Qing Shu
Separations 2025, 12(8), 195; https://doi.org/10.3390/separations12080195 - 25 Jul 2025
Viewed by 341
Abstract
Aimed at developing an economical and efficient biosorbent for the adsorption and separation of rare earth ions, this study employed Spirulina dry powder biomass as a biosorbent to investigate its removal performance for Pr3+ in aqueous solutions. Experimental results demonstrated that under [...] Read more.
Aimed at developing an economical and efficient biosorbent for the adsorption and separation of rare earth ions, this study employed Spirulina dry powder biomass as a biosorbent to investigate its removal performance for Pr3+ in aqueous solutions. Experimental results demonstrated that under optimized conditions (pH = 5, adsorbent dosage = 2.0 g/L, initial Pr3+ concentration = 100 mg/L, and adsorption time = 60 min), the removal efficiency of Pr3+ reached 79.0%. FT-IR and XPS characterization confirmed the participation of various functional groups on the Spirulina surface in the adsorption process. When 0.1 mol/L HNO3 was used as the desorption agent, the desorption rate of Pr3+ from Spirulina reached 91.7%, demonstrating excellent regeneration performance. At different temperatures (298–318 K), the adsorption data were fitted using Langmuir, Freundlich, Dubinin–Radushkevich, and Redlich–Peterson models. Among them, the Langmuir model (R2 ranged from 0.993 to 0.999) provided the best fit, and the adsorption capacity of Spirulina for Pr3+ was in the range of 51.10 to 55.31 mg/g. Kinetic studies revealed that the pseudo-second-order model (R2 = 0.999) best described the adsorption process, with a rate constant of 0.054 g/(mg·min) (R2 was 0.999) at an initial Pr3+ concentration of 300 mg/L, indicating chemisorption-controlled behavior. Thermodynamic parameter analysis showed that within the experimental temperature range, ΔG0 < 0 and ΔS0 > 0, confirming that the adsorption process was spontaneous and endothermic. This study provides a novel technical approach for the green recovery of rare earth elements and highlights the potential of Spirulina biomass in rare earth resource recycling. Full article
Show Figures

Graphical abstract

43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 680
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

41 pages, 4553 KiB  
Review
Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review
by Yue Li, Yihui Li, Siyuan Zhang, Tianyi Gao, Zhaoyi Gao, Chin Wei Lai, Ping Xiang and Fengqi Yang
Toxics 2025, 13(8), 616; https://doi.org/10.3390/toxics13080616 - 24 Jul 2025
Viewed by 751
Abstract
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist [...] Read more.
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist in understanding their spatiotemporal distribution, cross-media migration mechanisms, and cascading ecotoxicological consequences. This review systematically investigates the global distribution patterns of ECs in aquatic environments over the past five years and evaluates their potential ecological risks. Furthermore, it examines the performance of various treatment technologies, focusing on economic cost, efficiency, and environmental sustainability. Methodologically aligned with PRISMA 2020 guidelines, this study implements dual independent screening protocols, stringent inclusion–exclusion criteria (n = 327 studies). Key findings reveal the following: (1) Occurrences of ECs show geographical clustering in highly industrialized river basins, particularly in Asia (37.05%), Europe (24.31%), and North America (14.01%), where agricultural pharmaceuticals and fluorinated compounds contribute disproportionately to environmental loading. (2) Complex transboundary pollutant transport through atmospheric deposition and oceanic currents, coupled with compound-specific partitioning behaviors across water–sediment–air interfaces. (3) Emerging hybrid treatment systems (e.g., catalytic membrane bioreactors, plasma-assisted advanced oxidation) achieve > 90% removal for recalcitrant ECs, though requiring 15–40% cost reductions for scalable implementation. This work provides actionable insights for developing adaptive regulatory frameworks and advancing green chemistry principles in environmental engineering practice. Full article
Show Figures

Graphical abstract

Back to TopTop