Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (436)

Search Parameters:
Keywords = green capacity utilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 17328 KB  
Article
Spatiotemporal Evolution and Driving Factors of the Cooling Capacity of Urban Green Spaces in Beijing over the Past Four Decades
by Chao Wang, Chaobin Yang, Huaiqing Wang and Lilong Yang
Sustainability 2025, 17(21), 9500; https://doi.org/10.3390/su17219500 (registering DOI) - 25 Oct 2025
Abstract
Urban green spaces (UGS) are crucial for mitigating rising urban land surface temperatures (LST). Rapid urbanization presents unresolved questions regarding (a) seasonal variations in the spatial co-distribution of UGS and LST, (b) the temporal and spatial changes in UGS cooling, and (c) the [...] Read more.
Urban green spaces (UGS) are crucial for mitigating rising urban land surface temperatures (LST). Rapid urbanization presents unresolved questions regarding (a) seasonal variations in the spatial co-distribution of UGS and LST, (b) the temporal and spatial changes in UGS cooling, and (c) the dominant factors driving cooling effects during different periods. This study focuses on Beijing’s Fifth Ring Road area, utilizing nearly 40 years of Landsat remote sensing imagery and land cover data. We propose a novel nine-square grid spatial analysis approach that integrates LST retrieval, profile line analysis, and the XGBoost algorithm to investigate the long-term spatiotemporal evolution of UGS cooling capacity and its driving mechanisms. The results demonstrate three key findings: (1) Strong seasonal divergence in UGS-LST correlation: A significant negative correlation dominates during summer months (June–August), whereas winter (December–February) exhibits marked weakening of this relationship, with localized positive correlations indicating thermal inversion effects. (2) Dynamic evolution of cooling capacity under urbanization: Urban expansion has reconfigured UGS spatial patterns, with a cooling capacity of UGS showing an “enhancement–decline–enhancement” trend over time. Analysis through machine learning on the significance of landscape metrics revealed that scale-related metrics play a dominant role in the early stage of urbanization, while the focus shifts to quality-related metrics in the later phase. (3) Optimal cooling efficiency threshold: Maximum per-unit-area cooling intensity occurs at 10–20% UGS coverage, yielding an average LST reduction of approximately 1 °C relative to non-vegetated surfaces. This study elucidates the spatiotemporal evolution of UGS cooling effects during urbanization, establishing a robust scientific foundation for optimizing green space configuration and enhancing urban climate resilience. Full article
16 pages, 1483 KB  
Review
Enhancing the Performance of Aluminum Anodes in Aqueous Batteries: A Review on Alloying, Microstructure, and Corrosion Inhibition Strategies
by Peiqiang Chen, Jinmao Chen, Qun Zheng, Yujuan Yin, Xing Su, Man Ruan and Long Huang
Sustainability 2025, 17(20), 9220; https://doi.org/10.3390/su17209220 - 17 Oct 2025
Viewed by 299
Abstract
Aluminum-based seawater activated batteries (Al-SWBs) are highly cost-effective energy storage systems, with aluminum exhibiting a theoretical specific capacity of 2.98 Ah/g, second only to lithium, making it a promising candidate for next-generation sustainable energy storage and conversion technologies. However, severe hydrogen evolution and [...] Read more.
Aluminum-based seawater activated batteries (Al-SWBs) are highly cost-effective energy storage systems, with aluminum exhibiting a theoretical specific capacity of 2.98 Ah/g, second only to lithium, making it a promising candidate for next-generation sustainable energy storage and conversion technologies. However, severe hydrogen evolution and self-corrosion side reactions hinder the practical application of Al-SWBs, leading to unsatisfactory utilization of aluminum anodes. This review systematically summarizes the fundamental principles and strategies for enhancing the utilization efficiency of aluminum anodes from the perspectives of influencing factors and improvement approaches. In terms of alloying element doping, attention should be paid not only to elements that enhance performance but also to the impact of harmful impurities. Microstructure control can be achieved through advanced preparation techniques and subsequent annealing processes. Furthermore, the addition of corrosion inhibitors to the electrolyte can form a protective layer on the electrode surface, effectively suppressing self-corrosion behavior. This review aims to provide valuable insights and guidance for the development of sustainable and high-performance Al-SWBs, contributing to the advancement of green energy technologies. Full article
(This article belongs to the Topic Advances in Green Energy and Energy Derivatives)
Show Figures

Figure 1

19 pages, 892 KB  
Article
Optimizing Renewable Microgrid Performance Through Hydrogen Storage Integration
by Bruno Ribeiro, José Baptista and Adelaide Cerveira
Algorithms 2025, 18(10), 656; https://doi.org/10.3390/a18100656 - 17 Oct 2025
Viewed by 291
Abstract
The global transition to a low-carbon energy system requires innovative solutions that integrate renewable energy production with storage and utilization technologies. The growth in energy demand, combined with the intermittency of these sources, highlights the need for advanced management models capable of ensuring [...] Read more.
The global transition to a low-carbon energy system requires innovative solutions that integrate renewable energy production with storage and utilization technologies. The growth in energy demand, combined with the intermittency of these sources, highlights the need for advanced management models capable of ensuring system stability and efficiency. This paper presents the development of an optimized energy management system integrating renewable sources, with a focus on green hydrogen production via electrolysis, storage, and use through a fuel cell. The system aims to promote energy autonomy and support the transition to a low-carbon economy by reducing dependence on the conventional electricity grid. The proposed model enables flexible hourly energy flow optimization, considering solar availability, local consumption, hydrogen storage capacity, and grid interactions. Formulated as a Mixed-Integer Linear Programming (MILP) model, it supports strategic decision-making regarding hydrogen production, storage, and utilization, as well as energy trading with the grid. Simulations using production and consumption profiles assessed the effects of hydrogen storage capacity and electricity price variations. Results confirm the effectiveness of the model in optimizing system performance under different operational scenarios. Full article
(This article belongs to the Special Issue Optimization in Renewable Energy Systems (2nd Edition))
Show Figures

Figure 1

19 pages, 13759 KB  
Article
University Campuses as Vital Urban Green Infrastructure: Quantifying Ecosystem Services Based on Field Inventory in Nizhny Novgorod, Russia
by Basil N. Yakimov, Nataly I. Zaznobina, Irina M. Kuznetsova, Angela D. Bolshakova, Taisia A. Kovaleva, Ivan N. Markelov and Vladislav V. Onishchenko
Land 2025, 14(10), 2073; https://doi.org/10.3390/land14102073 - 17 Oct 2025
Viewed by 314
Abstract
This study provides the first comprehensive, field-inventory-based assessment of urban ecosystem services within a Russian university campus, focusing on the woody vegetation of the Lobachevsky State University of Nizhny Novgorod. Utilizing a detailed field tree inventory combined with the i-Tree framework (including i-Tree [...] Read more.
This study provides the first comprehensive, field-inventory-based assessment of urban ecosystem services within a Russian university campus, focusing on the woody vegetation of the Lobachevsky State University of Nizhny Novgorod. Utilizing a detailed field tree inventory combined with the i-Tree framework (including i-Tree Eco, i-Tree Canopy, UFORE, and i-Tree Hydro models), we quantified the campus’s capacity for carbon storage and sequestration, air pollutant removal, and stormwater runoff mitigation. The campus green infrastructure, comprising 1887 trees across 32 species with a density of 145.5 stems per hectare, demonstrated significant ecological value. Results show a carbon storage density of 26.61 t C ha−1 and an annual gross carbon sequestration of 11.43 tons. Furthermore, the campus trees removed 1213.7 kg of air pollutants annually (a deposition rate of 9.35 g m−2), with ozone, particulate matter, and sulfur dioxide showing the highest deposition. The campus also retained 956.1 m3 of stormwater annually. These findings, particularly the high carbon sequestration rates, are attributed to the dominance of relatively young, fast-growing tree species. This research establishes a critical baseline for understanding urban ecosystem services in a previously under-researched geographical context. The detailed, empirical data offers crucial insights for urban planners and policymakers in Nizhny Novgorod and beyond, advocating for the strategic integration of ecosystem services assessments into campus planning and broader urban green infrastructure development across Russian cities. The study underscores the significant role of university campuses as vital components of urban green infrastructure, contributing substantially to environmental sustainability and human well-being. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

23 pages, 972 KB  
Review
Research on Development and Challenges of Forest Food Resources from an Industrial Perspective—Alternative Protein Food Industry as an Example
by Yaohao Guo, Cancan Peng, Junjie Deng, Xiya Hong, Bo Zhou and Jiali Ren
Foods 2025, 14(20), 3503; https://doi.org/10.3390/foods14203503 - 14 Oct 2025
Viewed by 433
Abstract
The forest food industry, as a typical low-carbon green ecological industry, holds strategic significance in addressing global food security challenges. This review takes forest protein resources as an example to analyze the current development status, opportunities, and challenges from a global industrial perspective. [...] Read more.
The forest food industry, as a typical low-carbon green ecological industry, holds strategic significance in addressing global food security challenges. This review takes forest protein resources as an example to analyze the current development status, opportunities, and challenges from a global industrial perspective. Research indicates that forests, as a vital food treasure for humanity, can provide diverse protein sources such as insects, plants, microorganisms, and bio-manufactured proteins. Currently, numerous technological innovations and market practices have emerged in fields such as insect protein (e.g., there are over 3000 edible insect species globally, with a market size of approximately USD 3.2 billion in 2023, projected to reach USD 7.6 billion by 2028), plant-based alternative protein (e.g., plant-based chicken nuggets by Impossible Foods in the United States), microbial fermentation protein (e.g., the production capacity of Solar Foods’ production base in Finland is 160 tons per year), and cell-cultured meat (e.g., cell-cultured chicken is sold in Singapore), demonstrating significant potential in alleviating food supply pressures and reducing environmental burdens. However, industrial development still faces practical challenges including insufficient resource exploration, incomplete nutritional and safety evaluation systems, low consumer acceptance, high costs of core technologies (e.g., the first cell-cultured meat burger in 2013 cost over 1 million USD/lb, and current costs need to be reduced to 17–65 USD/kg to achieve market competitiveness), and imperfect regulatory mechanisms (e.g., varying national standards lead to high compliance costs for enterprises). In the future, it is necessary to achieve efficient development and sustainable utilization of forest protein resources by strengthening resource exploration, clarifying the basis of nutrients, promoting multi-technology integration and innovation, and establishing a sound market access system, thereby providing solutions for global food security and high-quality development of the food industry. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

44 pages, 3067 KB  
Article
Optimization of Green Hydrogen Production via Direct Seawater Electrolysis Powered by Hybrid PV-Wind Energy: Response Surface Methodology
by Sandile Mtolo, Emmanuel Kweinor Tetteh, Nomcebo Happiness Mthombeni, Katleho Moloi and Sudesh Rathilal
Energies 2025, 18(19), 5328; https://doi.org/10.3390/en18195328 - 9 Oct 2025
Viewed by 520
Abstract
This study explored the optimization of green hydrogen production via seawater electrolysis powered by a hybrid photovoltaic (PV)-wind system in KwaZulu-Natal, South Africa. A Box–Behnken Design (BBD), adapted from Response Surface Methodology (RSM), was utilized to address the synergistic effect of key operational [...] Read more.
This study explored the optimization of green hydrogen production via seawater electrolysis powered by a hybrid photovoltaic (PV)-wind system in KwaZulu-Natal, South Africa. A Box–Behnken Design (BBD), adapted from Response Surface Methodology (RSM), was utilized to address the synergistic effect of key operational factors on the integration of renewable energy for green hydrogen production and its economic viability. Addressing critical gaps in renewable energy integration, the research evaluated the feasibility of direct seawater electrolysis and hybrid renewable systems, alongside their techno-economic viability, to support South Africa’s transition from a coal-dependent energy system. Key variables, including electrolyzer efficiency, wind and PV capacity, and financial parameters, were analyzed to optimize performance metrics such as the Levelized Cost of Hydrogen (LCOH), Net Present Cost (NPC), and annual hydrogen production. At 95% confidence level with regression coefficient (R2 > 0.99) and statistical significance (p < 0.05), optimal conditions of electricity efficiency of 95%, a wind-turbine capacity of 4960 kW, a capital investment of $40,001, operational costs of $40,000 per year, a project lifetime of 29 years, a nominal discount rate of 8.9%, and a generic PV capacity of 29 kW resulted in a predictive LCOH of 0.124$/kg H2 with a yearly production of 355,071 kg. Within the scope of this study, with the goal of minimizing the cost of production, the lowest LCOH observed can be attributed to the architecture of the power ratios (Wind/PV cells) at high energy efficiency (95%) without the cost of desalination of the seawater, energy storage and transportation. Electrolyzer efficiency emerged as the most influential factor, while financial parameters significantly affected the cost-related responses. The findings underscore the technical and economic viability of hybrid renewable-powered seawater electrolysis as a sustainable pathway for South Africa’s transition away from coal-based energy systems. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

24 pages, 1980 KB  
Review
Natural and Synthetic Compounds Against Colorectal Cancer: An Update of Preclinical Studies in Saudi Arabia
by Mansoor-Ali Vaali-Mohammed, Adhila Nazar, Mohamad Meeramaideen and Saleha Khan
Curr. Oncol. 2025, 32(10), 546; https://doi.org/10.3390/curroncol32100546 - 29 Sep 2025
Viewed by 510
Abstract
Colorectal cancer (CRC) remains a major contributor to global cancer-related mortality, with rising incidence observed in several regions, including Saudi Arabia. This review compiles and critically analyzes recent preclinical research from Saudi-based institutions that investigates the anti-CRC potential of natural and synthetic compounds. [...] Read more.
Colorectal cancer (CRC) remains a major contributor to global cancer-related mortality, with rising incidence observed in several regions, including Saudi Arabia. This review compiles and critically analyzes recent preclinical research from Saudi-based institutions that investigates the anti-CRC potential of natural and synthetic compounds. Numerous natural products such as Nigella sativa, Moringa oleifera, Curcuma longa, and marine-derived metabolites have demonstrated cytotoxic effects through pathways involving apoptosis induction, reactive oxygen species (ROS) generation, and inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and cyclooxygenase-2 (COX-2). In parallel, synthetic and semi-synthetic agents, including C4–G4 (semi-synthetic hybrids designed from flavonoids and benzoxazole scaffolds that act as dual epidermal growth factor receptor (EGFR)/COX-2 inhibitors)), oxazole derivatives, and camptothecin-based nanocarriers, exhibit promising anti-tumor activity via molecular targeting of cyclin-dependent kinase 8 (CDK8), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), and β-catenin pathways. Selected in vivo studies primarily utilizing xenograft and chemically induced rodent models have shown reductions in tumor volume and modulation of apoptotic and inflammatory biomarkers. Additionally, green-synthesized metallic nanoparticles (NPs) and polyethylene glycol (PEG)-modified carriers have been investigated to improve bioavailability and tumor targeting of lead compounds. While these findings are encouraging, the majority remain in preclinical phases. Limitations such as poor solubility, lack of pharmacokinetic data, and absence of clinical trials impede translational progress. This review highlights the need for standardized evaluation protocols, mechanistic validation, and region-specific clinical studies to assess efficacy and safety. Given Saudi Arabia’s rich biodiversity and growing research capacity under national strategies like Vision 2030, the country is well-positioned to contribute meaningfully to CRC drug discovery. By integrating bioactive natural products, rationally designed synthetics, and advanced delivery platforms, a pipeline of innovative CRC therapeutics tailored to local and global contexts may be realized. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Figure 1

12 pages, 3168 KB  
Article
Fabrication of Yeast-Immobilized Porous Scaffolds Using a Water-in-Water Emulsion-Templating Strategy
by Chuya Zhao, Yuanyuan Sun, Haihua Zhou, Chuanbang Xu, Yun Zhu, Daifeng Chen and Shengmiao Zhang
Catalysts 2025, 15(10), 925; https://doi.org/10.3390/catal15100925 - 28 Sep 2025
Viewed by 717
Abstract
This study introduces an efficient, all-aqueous emulsion-templating strategy for fabricating highly tunable yeast immobilization carriers with superior biocatalytic performance. Utilizing cellulose nanocrystals (CNCs) to stabilize dextran/polyethylene glycol (Dex/PEG) water-in-water emulsions, an architecture-controlled void is obtained by crosslinking the PEG-rich phase with variable concentrations [...] Read more.
This study introduces an efficient, all-aqueous emulsion-templating strategy for fabricating highly tunable yeast immobilization carriers with superior biocatalytic performance. Utilizing cellulose nanocrystals (CNCs) to stabilize dextran/polyethylene glycol (Dex/PEG) water-in-water emulsions, an architecture-controlled void is obtained by crosslinking the PEG-rich phase with variable concentrations of polyethylene glycol diacrylate (PEGDA) (10–25 wt%). This approach successfully yielded macroporous networks, enabling precise tuning of void diameters from 10.4 to 6.6 μm and interconnected pores from 2.2 to 1.4 μm. The optimally designed carrier, synthesized with 15 wt% PEGDA, featured 9.6 μm voids and robust mechanical strength (0.82 MPa), and facilitated highly efficient yeast encapsulation (~100%). The immobilized yeast demonstrated exceptional fermentation activity, remarkable storage stability (maintaining > 95% productivity after 4 weeks), and high reusability (85% activity retention after seven cycles). These enhancements are attributed to the material’s excellent water retention capacity and the provision of a stable microenvironment. This green and straightforward method represents a significant advance in industrial cell immobilization, offering unparalleled operational stability, protection, and design flexibility. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

18 pages, 7778 KB  
Article
Key Technologies for and Cases of Open-Stope-to-Backfill Transition in China’s Small and Medium Mines
by Shuai Li, Zhenlong Li, Zhenyu Dan, Tubing Yin and Haoxuan Yu
Processes 2025, 13(10), 3096; https://doi.org/10.3390/pr13103096 - 27 Sep 2025
Viewed by 322
Abstract
Globally, the open-stope method is used in over 60% of small- and medium-sized mines because of its low cost and high initial efficiency, but it has issues like high ore loss and a great goaf-collapse risk, becoming a core bottleneck for mines’ green [...] Read more.
Globally, the open-stope method is used in over 60% of small- and medium-sized mines because of its low cost and high initial efficiency, but it has issues like high ore loss and a great goaf-collapse risk, becoming a core bottleneck for mines’ green and sustainable development. Thus, accelerating its transition to the green backfilling method is an urgent industry need. This study focuses on Shishudi Gold Mine, Xingan Fluorite Mine, and Suichang Gold Mine, adopting a “problem diagnosis–scheme design–case verification–experience extraction” framework to analyze their economic and ecological indicators pre- and post-transition. Our results show remarkable effects: Shishudi’s ore recovery rose from 75% to 88.5%, with 300,000 tons of residual ore recovered and 100% tailing utilization; Xingan’s ore loss dropped by 12%, annual output increased by 60,000 tons, and 200,000 tons of tailings was consumed to achieve a “tailless mine”; and Suichang’s mining capacity rose from 30 tons per day (t/d) to 120 t/d, using 150,000 tons of cyanide-free tailings yearly. In this paper, the key problems of open-stope mining are identified and a transition path of “process innovation–system construction–tailing utilization–mechanization support” is summarized. Our results provide promotable technical solutions and practical references for global small- and medium-sized mines that are of great significance for driving their green and sustainable development. Full article
Show Figures

Figure 1

23 pages, 846 KB  
Article
A Biologically Informed Wavelength Extraction (BIWE) Method for Hyperspectral Classification of Olive Cultivars and Ripening Stages
by Miriam Distefano, Giovanni Avola, Claudio Cantini, Beniamino Gioli, Alice Cavaliere and Ezio Riggi
Remote Sens. 2025, 17(19), 3277; https://doi.org/10.3390/rs17193277 - 24 Sep 2025
Viewed by 339
Abstract
Reliable tools for cultivar discrimination and ripening stage evaluation are critical to optimize harvest timing and support milling process focused on olive oil quality. This research examines the spectral properties of olive drupes throughout different maturation stages, ranging from green to full purple-black [...] Read more.
Reliable tools for cultivar discrimination and ripening stage evaluation are critical to optimize harvest timing and support milling process focused on olive oil quality. This research examines the spectral properties of olive drupes throughout different maturation stages, ranging from green to full purple-black pigmentation, across 29 distinct cultivars. High-resolution spectrometric analysis was conducted within the 380–1080 nm wavelength range. Multiple analytical approaches were employed to optimize wavelength selection from hyperspectral reflectance data to obtain discriminating tools for olive classification. A Biologically Informed Wavelength Extraction method (BIWE) was developed, focusing on cultivar and ripening stages identification, and pivoted on biologically informed single wavelengths and Vegetation Indices (VIs) selection. The methodology integrated multi-scale spectral analysis with biochemically weighted scoring and a multi-criteria evaluation framework, employing a two-iteration refinement process to identify optimal spectral features with high discriminatory power and biological relevance. Analysis revealed spectral variations associated with maturation. A characteristic reflectance peak at approximately 550 nm observed during early ripening stages underwent a notable shift, developing into distinct spectral behavior within the 700–780 nm range in intermediate and advanced ripening stages and reaching a plateau for all the samples between 800 and 950 nm. The BIWE method achieved exceptional efficiency in olive classification, utilizing only 25 single wavelengths compared to 114 required by Principal Component Analysis (PCA) and 131 by Recursive Feature Elimination (RFE), representing 4.6-fold and 5.2-fold reductions, respectively. Despite this reduction, BIWE’s overall accuracy (0.5634) remained competitive compared to RFE (−10%) and PCA (−8%) alternative approaches requiring larger wavelengths dataset acquisition. The integration of biochemically relevant VIs enhanced accuracy across all methodologies, with BIWE demonstrating notable improvement (+19.2%). BIWE demonstrated effective olive identification capacity with a reduction in required wavelengths and VIs dataset, affecting the technological needs (spectrometer offset and real-time classification applications) for a tool oriented to olive cultivars and ripening stage discrimination. Full article
Show Figures

Graphical abstract

13 pages, 1233 KB  
Review
Key Technologies and Equipment for Straw Utilization in Agriculture
by Qingxia Wang, Yebo Qin, Yangyan Wei, Shuzhen Ye, Yanli Wang, Tao Tong, Zhijuan Ji and Younan Ouyang
Agronomy 2025, 15(9), 2219; https://doi.org/10.3390/agronomy15092219 - 19 Sep 2025
Viewed by 450
Abstract
As a major agricultural country, China is also one of the world’s most abundant sources of crop straw, with production expected to reach 900 million tons by 2025. As an agricultural by-product, straw has been widely regarded as a potential renewable resource. It [...] Read more.
As a major agricultural country, China is also one of the world’s most abundant sources of crop straw, with production expected to reach 900 million tons by 2025. As an agricultural by-product, straw has been widely regarded as a potential renewable resource. It is rich in organic matter and essential nutrients such as nitrogen (N), phosphorus (P), and potassium (K), playing a critical role in global carbon and nitrogen cycles, agricultural productivity, and green environmental development. The efficient and rational utilization of straw can not only meet the resource demands supporting economic growth but also contribute to environmental protection and sustainable social development in China. By closely integrating comprehensive straw utilization with the annual key tasks of agriculture, rural areas, and farmers, the focus remains on prioritizing agricultural applications while adopting diversified measures. The efforts aim to improve straw utilization methods, strengthen technological support, explore replicable and sustainable industrial development models, and establish efficient utilization mechanisms to enhance the quality of agricultural straw use. To fully leverage the agricultural potential of straw, numerous technologies and equipment for straw utilization in agriculture have been developed in recent years, including straw harvesting and collecting equipment, straw crushing and returning-to-field equipment, full-straw seeding anti-clogging technology, combined straw and green manure returning-to-field equipment, and specialized straw seedling-raising equipment. Nevertheless, many challenges remain to be addressed, including bridging the equipment gap in mechanized processing, overcoming technical bottlenecks in resource conversion, and filling the lack of agronomy-adapted technologies. Therefore, this paper aims to provide a comprehensive and critical analysis of present straw utilization technology and equipment in agriculture, discussing their potential benefits, limitations, and challenges, as well as future prospects and directions. This study provides insights from the perspective of key technologies and equipment to strengthen technological research, enhance straw’s agricultural potential, and explore green circular economy models in agriculture. By leveraging innovation in science and technology, it aims to ensure food security and improve grain production capacity. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

16 pages, 3378 KB  
Article
Influence of Wood Fiber on Mechanical and Thermal Insulation Properties of Lightweight Mortar
by Mo Zhou, Guimeng Ban, Yuanming Luo, Qin Hu, Jintuan Zhang, Ke Yu, Xue Hong and Huixin Zhong
Coatings 2025, 15(9), 1094; https://doi.org/10.3390/coatings15091094 - 18 Sep 2025
Viewed by 390
Abstract
To advance the development of green building materials and achieve high-value utilization of waste resources, this study investigates the mechanistic influence of incorporating waste wood fibers on the mechanical and thermal insulation properties of lightweight mortar. Five fiber contents were designed—0%, 0.4%, 0.8%, [...] Read more.
To advance the development of green building materials and achieve high-value utilization of waste resources, this study investigates the mechanistic influence of incorporating waste wood fibers on the mechanical and thermal insulation properties of lightweight mortar. Five fiber contents were designed—0%, 0.4%, 0.8%, 1.2%, and 1.6%—to systematically evaluate their effects on compressive strength, flexural strength, and tensile bond strength, as well as thermal conductivity, pore structure, and microstructural interfaces. The results demonstrate that at low fiber dosages (particularly 0.4% and 0.8%), wood fibers can significantly enhance both the mechanical strength and thermal insulation performance of mortar. Specifically, at a fiber content of 0.8%, the 28-day compressive strength increased by 10.62%, and the flexural strength by 23.8%; the tensile bond strength reached its peak at 0.4%, with a 14.8% improvement. The lowest thermal conductivity recorded was 0.16 W/(m·K), accompanied by a remarkable 61.9% reduction in porosity compared to the control group. Low-field nuclear magnetic resonance (LF-NMR) analysis revealed that wood fiber incorporation markedly increased the proportion of capillary pores, reduced total porosity, and enhanced mortar compactness; scanning electron microscopy (SEM) observations further indicated that the honeycomb-like morphology and surface roughness of wood fibers substantially improved interfacial bonding performance and microcrack-bridging capacity. The findings suggest that an optimal fiber content—recommended to not exceed 0.8%—can synergistically improve the mechanical and thermal insulation properties of lightweight mortar, providing both theoretical support and practical guidance for its application in green building wall materials. Full article
Show Figures

Figure 1

28 pages, 2547 KB  
Article
Characterization and Biological Activity of Magnesium Nanoparticles Synthesized from Escherichia coli Metabolites Against Multidrug-Resistant Bacteria
by Malak Mezher, Salma Khazaal, Mahmoud I. Khalil, Dalia El Badan and Taymour A. Hamdalla
Bacteria 2025, 4(3), 48; https://doi.org/10.3390/bacteria4030048 - 10 Sep 2025
Viewed by 696
Abstract
(1) Background: This study evaluated the efficacy of magnesium nanoparticles (MgNPs) synthesized through a green method utilizing bacterial metabolites (BMs) produced by Escherichia coli. (2) Methods: BMs were tested for total phenolic content by high-performance liquid chromatography. MgNPs were characterized by X-ray [...] Read more.
(1) Background: This study evaluated the efficacy of magnesium nanoparticles (MgNPs) synthesized through a green method utilizing bacterial metabolites (BMs) produced by Escherichia coli. (2) Methods: BMs were tested for total phenolic content by high-performance liquid chromatography. MgNPs were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, photoluminescence, and ultraviolet–visible spectroscopy. MgNPs and BMs were tested for antibacterial and antibiofilm potentials against multidrug-resistant clinical isolates by agar well diffusion, minimum inhibitory and bactericidal concentration assays, time–kill test, and inhibition of biofilm formation and destruction of pre-formed biofilm assays. Furthermore, they were tested for antioxidant potential by 2,2-diphenyl-1-picryhydrazyl radical scavenging assay. (3) Results: BMs included carbohydrates, reducing sugars, and phenols (gallic acid and catechin) with a total phenolic content of 0.024 mg GAE/g. MgNPs showed a pure crystalline structure with a spherical shape, 17.8 nm in size, and a 4.19 eV energy gap. Bacteria included Streptococcus pneumonia, Enterococcus faecium, Klebsiella pneumonia, and Salmonella Typhimurium. The antibacterial results showed inhibition zones ranging between 7.2 and 10.4 mm, a bactericidal effect of MgNPs, a bacteriostatic effect of BMs, and growth inhibition after 3 h. The antibiofilm results demonstrated significant inhibition of biofilm formation (inhibition percentages of 64.931% for MgNPs and 71.407% for BMs). However, the assays revealed modest biofilm destruction (eradication percentages of 48.667% for MgNPs and 37.730% for BMs). Antioxidant capacity revealed notable scavenging activity of MgNPs (scavenging activity of 41.482%) and weak activity of BMs (scavenging activity of 16.460%). (4) Conclusions: These findings support the application of MgNPs in biomedical fields. Full article
Show Figures

Figure 1

20 pages, 4902 KB  
Article
Comparative Evaluation of Antioxidant and Antidiabetic Activities of ZrO2 and MgO Nanoparticles Biosynthesized from Unripe Solanum trilobatum Fruits: Insights from In Vitro and In Silico Studies
by Kumaresan Rathika, Periyanayagam Arockia Doss, John Rose Arul Hency Sheela, Velayutham Gurunathan, K. J. Senthil Kumar, Chidambaram Sathishkumar, Vediyappan Thirumal and Jinho Kim
Nanomaterials 2025, 15(17), 1372; https://doi.org/10.3390/nano15171372 - 5 Sep 2025
Viewed by 708
Abstract
Herbs offer people not just sustenance and housing but also serve as a key supplier of pharmaceuticals. This research is designed to assess the antioxidant and antidiabetic properties of green-produced zirconium dioxide and magnesium oxide nanoparticles (ZrO2 and MgO NPs) utilizing extracts [...] Read more.
Herbs offer people not just sustenance and housing but also serve as a key supplier of pharmaceuticals. This research is designed to assess the antioxidant and antidiabetic properties of green-produced zirconium dioxide and magnesium oxide nanoparticles (ZrO2 and MgO NPs) utilizing extracts from unripe Solanum trilobatum fruit. ZrO2 and MgO NPs have garnered considerable interest owing to their superior bioavailability, lower toxicity, and many uses across the healthcare and commercial industries. Scientific approaches, such as diverse spectroscopic and microscopic approaches, validated the creation of agglomerated spherical ZrO2 and MgO NPs, measuring between 15 and 30 and 60 and 80 nm, with a mixed-phase composition consisting of monoclinic and tetragonal phases for ZrO2 and a face-centered cubic structure for MgO NPs. UV–vis studies revealed a distinct peak at 378 and 290 nm for ZrO2 and MgO NPs, suggesting efficient settling through the phytonutrients in S. trilobatum. The antioxidant capacity of ZrO2 and MgO NPs was evaluated utilizing DPPH and FRAP reducing power assays. The diabetic effectiveness of ZrO2 and MgO NPs was examined by alpha-amylase and alpha-glucosidase assays. The optimum doses of 500 and 1000 μg/mL were shown to be efficient in reducing radical species. Green-produced ZrO2 and MgO NPs exhibited a dose-dependent reaction, with greater amounts of ZrO2 and MgO NPs exerting a more pronounced inhibitory effect on the catalytic sites of enzymes. This work suggests that ZrO2 and MgO NPs may attach to charge-carrying entities and function as rival inhibitors, therefore decelerating the enzyme–substrate reaction and inhibiting enzymatic degradation. Molecular docking analysis of ZrO2 and MgO NPs with three proteins (2F6D, 2QV4, and 3MNG) implicated in antidiabetic and antioxidant studies demonstrated the interaction of ZrO2 and MgO NPs with the target proteins. The results indicated the in vitro effectiveness of phytosynthesized ZrO2 and MgO NPs as antidiabetic antioxidant agents, which may be used in the formulation of alternative treatment strategies against diabetes and oxidative stress. In summary, the green production of ZrO2 and MgO NPs with Solanum trilobatum unripe fruit extract is an efficient, environmentally sustainable process that yields nanomaterials with significant antioxidant and antidiabetic characteristics, underscoring their prospective uses in biomedical research. Full article
Show Figures

Graphical abstract

27 pages, 1162 KB  
Article
The Impact of Logistics Industry Clustering on Green Total Factor Productivity: Evidence from China
by Yanmiao Cai, Yuge Zhang, Yuki Gong, Willa Li and Frank Li
Sustainability 2025, 17(17), 7978; https://doi.org/10.3390/su17177978 - 4 Sep 2025
Viewed by 1031
Abstract
Although logistics underpins the spatial architecture of supply chains, the causal contribution of logistics industry clustering to green total factor productivity (GTFP) remains under-identified relative to aggregate or manufacturing clustering. This study investigates both the local and spatial spillover effects of logistics industry [...] Read more.
Although logistics underpins the spatial architecture of supply chains, the causal contribution of logistics industry clustering to green total factor productivity (GTFP) remains under-identified relative to aggregate or manufacturing clustering. This study investigates both the local and spatial spillover effects of logistics industry clustering on green total factor productivity, utilizing panel data from 30 Chinese provinces spanning 2010 to 2023. The empirical results demonstrate that logistics industry clustering significantly enhances green total factor productivity within the local province and generates robust positive spillover effects in adjacent regions. Regional heterogeneity analysis reveals that in the eastern provinces, clustering of the logistics industry bolsters green total factor productivity both locally and regionally. In contrast, in the central region, such clustering only benefits neighboring provinces, while in the western region, its impact is not statistically significant for either local or neighboring green total factor productivity. Temporal heterogeneity analysis further indicates that the positive influence of logistics industry clustering on green total factor productivity has become more pronounced since 2018.Additionally, spatial mediation effect analysis uncovers that improvements in local green total factor productivity stem from logistics industry clustering’s capacity to enhance resource allocation efficiency and foster industrial upgrading. Notably, the spatial spillover effect dissipates entirely beyond a distance of 350 km. These findings establish logistics industry clustering as a high-leverage, cross-boundary tool for aligning regional logistics planning with green objectives, delineating the effective radius of collaboration to internalize externalities and providing practical guidance for developing economies. Full article
Show Figures

Figure 1

Back to TopTop