Key Technologies and Equipment for Straw Utilization in Agriculture
Abstract
1. Introduction
2. Addressing the Equipment Gap in Mechanized Processing
2.1. Low Efficiency in Straw Harvesting and Collection Equipment
2.2. Insufficient Adaptability of Straw Crushing and Incorporation Equipment
2.3. The Non-Prevalence of Full-Straw-Load Seeding Anti-Blocking Technology
3. Breaking Through Technical Bottlenecks in Resource Conversion
4. Addressing the Gap in Agronomic Adaptation Technologies
4.1. Technology Gap in Straw-Green Manure Co-Incorporation Equipment
4.2. Lagging Development of Specialized Equipment for Straw-Based Seedling Nursery
5. Innovation Directions
5.1. Enhancing Machine Performance
5.2. Building a Big Data Platform for Straw Crushing
5.3. Promoting the Application of New Technologies and Equipment
5.4. Increasing Support for Mechanized Equipment for Straw Processing
6. Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, L.N.; Ma, X.; Liu, K.; Zheng, X.; Zhang, H.; Rong, L. A review on research advances on microbial treatment and strengthening techniques of crop straw. Nat. Sci. 2018, 30, 188–195. [Google Scholar]
- Ma, Y.; Shen, Y.; Liu, Y. State of the art of straw treatment technology: Challenges and solutions forward. Bioresour. Technol. 2020, 313, 123656. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Cai, Z.; Ohara, T.; Akimoto, H. Methane emission from rice fields in mainland China: Amount and seasonal and spatial distribution. J. Geophys. Res. 2003, 108, 16. [Google Scholar] [CrossRef]
- Kim Oanh, N.T.; Ly, B.T.; Tipayarom, D.; Manandhar, B.R.; Prapat, P.; Simpson, C.D.; Liu, L.-J.S. Characterization of particulate matter Eemission from open burning of rice straw. Atmos. Environ. 2011, 45, 493–502. [Google Scholar] [CrossRef]
- Stockwell, C.E.; Yokelson, R.J.; Kreidenweis, S.M.; Robinson, A.L.; DeMott, P.J.; Sullivan, R.C.; Reardon, J.; Ryan, K.C.; Griffith, D.W.T.; Stevens, L. Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: Configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4). Atmos. Chem. Phys. 2014, 14, 9727–9754. [Google Scholar] [CrossRef]
- Sun, J.; Peng, H.; Chen, J.; Wang, X.; Wei, M.; Li, W.; Yang, L.; Zhang, Q.; Wang, W.; Mellouki, A. An Estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. J. Clean. Prod. 2016, 112, 2625–2631. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, M.; Lin, Y.; Luan, S.; Mao, N.; Chen, W.; Wang, M. Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta Region, China. Atmos. Environ. 2013, 76, 189–199. [Google Scholar] [CrossRef]
- Habib, G.; Venkataraman, C.; Bond, T.C.; Schauer, J.J. Chemical, microphysical and optical properties of primary particles from the combustion of biomass fuels. Environ. Sci. Technol. 2008, 2, 8829–8834. [Google Scholar] [CrossRef]
- Stone, E.A.; Schauer, J.J.; Pradhan, B.B.; Dangol, P.M.; Habib, G.; Venkataraman, C.; Ramanathan, V. Characterization of emissions from south Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas. J. Geophys. Res. Atmos. 2010, 115, 6. [Google Scholar] [CrossRef]
- Chen, W.H.; Shi, X.X. Application and research status of agricultural and forestry waste in China. Mod. Agric. Sci. Technol. 2017, 18, 148–149. [Google Scholar]
- Ren, J.; Yu, P.; Xu, X. Straw utilization in China—Status and recommendations. Sustainability 2019, 11, 1762. [Google Scholar] [CrossRef]
- Arthur, R.; Baidoo, M.F. Harnessing methane generated from livestock manure in Ghana, Nigeria, Mali and Burkina Faso. Biomass Bioenergy 2011, 35, 4648–4656. [Google Scholar] [CrossRef]
- Morrison, J.E. Development and future of conservation tillage in America. J. Res. Appl. Agric. Eng. 2002, 47, 5–13. [Google Scholar]
- Reicosky, D.C.; Allmaras, R.R. Advances in tillage research in north American cropping systems. J. Crop Prod. 2008, 8, 75–125. [Google Scholar] [CrossRef]
- Tebrugge, F.; During, R.A. Reducing tillage intensity—A review of results from a long-term study in Germany. Soil. Tillage Res. 1999, 53, 15–28. [Google Scholar] [CrossRef]
- Zikeli, S.; Gruber, S. Reduced tillage and no-till in organic farming systems, Germany—Status quo, potentials and challenges. Agriculture 2017, 7, 35. [Google Scholar] [CrossRef]
- Voytenko, Y.; Peck, P. Organisational frameworks for straw-based energy systems in Sweden and Denmark. Biomass Bioenergy 2012, 38, 34–48. [Google Scholar] [CrossRef]
- de Toro, A.; Gunnarsson, C.; Jonsson, N.; Sundberg, M. Effects of variable weather conditions on baled proportion of varied amounts of harvestable cereal straw, based on simulations. Sustainability 2021, 13, 9449. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, R.; Li, K.; Ma, R. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renew. Sustain. Energy Rev. 2019, 107, 51–58. [Google Scholar] [CrossRef]
- Tian, S.; Zhao, R.; Chen, Z. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew. Sustain. Energy Rev. 2018, 91, 483–489. [Google Scholar] [CrossRef]
- Sugandi, W.; Herwanto, T.; Handarto; Juliya. Test performance and economic analysis of straw chopper machine. IOP Conf. Ser. Earth Environ. Sci. 2019, 334, 012001. [Google Scholar] [CrossRef]
- Luo, W.; Xu, S.; Luo, T.; Shi, R.; Ye, Y.; Zhu, N. Carbon emissions and economic cost of different collection, storage, and transportation models for crop straw off-field utilization. Waste Biomass Valorization 2024, 15, 2989–3001. [Google Scholar] [CrossRef]
- Valle, T.M.D.; Zhu, J.; Jiang, P. Drivers of straw management in rural households: Options for the development of the bioenergy sector in China. Energy Sustain. Dev. 2022, 71, 341–351. [Google Scholar] [CrossRef]
- Sheychenko, V.; Anelak, M.; Kuzmych, A.; Gritsaka, O.; Dudnikov, I.; Tolstushko, N. Investigation of grain separation process in the three-drum threshing-separating device of a combine harvester. Mech. Agric. Conserv. Resour. 2018, 64, 42–45. [Google Scholar]
- Gabitov, I.I.; Badretdinov, I.D.; Mudarisov, S.G.; Khasanov, E.R.; Lukmanov, R.L.; Nasyrov, R.R.; Tuktarov, M.F.; Atnagulov, D.T.; Timeriashev, I.A.; Pavlenko, V.A. Modeling the process of heap separation in the grain harvester cleaning system. J. Eng. Appl. Sci. 2018, 13, 6517–6526. [Google Scholar]
- Myhan, R.; Jachimczyk, E. Grain separation in a straw walker unit of a combine harvester: Process model. Biosyst. Eng. 2016, 145, 93–107. [Google Scholar] [CrossRef]
- Halko, S.; Vershkov, O.; Horák, J.; Lezhenkin, O.; Boltianska, L.; Kucher, A.; Suprun, O.; Miroshnyk, O.; Nitsenko, V. Efficiency of combed straw harvesting technology involving straw decomposition in the soil. Agriculture 2023, 13, 655. [Google Scholar] [CrossRef]
- Drepa, E.B.; Golub, A.S.; Donets, I.A.; Walters, I.A. Efficiency of application of combing method when harvesting grain crops. IOP Conf. Ser. Earth Environ. Sci. Environ. Eng. Manag. Min. Soil. Treat. Technol. 2020, 548, 52040. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.; Li, X.Y.; Xu, T.B. Structural damage modes for rice stalks undergoing threshing. Biosyst. Eng. 2019, 186, 323–336. [Google Scholar] [CrossRef]
- Wang, G.Q.; Yu, Q.; Bu, Y.L.; Yu, D.N.; Wang, C.M. Design of straw picking and baling machine and dynamic simulation of picker. Trans. Chin. Soc. Agric. Mach. 2001, 32, 59–61. [Google Scholar]
- Yu, Z.H. Comparative experimental study on performance parameters of spring toothed roller pasture pickup. J. Agric. Mech. Res. 2017, 39, 122–127. [Google Scholar]
- Wang, C.G.; Ao, E.C.; Xing, Y.H.; Yan, J.H. Design and test of steel roller outer roll baler. Trans. Chin. Soc. Agric. Mach. 2010, 41, 103–106+102. [Google Scholar]
- Qu, H.C.; Bao, S.; Yi, S.J.; Tao, G.X.; Li, Y.F.; Mao, X.; Xu, C. Simulation analysis of bundling device for rice harvesting and bundling machine. J. Agric. Mech. Res. 2017, 39, 59–63. [Google Scholar]
- Tang, Z.; Zhang, B.; Liu, X.; Ren, H.; Li, X.; Li, Y. Structural model and bundling capacity of crawler picking and baling machine for straw wasted in field. Comput. Electron. Agric. 2020, 175, 105622. [Google Scholar] [CrossRef]
- Nie, X.D. Research on Utilization of Crop Straw Resources in Tianjin; Tianjin Agricultural University: Tianjin, China, 2021. [Google Scholar]
- Jia, L. The Effects of Straw Return on Water Quality of Paddy Field; Southwest University of Science and Technology: Mianyang, China, 2015. [Google Scholar]
- Cong, H.B.; Yao, Z.L.; Zhao, L.X. Distribution of crop straw resource and its industrial systemand utilization path in China. Trans. CSAE 2019, 35, 132–140. [Google Scholar]
- Wen, C.B.; Qian, F.J.; Liu, P. Situation and evaluation of agricultural straw resource utilization. Ecol. Econ. 2018, 34, 147–150+157. [Google Scholar]
- Flower, K.C.; Ward, P.R.; Cordingley, N.; Micin, S.F.; Craig, N. Rainfall, rotations and residue level affect no-tillage wheat yield and gross margin in a mediterranean-type environment. Field Crop Res. 2017, 208, 1–10. [Google Scholar] [CrossRef]
- Zhu, D.Q.; Shi, M.; Yu, C.; Yu, Z.; Kuang, F.; Xiong, W.; Xue, K. Tool-straw-paddy soil coupling model of mechanical rotary-tillage process based on DEM-FEM. Comput. Electron. Agric. 2023, 215, 108410. [Google Scholar] [CrossRef]
- Chen, H.T.; Zha, S.H.; Dun, G.Q.; Cong, G.B.; Li, A.; Feng, Y.N. Optimization and experiment of cleaning device of 2BMFJ type no-till precision planter. Trans. Chin. Soc. Agric. Mach. 2016, 47, 96–102. (In Chinese) [Google Scholar]
- Aikins, K.A.; Barr, J.B.; Antille, D.L.; UcguI, M.; Jensen, T.A.; Desbiolles, J.M.A. Analysis of effect of bentleg opener geometry on performance in cohesive soil using the discrete element method. Biosyst. Eng. 2021, 209, 106–124. [Google Scholar] [CrossRef]
- Guan, C.S.; Fu, J.J.; Xu, L.; Jiang, X.; Wang, S.; Cui, Z. Study on the reduction of soil adhesion and tillage force of bionic cutter teeth in secondary soil crushing. Biosyst. Eng. 2021, 213, 133–147. [Google Scholar] [CrossRef]
- Kešner, A.; Choteborský, R.; Linda, M.; Hromasova, M.; Katinas, E.; Sutanto, H. Stress distribution on a soil tillage machine frame segment with a chisel shank simulated using discrete element and finite element methods and validate by experiment. Biosyst. Eng. 2021, 209, 125–138. [Google Scholar] [CrossRef]
- Yan, D.Q.; Xue, Y.H.; Xu, Z.Y.; Sun, Y.F.; Sun, R.H.; Hu, X.F. Current utilization status, technical models and development proposals for direct crop straw returning to field in China. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 1–14. [Google Scholar]
- Johnson, J.M.F.; Acostamartinez, V.; Cambardella, C.A.; Barbour, N.W. Crop and soil responses to using corn stover as a bioenergy feedstock: Observations from the Northern US corn belt. Agriculture 2013, 3, 72–89. [Google Scholar] [CrossRef]
- Wang, Q.J.; Liu, Z.D.; He, J.; Li, H.W.; Li, W.Y.; He, J.H.; Yan, X.L. Design and experiment of chopping-type maize straw returning machine. Trans. Chin. Soc. Agric. Eng. Trans. CSAE 2018, 34, 10–17. (In Chinese) [Google Scholar]
- Melero, S.; Panettieri, M.; Madejón, E.; Macpherson, H.G.; Moreno, F.; Murillo, J.M. Implementation of chiselling and mouldboard ploughing in soil after 8 years of no-till management in SW, Spain: Effect on soil quality. Soil. Tillage Res. 2011, 112, 107–113. [Google Scholar] [CrossRef]
- Brandelero, E.M.; de Araujo, A.G.; Ralisch, R. Soil mobilization and seeding depth by no-till seeder mechanisms for residue management. Eng. Agric. 2014, 34, 263–272. [Google Scholar]
- Yao, W.; Diao, P.; Miao, H.; Li, S. Design and experiment of anti-blocking components for shallow stubble clearing based on soil bin test. Agriculture 2022, 12, 1728. [Google Scholar] [CrossRef]
- Negadi, J.; Raoufat, M.H. Field performance of a pneumatic row crop planter equipped with active toothed coulter for direct planting of corn in wheat residue. Span. J. Agric. Res. 2013, 11, 327. [Google Scholar] [CrossRef]
- Elfatih, A.; Arif, E.M.; Atef, A.E. Evaluate the modified chopper for rice straw composting. J. Appl. Sci. Res. 2010, 6, 1125–1131. [Google Scholar]
- Zhang, Z.; McHugh, A.D.; Li, H.W.; Ma, S.C.; Wang, Q.J.; Jin, H.; Zheng, C. Global overview of research and development of crop residue management machinery. Appl. Eng. Agric. 2017, 33, 329–344. [Google Scholar] [CrossRef]
- Tan, H.; Wang, G.; Zhou, S.; Jia, H.; Qu, M.; Xiang, M.; Gao, X.; Zhou, Z.; Li, H.; Zou, Z. Design and experiment of header height adaptive adjustment system for maize (Zea mays L.) harvester. Sustainability 2023, 15, 14137. [Google Scholar] [CrossRef]
- Qu, M.; Wang, G.; Zhou, Z.; Gao, X.; Li, H.; Tan, H.; Xiang, M.; Jia, H. Development and performance evaluation of a pressure adjustable waterjet stubble-cutting device with thickness detection for no-till sowing. Sustainability 2023, 15, 13065. [Google Scholar] [CrossRef]
- Liu, P.; He, J.; Li, Y.J.; Li, H.W.; Wang, Q.J.; Lu, C.Y.; Zhang, Z.G.; Li, S.H. Design and experiment of double rollers maize stalk chopping device with different rotation speeds. Trans. CSAE 2020, 36, 69–79. (In Chinese) [Google Scholar]
- Tian, Y.; Lin, J.; Li, B.F.; Zhang, T.J.; Qi, L.; Wang, J.Q. Design and test of pneumatic 1JH-2 style straw deep burying and returning machine. Trans. CSAE 2018, 34, 10–18. (In Chinese) [Google Scholar]
- Sidhu, H.S.; Singh, M.; Singh, Y.; Blackwell, J.; Lohan, S.K.; Humphreys, E.; Jat, M.L.; Singh, V.; Singh, S. Development and evaluation of the turbo happy seeder for sowing wheat into heavy rice residues in NW India. Field Crop Res. 2015, 184, 201–212. [Google Scholar] [CrossRef]
- Wang, W.W.; Zhu, C.X.; Chen, L.Q.; Li, Z.D.; Huang, X.; Li, J.C. Design and experiment of active straw-removing anti-blocking device for maize no-tillage planter. Trans. CSAE 2017, 33, 10–17. (In Chinese) [Google Scholar]
- Matin, M.A.; Desbiolles, M.A.; Fielke, J.M. Strip-tillage using rotating straight blades: Effect of cutting-edge geometry on furrow parameters. Soil. Tillage Res. 2016, 155, 271–279. [Google Scholar] [CrossRef]
- Shi, Y.; Ye, J.; Wang, X.; Yu, H.; Liu, H.; Chen, J. Innovation of strip fertilization planting for rice straw crushing with back-throwing and interrow-laying. Plant Methods 2022, 18, 31. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: Experimental and thermodynamic modeling. Energ. Convers. Manag. 2020, 208, 112545. [Google Scholar] [CrossRef]
- Elsayed, M.; Abomohra, A.E.; Ai, P.; Wang, D.; El-Mashad, H.M.; Zhang, Y. Biorefining of rice straw by sequential fermentation and anaerobic digestion for bioethanol and/or biomethane production: Comparison of structural properties and energy output. Bioresour. Technol. 2018, 268, 183–189. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Awad, F.N.; Qi, X.; Sahu, J.N. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sustain. Energy Rev. 2019, 105, 105–128. [Google Scholar] [CrossRef]
- Röder, M.; Jamieson, C.; Thornley, P. (Stop) burning for biogas. Enabling positive sustainability trade-offs with business models for biogas from rice straw. Biomass Bioenerg. 2020, 138, 105598. [Google Scholar] [CrossRef]
- Logan, M.; Visvanathan, C. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Manag. Res. 2019, 37, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Mothe, S.; Polisetty, V.R. Review on anaerobic digestion of rice straw for biogas production. Environ. Sci. Pollut. Res. 2021, 28, 24455–24469. [Google Scholar] [CrossRef]
- Alengebawy, A.; Ran, Y.; Ghimire, N.; Osman, A.; Ai, P. Rice straw for energy and value-added products in China: A review. Environ. Chem. Lett. 2023, 21, 2729–2760. [Google Scholar] [CrossRef]
- Verena, E.M.S.; Martin, K. Pelletizing of wheat straw: How to influence mechanical-physical properties. Biofuel 2012, 3, 35–46. [Google Scholar]
- Parihar, C.M.; Yadav, M.R.; Jat, S.L.; Singh, A.K.; Kumar, B.; Pradhan, S.; Chakraborty, D.; Jat, M.L.; Jat, R.K.; Saharawat, Y.S.; et al. Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo Gangetic Plains. Soil. Till Res. 2016, 16, 116–128. [Google Scholar] [CrossRef]
- Saikia, R.; Sharma, S.; Thind, H.S.; Sidhu, H.S.; Yadvinder-Singh. Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in a rice-wheat system. Ecol. Indic. 2019, 103, 383–394. [Google Scholar] [CrossRef]
- Yadvinder, S.; Bijay, S.; Ladha, J.K.; Khind, C.S.; Gupta, R.K.; Mcclu, O.P.; Pasuquin, E. Long-term effects of organic inputs on yield and soil fertility in the rice-wheat rotation. Soil. Sci. Soc. Am. J. 2004, 68, 845–853. [Google Scholar] [CrossRef]
- Arrobas, M.; Aguiar, P.; Rodrigues, M.A. A comparison of a pasture ley with a maize monoculture on the soil fertility and nutrient release in the succeeding crop. Arch. Agron. Soil. Sci. 2016, 62, 829–839. [Google Scholar] [CrossRef]
- Thind, H.S.; Sharma, S.; Singh, Y.; Sidhu, H.S. Rice-wheat productivity and profitability with residue, tillage and green manure management. Nutr. Cycl. Agroecosyst 2019, 113, 113–125. [Google Scholar] [CrossRef]
- Li, F.C.; Wang, Z.H.; Dai, J.; Li, Q.; Xue, C.; Zhao, H.; Wang, X.; Olesen, J.E. Summer fallow soil management-impact on rainfed winter wheat. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 64, 398–407. [Google Scholar] [CrossRef]
- Liang, F.; Deng, W.H.; Luo, L.Q.; Wang, J.K.; Zhan, S.P. Optimizing double-screw burying device for rape straw returning. Trans. Chin. Soc. Agric. Eng. Trans. CSAE 2023, 39, 12–20. [Google Scholar]
- Zhang, Q.; Zhao, J.; Yang, X.; Wang, L.; Su, G.; Liu, X.; Shan, C.; Rahim, O.; Yang, B.; Liao, J. Design and testing of an offset straw-returning machine for green manures in orchards. Agriculture 2024, 14, 1932. [Google Scholar] [CrossRef]
- Ling, Y.; Liu, M.; Feng, Y.; Xing, Z.; Gao, H.; Wei, H.; Hu, Q.; Zhang, H. Effects of increased seeding density on seedling characteristics, mechanical transplantation quality, and yields of rice with crop straw boards for seedling cultivation. J. Integr. Agric. 2025, 24, 101–113. [Google Scholar] [CrossRef]
- An, Z.D.; Guan, H.; Zhu, Y.P.; Chai, R.S.; Gao, H.J.; Hua, S.; Wang, Y.K. Effects of combined application of humic acid with seedling raising substrate on seedling quality and rice yield. Soil. Fertil. Sci. China 2022, 59, 173–181. (In Chinese) [Google Scholar]
- Zhu, Q.; Wang, X.; Xu, X.; Gao, S.; Liu, S.; Chen, H.; Zhang, Y. Optimization of manufacturing parameters and experimental study of rice straw fiber-based plant fiber seedling pots. Agronomy 2023, 13, 1782. [Google Scholar] [CrossRef]
- Ling, Y.F.; Xu, F.F.; Wei, P.Y.; Yan, C.; Wei, H.Y.; Zhang, H.C.; Liu, G.D. Effects of rice straw matrix board on seedling quality and transplanting quality. Acta Agric. Univ. Jiangxie 2021, 43, 9–17. (In Chinese) [Google Scholar]
- Hua, J.; Zhu, Q.B.; Gao, W.W.; Yang, Y.P.; Xue, G.X.; Wang, G.P.; Wang, X.Y.; Zhang, X.C.; Wang, Y.; Feng, Y.F. The effect of crop straw board seedling cultivation on the quality and yield of mechanized rice seedlings. Bull. Agric. Sci. Technol. 2023, 52, 76–78. (In Chinese) [Google Scholar]
- Youbi, S.B.T.; Tagne, N.R.S.; Harzallah, O.; Huisken, P.W.M.; Stanislas, T.T.; Njeugna, E.; Drean, J.Y.; Bistac-Brogly, S. Effect of alkali and silane treatments on the surface energy and mechanical performances of raphia vinifera fibres. Ind. Crops Prod. 2022, 190, 115854. [Google Scholar] [CrossRef]
- Yong, C. A Multi-Layer Rice Straw Board and Seedling Raising Method for Machine Transplanting. China National Intellectual Property Administration (CNIPA). China Patent Application No. 201910772006.3, 25 June 2021. (In Chinese). [Google Scholar]
- Fuentes, R.A.; Berthe, J.A.; Barbosa, S.E.; Castillo, L.A. Development of biodegradable pots from different agroindustrial wastes and byproducts. Sustain. Mater. Technol. 2021, 30, e00338. [Google Scholar] [CrossRef]
- Ren, H.; Gray, W.M. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol. Plant 2015, 8, 1153–1164. [Google Scholar] [CrossRef]
- Long, R.P.; Leng, S.C.; Zhao, L.J.; Yin, J.; Yang, J.; Li, G.; Xia, Q.; Zhu, H.; Zhang, Y.; Yang, C. Preliminary study on mechanical transplanting technique of small indica rice seedlings in Yunnan Province. China Rice 2021, 27, 134–137. (In Chinese) [Google Scholar]
- Zhang, Y.; Zhu, Q.; Gao, S.; Liu, S.; Li, L.; Chen, H. Optimization of technological parameters of straw fiber-based plant fiber seedling pot raw materials. Appl. Sci. 2021, 11, 7152. [Google Scholar] [CrossRef]
- Sun, H.; Lin, G.; Li, H.W.; Gao, X.L.; Yao, G.C. Influence of scanning interval on microstructure and abrasive wear resistance of 45 steel by laser melting. Trans. CSAE 2011, 27, 156–160. (In Chinese) [Google Scholar]
- Li, C.S.; Tang, Y.L.; McHugh, A.D.; Wu, X.; Liu, M.; Li, M.; Xiong, T.; Ling, D.; Tang, Q.; Liao, M.; et al. Development and performance evaluation of a wet-resistant strip-till seeder for sowing wheat following rice. Biosyst. Eng. 2022, 220, 146–158. [Google Scholar] [CrossRef]
- Li, J.W.; Li, X.Y.; Hu, B.; Gu, T.; Wang, Z.; Wang, H. Analysis of the resistance reduction mechanism of potato bionic digging shovels in clay and heavy soil conditions. Comput. Electron. Agric. 2023, 214, 108315. [Google Scholar] [CrossRef]
- Wang, J.Y.; Zhao, S.H.; Gao, L.L.; Yuan, Y.W.; Yang, Y.Q. Design and experiment of passive disc cutting blade in corn ridges. Trans. CSAM 2021, 52, 59–67. [Google Scholar]
- Sun, J.F.; Chen, H.; Wang, Z.; Ou, Z.; Yang, Z.; Liu, Z.; Duan, J. Study on plowing performance of EDEM low-resistance animal bionic device based on red soil. Soil. Tillage Res. 2020, 196, 104336. [Google Scholar] [CrossRef]
- Li, H.; Ju, W.L.; Song, Y.M.; Cao, Y.; Yang, W.; Li, M. Soil organic matter content prediction based on two-branch convolutional neural network combining image and spectral features. Comput. Electron. Agric. 2024, 217, 108561. [Google Scholar] [CrossRef]
- Gao, Y. Research progress of stubble control deep pine land preparation combined operation machine. Use Maint. Agric. Mach. 2023, 8, 99–102. [Google Scholar]
- Rosmiza, M.Z.; Davies, W.P.; Rosniza, A.C.R.; Mazdi, M.; Jabil, M.J. Farmers’ knowledge on potential uses of rice straw: An assessment in MADA and Sekinchan, Malaysia. Malays. J. Soc. Space 2014, 10, 30–43. [Google Scholar]
- Silva, R.D.; Cielniak, G.; Gao, J.F. Vision based crop row navigation under varying field conditions in arable fields. Comput. Electron. Agric. 2024, 217, 108581. [Google Scholar] [CrossRef]
- Wang, J.C.; Zheng, H.; Yu, Y.; He, Y.; Liu, Y. Robust multiple obstacle tracking method based on depth aware OCSORT for agricultural robots. Comput. Electron. Agric. 2024, 217, 108580. [Google Scholar] [CrossRef]
- Shang, X.L.; Cao, J.B.; Wang, Y.; Yang, B.N.; Li, D.Y.; Wang, H. Current situation and prospect of conservation tillage technology. J. Chin. Agric. Mech. 2021, 42, 191–201. [Google Scholar]
- Guo, F.; Jin, J.J.; Zhang, C.Y.; He, R.; Qiu, X. A review of farmers’ conservation tillage technology adoption behavior and influencing factors. Prog. Geogr. 2022, 41, 2165–2177. [Google Scholar] [CrossRef]
- Wei, G.J.; Jian, S.; Fang, H.; Peng, Q.; Niu, M. Current situation and prospect of conservation tillage technology in dry-farming areas of north China. J. Chin. Agric. Mech. 2019, 40, 195–200. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Qin, Y.; Wei, Y.; Ye, S.; Wang, Y.; Tong, T.; Ji, Z.; Ouyang, Y. Key Technologies and Equipment for Straw Utilization in Agriculture. Agronomy 2025, 15, 2219. https://doi.org/10.3390/agronomy15092219
Wang Q, Qin Y, Wei Y, Ye S, Wang Y, Tong T, Ji Z, Ouyang Y. Key Technologies and Equipment for Straw Utilization in Agriculture. Agronomy. 2025; 15(9):2219. https://doi.org/10.3390/agronomy15092219
Chicago/Turabian StyleWang, Qingxia, Yebo Qin, Yangyan Wei, Shuzhen Ye, Yanli Wang, Tao Tong, Zhijuan Ji, and Younan Ouyang. 2025. "Key Technologies and Equipment for Straw Utilization in Agriculture" Agronomy 15, no. 9: 2219. https://doi.org/10.3390/agronomy15092219
APA StyleWang, Q., Qin, Y., Wei, Y., Ye, S., Wang, Y., Tong, T., Ji, Z., & Ouyang, Y. (2025). Key Technologies and Equipment for Straw Utilization in Agriculture. Agronomy, 15(9), 2219. https://doi.org/10.3390/agronomy15092219