Fabrication of Yeast-Immobilized Porous Scaffolds Using a Water-in-Water Emulsion-Templating Strategy
Abstract
1. Introduction
2. Results and Discussion
2.1. Preparation of w/w Emulsion-Template and PPEG
2.2. Preparation of Yeast@PPEG
2.3. Effect of Temperature and pH on Fermentation
2.4. Reusability and Storability of Immobilized Yeast
3. Experimental Section
3.1. Materials
3.2. Preparation of Porous PEG (PPEG)
3.3. Preparation of Yeast@PPEG
3.4. Characterization of Emulsion-Template, PPEG, and Yeast@PPEG
3.5. Fermentation Performance Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodríguez-Restrepo, Y.A.; Orrego, C.E. Immobilization of enzymes and cells on lignocellulosic materials. Environ. Chem. Lett. 2020, 18, 787–806. [Google Scholar] [CrossRef]
- He, B.; Wang, K.; Zheng, X.; Liang, W.; Jia, L.; Yuan, L.; Coseri, S.; Zhu, X. Bibliometric analysis on hotspots and trends of cell immobilization technology in bioethanol production (1994–2024). J. Clean. Prod. 2025, 497, 145163. [Google Scholar] [CrossRef]
- Yang, X.-Y.; Tian, G.; Jiang, N.; Su, B.-L. Immobilization technology: A sustainable solution for biofuel cell design. Energy Environ. Sci. 2012, 5, 5540–5563. [Google Scholar] [CrossRef]
- Krasnan, V.; Stloukal, R.; Rosenberg, M.; Rebros, M. Immobilization of cells and enzymes to LentiKats®. Appl. Microbiol. Biotechnol. 2016, 100, 2535–2553. [Google Scholar] [CrossRef] [PubMed]
- Basso, A.; Serban, S. Overview of Immobilized Enzymes’ Applications in Pharmaceutical, Chemical, and Food Industry. In Immobilization of Enzymes and Cells: Methods and Protocols, 4th ed.; Guisan, J.M., Bolivar, J.M., LopezGallego, F., RochaMartin, J., Eds.; Methods in Molecular Biology; Humana: New York, NY, USA, 2020; Volume 2100, pp. 27–63. [Google Scholar]
- Soares, L.B.; da Silveira, J.M.; Biazi, L.E.; Longo, L.; de Oliveira, D.; Furigo Junior, A.; Ienczak, J.L. An overview on fermentation strategies to overcome lignocellulosic inhibitors in second-generation ethanol production using cell immobilization. Crit. Rev. Biotechnol. 2023, 43, 1150–1171. [Google Scholar] [CrossRef]
- Whitely, M.; Cereceres, S.; Dhavalikar, P.; Salhadar, K.; Wilems, T.; Smith, B.; Mikos, A.; Cosgriff-Hernandez, E. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials 2018, 185, 194–204. [Google Scholar] [CrossRef]
- Zenteno-Catemaxca, R.; Hernandez-Rodriguez, R.; Morales-Zarate, E.; Hernandez-Martinez, E. A novel approach to predict effective mass transport coefficients in cell immobilization systems. J. Chem. Technol. Biotechnol. 2025, 100, 908–922. [Google Scholar] [CrossRef]
- Arruda, G.L.; Paiva, G.F.; Carvalho, L.T.; da Silva, S.S.; Santos, J.C. Alternative natural supports for the immobilization of Monascus ruber: Reuse of cells and production of biopigments in submerged fermentation. J. Environ. Chem. Eng. 2025, 13, 116359. [Google Scholar] [CrossRef]
- Trelles, J.A.; Rivero, C.W. Whole Cell Entrapment Techniques. In Immobilization of Enzymes and Cells: Methods and Protocols, 4th ed.; Guisan, J.M., Bolivar, J.M., LopezGallego, F., RochaMartin, J., Eds.; Methods in Molecular Biology; Humana: New York, NY, USA, 2020; Volume 2100, pp. 385–394. [Google Scholar]
- Pannerchelvan, S.; Muhamad, F.N.; Wasoh, H.; Mohamed, M.S.; Wong, F.W.F.; Mohamad, R.; Halim, M. Improvement of γ-Aminobutyric Acid Production and Cell Viability of Lactiplantibacillus plantarum B7 via Whole-Cell Immobilisation in Repeated Batch Fermentation System. Probiot. Antimicrob. Proteins 2024, 16, 1907–1924. [Google Scholar] [CrossRef]
- Zheng, D.; Zheng, Y.; Tan, J.; Zhang, Z.; Huang, H.; Chen, Y. Co-immobilization of whole cells and enzymes by covalent organic framework for biocatalysis process intensification. Nat. Commun. 2024, 15, 5510. [Google Scholar] [CrossRef]
- Li, Z.; Wang, R.; Lai, X.; Liao, W.; Liao, R.; Wu, Z.; Zhang, G.; Qi, X. Enabling Stable Recycling of L-Arabinose Isomerase Through Whole-Cell Immobilization for Efficient and Cost-Effective D-Tagatose Production. Foods 2025, 14, 91538. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Zhu, Y.; Wang, W.; Qi, Y.; Wang, A. Interconnected superporous adsorbent prepared via yeast-based Pickering HIPEs for high-efficiency adsorption of Rb+, Cs+ and Sr2+. Chem. Eng. J. 2019, 361, 1411–1422. [Google Scholar] [CrossRef]
- Costantini, M.; Guzowski, J.; Zuk, P.J.; Mozetic, P.; De Panfilis, S.; Jaroszewicz, J.; Heljak, M.; Massimi, M.; Pierron, M.; Trombetta, M.; et al. Electric Field Assisted Microfluidic Platform for Generation of Tailorable Porous Microbeads as Cell Carriers for Tissue Engineering. Adv. Funct. Mater. 2018, 28, 1800874. [Google Scholar] [CrossRef]
- Naranda, J.; Susec, M.; Maver, U.; Gradisnik, L.; Gorenjak, M.; Vukasovic, A.; Ivkovic, A.; Rupnik, M.S.; Vogrin, M.; Krajnc, P. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Sci. Rep. 2016, 6, 28695–28705. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, H.; Du, Z.; Liu, Y.; Yang, Y.; Wang, C. Pickering high internal phase emulsion-based hydroxyapatite–poly(ε-caprolactone) nanocomposite scaffolds. J. Mater. Chem. B 2015, 3, 3848–3857. [Google Scholar] [CrossRef]
- Xu, C.; Sun, Y.; Feng, C.; Zhang, S. Porous PEG Scaffold Fabricated via Emulsion-Templating Technique Towards Immobilization of Saccharomyces cerevisiae Cells. Catalysts 2024, 14, 809. [Google Scholar] [CrossRef]
- Yin, Z.; Zhou, Y.; Liu, X.; Zhang, S.; Binks, B.P. Highly efficient and recyclable monolithic bioreactor for interfacial enzyme catalysis. J. Colloid Interface Sci. 2023, 648, 308–316. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, S.; Liu, X. Hierarchical Emulsion-Templated Monoliths (polyHIPEs) as Scaffolds for Covalent Immobilization of P. acidilactici. Polymers 2023, 15, 1862. [Google Scholar] [CrossRef]
- Durgut, E.; Claeyssens, F. Pickering polymerized high internal phase emulsions: Fundamentals to advanced applications. Adv. Colloid Interface Sci. 2025, 336, 103375. [Google Scholar] [CrossRef]
- Zhang, H.; Cooper, A.I. Synthesis and applications of emulsion-templated porous materials. Soft Matter 2005, 1, 107–113. [Google Scholar] [CrossRef]
- Cameron, N.R. High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 2005, 46, 1439–1449. [Google Scholar] [CrossRef]
- Zhang, S.M.; Chen, J.D.; Lykakis, I.N.; Perchyonok, V.T. Streamlining Organic Free Radical Synthesis through Modern Molecular Technology: From Polymer Supported Synthesis to Microreactors and Beyond. Curr. Org. Synth. 2010, 7, 177–188. [Google Scholar] [CrossRef]
- Uthaman, A.; Thomas, S.; Li, T.; Maria, H. (Eds.) Advanced Functional Porous Materials From Macro to Nano Scale Lengths: Emulsion Templated Hierarchical Macroporous Polymers; Springer: Berlin/Heidelberg, Germany, 2022; pp. 43–86. [Google Scholar]
- Silverstein, M.S. PolyHIPEs: Recent advances in emulsion-templated porous polymers. Prog. Polym. Sci. 2014, 39, 199–234. [Google Scholar] [CrossRef]
- Kimmins, S.D.; Cameron, N.R. Functional Porous Polymers by Emulsion Templating: Recent Advances. Adv. Funct. Mater. 2011, 21, 211–225. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, M.; Sun, Y.; Zhu, Y.; Zhang, S. Fabrication of Macroporous Polymers via Water-in-Water Emulsion-Templating Technique. ACS Macro Lett. 2023, 12, 302–307. [Google Scholar] [CrossRef]
- Inam, M.; Jones, J.R.; Perez-Madrigal, M.M.; Arno, M.C.; Dove, A.P.; O’Reilly, R.K. Controlling the Size of Two-Dimensional Polymer Platelets for Water-in-Water Emulsifiers. ACS Cent. Sci. 2018, 4, 63–70. [Google Scholar] [CrossRef]
- Esquena, J. Water-in-water (W/W) emulsions. Curr. Opin. Colloid Interface Sci. 2016, 25, 109–119. [Google Scholar] [CrossRef]
- Buzza, D.M.; Fletcher, P.D.; Georgiou, T.K.; Ghasdian, N. Water-in-water emulsions based on incompatible polymers and stabilized by triblock copolymers-templated polymersomes. Langmuir 2013, 29, 14804–14814. [Google Scholar] [CrossRef]
- Saied-Ahmad, S.; Silverstein, M.S. Emulsion templating: DIY versatility for the creative design of macroporous polymers. Prog. Polym. Sci. 2025, 165, 101970. [Google Scholar] [CrossRef]
- Zhou, C.; Xie, Y.; Li, Y.; Li, B.; Zhang, Y.; Liu, S. Water-in-water emulsion stabilized by cellulose nanocrystals and their high enrichment effect on probiotic bacteria. J. Colloid Interface Sci. 2023, 633, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Cai, R.; Liu, B.; Xu, C.; Zhang, S. Macroporous hydrogel prepared via aqueous polymerization induced phase separation toward in situ immobilization of yeast. J. Appl. Polym. Sci. 2024, 141, e55976. [Google Scholar] [CrossRef]
- Mulko, L.; Rivarola, C.R.; Barbero, C.A.; Acevedo, D.F. Bioethanol production by reusable Saccharomyces cerevisiae immobilized in a macroporous monolithic hydrogel matrices. J. Biotechnol. 2016, 233, 56–65. [Google Scholar] [CrossRef]
- Duarte, J.C.; Rodrigues, J.A.R.; Moran, P.J.S.; Valenca, G.P.; Nunhez, J.R. Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express 2013, 3, 31. [Google Scholar] [CrossRef]
- Ercan, Y.; Irfan, T.; Mustafa, K. Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae cells in a stirred tank bioreactor. Bioresour. Technol. 2013, 135, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Tokuyama, H.; Aoyagi, R.; Fujita, K.; Maekawa, Y.; Riya, S. Ethanol fermentation using macroporous monolithic hydrogels as yeast cell scaffolds. React. Funct. Polym. 2021, 169, 105075. [Google Scholar] [CrossRef]
- Milessi, T.S.; Perez, C.L.; Zangirolami, T.C.; Corradini, F.A.S.; Sandri, J.P.; Foulquie-Moreno, M.R.; Giordano, R.C.; Thevelein, J.M.; Giordano, R.L.C. Repeated batches as a strategy for high 2G ethanol production from undetoxified hemicellulose hydrolysate using immobilized cells of recombinant Saccharomyces cerevisiae in a fixed-bed reactor. Biotechnol. Biofuels 2020, 13, 85. [Google Scholar] [CrossRef]
- Carnachan, R.J.; Bokhari, M.; Przyborski, S.A.; Cameron, N.R. Tailoring the morphology of emulsion-templated porous polymers. Soft Matter 2006, 2, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhou, P.; Cai, R.; Zhang, C.; Zhu, Y. Design of Infused-Liquid-Switchable Superamphiphilic and Flame-Retardant Hierarchically Porous Materials from Emulsion-Templated Technique. Macromolecules 2023, 56, 6142–6151. [Google Scholar] [CrossRef]
Sample | Average Void Size (µm) | Average Interconnected Pore (µm) | Compression Modulus (MPa) | Compressive Strength (MPa) | Crushing Compression Ratio (%) |
---|---|---|---|---|---|
PPEG-10 | 10.4 | 2.2 | 0.16 | 0.80 | 58.4 |
PPEG-15 | 9.6 | 1.8 | 0.45 | 0.82 | 55.2 |
PPEG-20 | 8.8 | 1.7 | 0.47 | 0.94 | 53.4 |
PPEG-25 | 6.6 | 1.4 | 0.94 | 1.04 | 51.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Sun, Y.; Zhou, H.; Xu, C.; Zhu, Y.; Chen, D.; Zhang, S. Fabrication of Yeast-Immobilized Porous Scaffolds Using a Water-in-Water Emulsion-Templating Strategy. Catalysts 2025, 15, 925. https://doi.org/10.3390/catal15100925
Zhao C, Sun Y, Zhou H, Xu C, Zhu Y, Chen D, Zhang S. Fabrication of Yeast-Immobilized Porous Scaffolds Using a Water-in-Water Emulsion-Templating Strategy. Catalysts. 2025; 15(10):925. https://doi.org/10.3390/catal15100925
Chicago/Turabian StyleZhao, Chuya, Yuanyuan Sun, Haihua Zhou, Chuanbang Xu, Yun Zhu, Daifeng Chen, and Shengmiao Zhang. 2025. "Fabrication of Yeast-Immobilized Porous Scaffolds Using a Water-in-Water Emulsion-Templating Strategy" Catalysts 15, no. 10: 925. https://doi.org/10.3390/catal15100925
APA StyleZhao, C., Sun, Y., Zhou, H., Xu, C., Zhu, Y., Chen, D., & Zhang, S. (2025). Fabrication of Yeast-Immobilized Porous Scaffolds Using a Water-in-Water Emulsion-Templating Strategy. Catalysts, 15(10), 925. https://doi.org/10.3390/catal15100925