Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = green canopy fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 14653 KiB  
Article
Heterogeneity and Influencing Factors of Carbon Sequestration Efficiency of Green Space Patterns in Urban Riverfront Residential Blocks
by Yunfang Jiang, Di Xu, Lixian Peng, Xianghua Li, Tao Song and Fangzhi Zhan
Forests 2025, 16(4), 681; https://doi.org/10.3390/f16040681 - 14 Apr 2025
Viewed by 389
Abstract
Green spaces in waterfront residential blocks, where the water landscape and green space intersect, have a special carbon sequestration effect due to the distinct ecological interaction between water bodies and green spaces. Studying the carbon sequestration efficiency of green space patterns is crucial [...] Read more.
Green spaces in waterfront residential blocks, where the water landscape and green space intersect, have a special carbon sequestration effect due to the distinct ecological interaction between water bodies and green spaces. Studying the carbon sequestration efficiency of green space patterns is crucial for enhancing urban ecological quality. Herein, 100 residential blocks adjacent to water bodies in Shanghai were selected as case areas, and green space pattern classification, random forest algorithm and spatial configuration quantitative analysis were used to analyse the impact of spatial morphology factors, surrounding building environment and water–green coupling environment on the CS efficiency of the green space in residential blocks. The results showed that the importance of the green space morphology index influencing CS is significantly greater than that of the building environment index. Among the indices, the fraction vegetation coverage, coverage ratio of evergreen broadleaved trees and canopy coverage of the green space have a more significant effect. Moreover, the different types and compositions of tree species in residential green spaces have different impacts on CS. Residential blocks with higher levels of water surface ratio (Wr) have a slightly higher CS of the internal green space. In residential blocks 500 m from water bodies, Wr has a significant impact on the CS capacity of the green space. The blocks with an external greenway pattern and external greenway–green grid pattern provide an advantageous environment for CS. This study provides a reasonable basis for the development of riverfront green spaces to increase carbon sequestrations. Full article
(This article belongs to the Special Issue The Role of Urban Trees in Ecology Protection)
Show Figures

Figure 1

22 pages, 25548 KiB  
Article
Improvement of FAPAR Estimation Under the Presence of Non-Green Vegetation Considering Fractional Vegetation Coverage
by Rui Li, Baolin Li, Yecheng Yuan, Wei Liu, Jie Zhu, Jiali Qi, Haijiang Liu, Guangwen Ma, Yuhao Jiang, Ying Li and Qiuyuan Tan
Remote Sens. 2025, 17(4), 603; https://doi.org/10.3390/rs17040603 - 10 Feb 2025
Viewed by 667
Abstract
The homogeneous turbid medium assumption inherent to the Beer-Lambert’s law can lead to a reduction in the shading effect between leaves when non-green vegetation canopies are present, resulting in an overestimation of the fraction of absorbed photosynthetically active radiation (FAPAR). This paper proposed [...] Read more.
The homogeneous turbid medium assumption inherent to the Beer-Lambert’s law can lead to a reduction in the shading effect between leaves when non-green vegetation canopies are present, resulting in an overestimation of the fraction of absorbed photosynthetically active radiation (FAPAR). This paper proposed a method to improve the FAPAR estimation (FAPARFVC) based on Beer-Lambert’s law by incorporating fractional vegetation coverage (FVC). Initially, the canopy-scale leaf area index (LAI) of the green canopy distribution area within the pixel (sample site) was determined based on the FVC. Subsequently, the canopy-scale FAPAR was calculated within the green canopy distribution area, adhering to the assumption of a homogeneous turbid medium in the Beer-Lambert’s law. Finally, the average FAPAR across the pixel (sample site) was calculated based on the FVC. This paper conducted a case study using measured data from the BigFoot Project and grass savanna in Senegal, West Africa, as well as Moderate Resolution Imaging Spectroradiometer (MODIS) LAI/FPAR products. The results indicated that the FAPARFVC approach demonstrated superior accuracy compared to the FAPAR determined by MODIS LAI, according to the Beer-Lambert’s law (FAPARLAI) and MODIS FPAR products (FAPARMOD). The mean absolute percentage error of FAPARFVC was 48.2%, which is 25.6% and 52.1% lower than that of FAPARLAI and FAPARMOD, respectively. The mean percentage error of FAPARFVC was 16.8%, which was 71.6% and 73.4% lower than that of FAPARLAI and FAPARMOD, respectively. The improvements in accuracy and the decrease in overestimation for FAPARFVC became more pronounced with increasing FVC compared to FAPARLAI. The findings suggested that the FAPARFVC method enhanced the accuracy of FAPAR estimation under the presence of non-green vegetation canopies. The method can be extended to regional scale FAPAR and gross primary production (GPP) estimations, thereby providing more accurate inputs for understanding its tempo-spatial patterns and drivers. Full article
Show Figures

Figure 1

27 pages, 14277 KiB  
Article
Validation and Conformity Testing of Sentinel-3 Green Instantaneous FAPAR and Canopy Chlorophyll Content Products
by Fernando Camacho, Enrique Martínez-Sánchez, Luke A. Brown, Harry Morris, Rosalinda Morrone, Owen Williams, Jadunandan Dash, Niall Origo, Jorge Sánchez-Zapero and Valentina Boccia
Remote Sens. 2024, 16(15), 2698; https://doi.org/10.3390/rs16152698 - 23 Jul 2024
Cited by 2 | Viewed by 1486
Abstract
This article presents validation and conformity testing of the Sentinel-3 Ocean Land Colour Instrument (OLCI) green instantaneous fraction of absorbed photosynthetically active radiation (FAPAR) and OLCI terrestrial chlorophyll index (OTCI) canopy chlorophyll content (CCC) products with fiducial reference measurements (FRM) collected in 2018 [...] Read more.
This article presents validation and conformity testing of the Sentinel-3 Ocean Land Colour Instrument (OLCI) green instantaneous fraction of absorbed photosynthetically active radiation (FAPAR) and OLCI terrestrial chlorophyll index (OTCI) canopy chlorophyll content (CCC) products with fiducial reference measurements (FRM) collected in 2018 and 2021 over two sites (Las Tiesas—Barrax, Spain, and Wytham Woods, UK) in the context of the European Space Agency (ESA) Fiducial Reference Measurement for Vegetation (FRM4Veg) initiative. Following metrological principles, an end-to-end uncertainty evaluation framework developed in the project is used to account for the uncertainty of reference data based on a two-stage validation approach. The process involves quantifying uncertainties at the elementary sampling unit (ESU) level and incorporating these uncertainties in the upscaling procedures using orthogonal distance regression (ODR) between FRM and vegetation indices derived from Sentinel-2 data. Uncertainties in the Sentinel-2 data are also accounted for. FRM-based high spatial resolution reference maps and their uncertainties were aggregated to OLCI’s native spatial resolution using its apparent point spread function (PSF). The Sentinel-3 mission requirements, which give an uncertainty of 5% (goal) and 10% (threshold), were considered for conformity testing. GIFAPAR validation results revealed correlations > 0.95, RMSD ~0.1, and a slight negative bias (~−0.06) for both sites. This bias could be partly explained by the differences in the FAPAR definitions between the satellite product and the FRM-based reference. For the OTCI-based CCC, leave-one-out cross-validation demonstrated correlations > 0.8 and RMSDcv ~0.28 g·m−2. Despite the encouraging validation results, conclusive conformity with the strict mission requirements was low, with most cases providing inconclusive results (driven by large uncertainties in the satellite products as well as by the uncertainties in the upscaling approach). It is recommended that mission requirements for bio-geophysical products are reviewed, at least at the threshold level. It is also suggested that the large uncertainties associated with the two-stage validation approach may be avoided by directly comparing with spatially representative FRM. Full article
Show Figures

Figure 1

19 pages, 7443 KiB  
Article
Hyperspectral Characteristics and SPAD Estimation of Wheat Leaves under CO2 Microleakage Stress
by Liuya Zhang, Debao Yuan, Yuqing Fan and Renxu Yang
Sensors 2024, 24(15), 4776; https://doi.org/10.3390/s24154776 - 23 Jul 2024
Cited by 2 | Viewed by 1007
Abstract
To non-destructively and rapidly monitor the chlorophyll content of winter wheat leaves under CO2 microleakage stress, and to establish the quantitative relationship between chlorophyll content and sensitive bands in the winter wheat growing season from 2023 to 2024, the leakage rate was [...] Read more.
To non-destructively and rapidly monitor the chlorophyll content of winter wheat leaves under CO2 microleakage stress, and to establish the quantitative relationship between chlorophyll content and sensitive bands in the winter wheat growing season from 2023 to 2024, the leakage rate was set to 1 L/min, 3 L/min, 5 L/min, and 0 L/min through field experiments. The dimensional reduction was realized, fractional differential processing of a wheat canopy spectrum was carried out, a multiple linear regression (MLR) and partial least squares regression (PLSR) estimation model was constructed using a SPA selection band, and the model’s accuracy was evaluated. The optimal model for hyperspectral estimation of wheat SPAD under CO2 microleakage stress was screened. The results show that the spectral curves of winter wheat leaves under CO2 microleakage stress showed a “red shift” of the green peak and a “blue shift” of the red edge. Compared with 1 L/min and 3 L/min, wheat leaves were more affected by CO2 at 5 L/min. Evaluation of the accuracy of the MLR and PLSR models shows that the MLR model is better, where the MLR estimation model based on 1.1, 1.8, 0.4, and 1.7 differential SPAD is the best for leakage rates of 1 L/min, 3 L/min, 5 L/min, and 0 L/min, with validation set R2 of 0.832, 0.760, 0.928, and 0.773, which are 11.528, 14.2, 17.048, and 37.3% higher than the raw spectra, respectively. This method can be used to estimate the chlorophyll content of winter wheat leaves under CO2 trace-leakage stress and to dynamically monitor CO2 trace-leakage stress in crops. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

19 pages, 10921 KiB  
Article
Crop Canopy Nitrogen Estimation from Mixed Pixels in Agricultural Lands Using Imaging Spectroscopy
by Elahe Jamalinia, Jie Dai, Nicholas R. Vaughn, Roberta E. Martin, Kelly Hondula, Marcel König, Joseph Heckler and Gregory P. Asner
Remote Sens. 2024, 16(8), 1382; https://doi.org/10.3390/rs16081382 - 13 Apr 2024
Cited by 3 | Viewed by 1820
Abstract
Accurate retrieval of canopy nutrient content has been made possible using visible-to-shortwave infrared (VSWIR) imaging spectroscopy. While this strategy has often been tested on closed green plant canopies, little is known about how nutrient content estimates perform when applied to pixels not dominated [...] Read more.
Accurate retrieval of canopy nutrient content has been made possible using visible-to-shortwave infrared (VSWIR) imaging spectroscopy. While this strategy has often been tested on closed green plant canopies, little is known about how nutrient content estimates perform when applied to pixels not dominated by photosynthetic vegetation (PV). In such cases, contributions of bare soil (BS) and non-photosynthetic vegetation (NPV), may significantly and nonlinearly reduce the spectral features relied upon for nutrient content retrieval. We attempted to define the loss of prediction accuracy under reduced PV fractional cover levels. To do so, we utilized VSWIR imaging spectroscopy data from the Global Airborne Observatory (GAO) and a large collection of lab-calibrated field samples of nitrogen (N) content collected across numerous crop species grown in several farming regions of the United States. Fractional cover values of PV, NPV, and BS were estimated from the GAO data using the Automated Monte Carlo Unmixing algorithm (AutoMCU). Errors in prediction from a partial least squares N model applied to the spectral data were examined in relation to the fractional cover of the unmixed components. We found that the most important factor in the accuracy of the partial least squares regression (PLSR) model is the fraction of photosynthetic vegetation (PV) cover, with pixels greater than 60% cover performing at the optimal level, where the coefficient of determination (R2) peaks to 0.66 for PV fractions of more than 60% and bare soil (BS) fractions of less than 20%. Our findings guide future spaceborne imaging spectroscopy missions as applied to agricultural cropland N monitoring. Full article
Show Figures

Figure 1

18 pages, 4813 KiB  
Article
Grassland Chlorophyll Content Estimation from Drone Hyperspectral Images Combined with Fractional-Order Derivative
by Aiwu Zhang, Shengnan Yin, Juan Wang, Nianpeng He, Shatuo Chai and Haiyang Pang
Remote Sens. 2023, 15(23), 5623; https://doi.org/10.3390/rs15235623 - 4 Dec 2023
Cited by 15 | Viewed by 2616
Abstract
Chlorophyll plays a critical role in assessing the photosynthetic capacity and health of grasslands. However, existing studies on the hyperspectral inversion of chlorophyll have mainly focused on field crops, leading to limited accuracy when applied to natural grasslands due to their complex canopy [...] Read more.
Chlorophyll plays a critical role in assessing the photosynthetic capacity and health of grasslands. However, existing studies on the hyperspectral inversion of chlorophyll have mainly focused on field crops, leading to limited accuracy when applied to natural grasslands due to their complex canopy structures and species diversity. This study aims to address this challenge by extrapolating the measured leaf chlorophyll to the canopy level using the green vegetation coverage approach. Additionally, fractional-order derivative (FOD) methods are employed to enhance the sensitivity of hyperspectral data to chlorophyll. Several FOD spectral indices are developed to minimize interference from factors such as bare soil and hay, resulting in improved chlorophyll estimation accuracy. The study utilizes partial least squares regression (PLSR) and support vector machine regression (SVR) to construct inversion models based on full-band FOD, two-band FOD spectral indices, and their combination. Through comparative analysis, the optimal model for estimating grassland chlorophyll content is determined, yielding an R2 value of 0.808, RMSE value of 1.720, and RPD value of 2.347. Full article
Show Figures

Graphical abstract

20 pages, 2539 KiB  
Article
Determination of Crop Coefficients and Evapotranspiration of Potato in a Semi-Arid Climate Using Canopy State Variables and Satellite-Based NDVI
by Alex Mukiibi, Angelinus Cornelius Franke and Joachim Martin Steyn
Remote Sens. 2023, 15(18), 4579; https://doi.org/10.3390/rs15184579 - 17 Sep 2023
Cited by 11 | Viewed by 3454
Abstract
Estimating crop coefficients and evapotranspiration (ET) accurately is crucial for optimizing irrigation. Remote sensing techniques using green canopy cover, leaf area index (LAI), and normalized difference vegetation index (NDVI) have been applied to estimate basal crop coefficients (Kcb) and ET for different crops. [...] Read more.
Estimating crop coefficients and evapotranspiration (ET) accurately is crucial for optimizing irrigation. Remote sensing techniques using green canopy cover, leaf area index (LAI), and normalized difference vegetation index (NDVI) have been applied to estimate basal crop coefficients (Kcb) and ET for different crops. However, analysis of the potential of these techniques to improve water management in irrigated potato (Solanum tuberosum L.) is still lacking. This study aimed to assess the modified nonlinear relationship between LAI, Kcb and NDVI in estimating crop coefficients (Kc) and ET of potato. Moreover, Kc and ET were derived from the measured fraction of green canopy cover (FGCC) and the FAO-56 approach. ET estimated from the FAO-56, FGCC and NDVI approaches were compared with the ET simulated using the LINTUL-Potato model. The results showed that the Kc values based on FGCC and NDVI were on average 0.16 lower than values based on FAO-56 Kc during the mid-season growing stage. ET estimated from FAO-56, FGCC and NDVI compared well with ET calculated by the LINTUL-Potato model, with RMSE values of 0.83, 0.79, and 0.78 mm day−1, respectively. These results indicate that dynamic crop coefficients and potato ET can be estimated from canopy cover and NDVI. The outcomes of this study will assist potato growers in determining crop water requirements using real-time ETo, canopy state variables and NDVI data from satellite images. Full article
(This article belongs to the Special Issue Remote Sensing for Irrigation and Water Management in Agriculture)
Show Figures

Figure 1

23 pages, 14973 KiB  
Article
Enhancing Solar-Induced Fluorescence Interpretation: Quantifying Fractional Sunlit Vegetation Cover Using Linear Spectral Unmixing
by Adrián Moncholi-Estornell, Maria Pilar Cendrero-Mateo, Michal Antala, Sergio Cogliati, José Moreno and Shari Van Wittenberghe
Remote Sens. 2023, 15(17), 4274; https://doi.org/10.3390/rs15174274 - 31 Aug 2023
Cited by 9 | Viewed by 2256
Abstract
Solar-induced chlorophyll fluorescence (SIF) is closely related to plant photosynthetic activity and has been used in different studies as a proxy for vegetation health status. However, in order to use SIF as a relevant indicator of plant physiological stress, it is necessary to [...] Read more.
Solar-induced chlorophyll fluorescence (SIF) is closely related to plant photosynthetic activity and has been used in different studies as a proxy for vegetation health status. However, in order to use SIF as a relevant indicator of plant physiological stress, it is necessary to accurately quantify the amount of light absorbed by the photosynthetic plant pigments, called the absorbed photosynthetically active radiation (APAR). The ratio between fluorescence emission and light absorption (i.e., SIF and APAR) is known as the fluorescence quantum efficiency (FQE). In this work, simultaneous measurements of SIF and reflected radiance were performed both at the leaf and canopy levels for Salvia farinacea and Datura stramonium plants. With the aim of disentangling the proportion of sunlit and shaded absorbed PAR, an ad hoc experimental setup was designed to provide a wide range of fraction vegetation cover (FVC) canopy settings. A linear spectral unmixing method was proposed to estimate the contribution of soil, sunlit, and shaded vegetation from the total reflectance spectrum measured at the canopy level. Later, the retrieved sunlit FVC (FVCsunlit) was used to estimate the (dominant) green APAR flux, and this was combined with the integral of the spectrally resolved fluorescence to calculate the FQE. The results of this study demonstrated that under no-stress conditions and independently of the FVC, similar FQE values were observed when SIF was properly normalised by the green APAR flux. The results obtained showed that the reflectance spectra retrieved using a linear unmixing method had a maximum RMSE of less than 0.03 along the spectrum. The FVCsunlit evaluation showed an RMSE of 14% with an R2 of 0.84. Moreover, the FQE values obtained at the top of the canopy (TOC) were found statistically comparable to the reference values at the leaf level. These results support further efforts to improve the interpretation of fluorescence based on field spectroscopy and the further upscaling to imaging spectroscopy at airborne and satellite levels. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

15 pages, 2368 KiB  
Article
An Assessment of Relations between Vegetation Green FPAR and Vegetation Indices through a Radiative Transfer Model
by Shouzhen Liang, Wandong Ma, Xueyan Sui, Meng Wang and Hongzhong Li
Plants 2023, 12(10), 1927; https://doi.org/10.3390/plants12101927 - 9 May 2023
Cited by 8 | Viewed by 3289
Abstract
The fraction of absorbed photosynthetically active radiation (FPAR) is widely used in remote sensing-based production models to estimate gross or net primary production. The forest canopy is composed primarily of photosynthetically active vegetation (PAV, green leaves) and non-photosynthetic vegetation (NPV e.g., branches), which [...] Read more.
The fraction of absorbed photosynthetically active radiation (FPAR) is widely used in remote sensing-based production models to estimate gross or net primary production. The forest canopy is composed primarily of photosynthetically active vegetation (PAV, green leaves) and non-photosynthetic vegetation (NPV e.g., branches), which absorb PAR but only the PAR absorbed by PAV is used for photosynthesis. Green FPAR (the fraction of PAR absorbed by PAV) is essential for the accurate estimation of GPP. In this study, the scattering by arbitrary inclined leaves (SAIL) model was reconfigured to partition the PAR absorbed by forest canopies. The characteristics of green FPAR and its relationships with spectral vegetation indices (NDVI, EVI, EVI2, and SAVI) were analyzed. The results showed that green FPAR varied with the canopy structure. In the forests with high coverage, the green FPAR was close to the total FPAR, while in the open forests, the green FPAR was far smaller than the total FPAR. Plant area index had more important impacts on the green FPAR than the proportion of PAV and optical properties of PAV. The significant relationships were found between spectral vegetation indices and the green FPAR, but EVI was more suitable to describe the variation of canopy green FPAR. Full article
(This article belongs to the Special Issue Plant-Soil Interaction Response to Global Change)
Show Figures

Figure 1

22 pages, 6241 KiB  
Article
Forest Damage by Super Typhoon Rammasun and Post-Disturbance Recovery Using Landsat Imagery and the Machine-Learning Method
by Xu Zhang, Hongbo Jiao, Guangsheng Chen, Jianing Shen, Zihao Huang and Haiyan Luo
Remote Sens. 2022, 14(15), 3826; https://doi.org/10.3390/rs14153826 - 8 Aug 2022
Cited by 5 | Viewed by 3379
Abstract
Typhoon Rammasun landed on the southern coastal region of Guangdong and Hainan Provinces on 18 July 2014, and is the strongest recorded typhoon since the 1970s in China. It caused enormous losses in human lives, property, and crop yields in two provinces; however, [...] Read more.
Typhoon Rammasun landed on the southern coastal region of Guangdong and Hainan Provinces on 18 July 2014, and is the strongest recorded typhoon since the 1970s in China. It caused enormous losses in human lives, property, and crop yields in two provinces; however, its impact on forests and subsequent recovery has not yet been assessed. Here we detected forest damage area and severity from Typhoon Rammasun using Landsat 8 OLI imagery, the Random Forest (RF) machine-learning algorithm, and univariate image differencing (UID) methods, and the controlling factors on damage severity and canopy greenness recovery were further analyzed. The accuracy evaluations against sample plot data indicated that the RF approach can more accurately detect the affected forest area and damage severity than the UID-based methods, with higher overall accuracy (94%), Kappa coefficient (0.92), and regression coefficient (R2 = 0.81; p < 0.01). The affected forest area in Guangdong and Hainan was 13,556 km2 and 3914 km2, accounting for 13.8% and 18.5% total forest area, respectively. The highest affected forest fractions reached 70% in some cities or counties. The proportions of severe damage category accounted for 20.85% and 21.31% of all affected forests in Guangdong and Hainan, respectively. Our study suggests that increasing tree density and choosing less sensitive tree species would reduce damage from typhoons in vulnerable areas such as fringe, scattered, and high-slope forests. The canopy greenness of damaged forests recovered rapidly within three months for both provinces; however, management strategies should still be applied in the severely damaged areas to sustain forest functions since the persistent forest canopy structure and biomass may require a longer time to recover. Full article
(This article belongs to the Special Issue Forest Disturbance Monitoring Using Satellite Remote Sensing)
Show Figures

Graphical abstract

18 pages, 3029 KiB  
Article
Hyperspectral Reflectance Characteristics of Rice Canopies under Changes in Diffuse Radiation Fraction
by Tao Zhang, Xiaodong Jiang, Linlin Jiang, Xuran Li, Shenbin Yang and Yingxue Li
Remote Sens. 2022, 14(2), 285; https://doi.org/10.3390/rs14020285 - 8 Jan 2022
Cited by 8 | Viewed by 2358
Abstract
To analyze the hyperspectral reflectance characteristics of rice canopies under changes in diffuse radiation fraction, experiments using different cover materials were performed in Nanjing, China, during 2016 and 2017. Each year, two treatments with different reduction ratios of diffuse radiation fraction but with [...] Read more.
To analyze the hyperspectral reflectance characteristics of rice canopies under changes in diffuse radiation fraction, experiments using different cover materials were performed in Nanjing, China, during 2016 and 2017. Each year, two treatments with different reduction ratios of diffuse radiation fraction but with similar shading rates were set in the field experiment: In T1, total solar radiation shading rate was 14.10%, and diffuse radiation fraction was 31.09%; in T2, total solar radiation shading rate was 14.42%, and diffuse radiation fraction was 39.98%, respectively. A non-shading treatment was included as a control (CK). Canopy hyperspectral reflectance, soil and plant analyzer development (SPAD), and leaf area index (LAI) were measured under shading treatments on different days after heading. The red-edge parameters (position, λ0; maximum amplitude, Dλ; area, α0; width, σ) were calculated, as well as the area, depth, and width of three absorption bands. The location of the first absorption band appeared in the range of 553–788 nm, and the second and third absorption bands appeared in the range of 874–1257 nm. The results show that the shading treatment had a significant effect on the rice canopy’s hyperspectral reflectance. Compared with CK, the canopy reflectance of T1 (the diffuse radiation fraction was 31.09%) and T2 (the diffuse radiation fraction was 39.98%) decreased in the visible light range (350–760 nm) and increased in the near-infrared range (800–1350 nm), while the red-edge parameters (λ0, Dλ, α0), SPAD, and LAI increased. On the other hand, under shading treatment, the increase in diffuse radiation fraction also had a significant impact on the hyperspectral spectra of the rice canopy, especially at 14 days after heading. Compared with T1, the green peak (550 nm) of T2 reduced by 16.12%, and the average reflectance at 800–900 nm increased by 10%. Based on correlation analysis, it was found that these hyperspectral reflectance characteristics were mainly due to the increase in SPAD (2.31%) and LAI (7.62%), which also led to the increase in Dλ (8.70%) and α0 (13.89%). Then, the second and third absorption features of T2 were significantly different from that of T1, which suggests that the change in diffuse radiation fraction could affect the process of water vapor absorption by rice. Full article
Show Figures

Graphical abstract

24 pages, 7338 KiB  
Article
Rice Height Monitoring between Different Estimation Models Using UAV Photogrammetry and Multispectral Technology
by Wenyi Lu, Tsuyoshi Okayama and Masakazu Komatsuzaki
Remote Sens. 2022, 14(1), 78; https://doi.org/10.3390/rs14010078 - 24 Dec 2021
Cited by 18 | Viewed by 5247
Abstract
Unmanned aerial vehicle (UAV) photogrammetry was used to monitor crop height in a flooded paddy field. Three multi-rotor UAVs were utilized to conduct flight missions in order to capture RGB (RedGreenBlue) and multispectral images, and these images were analyzed using several different models [...] Read more.
Unmanned aerial vehicle (UAV) photogrammetry was used to monitor crop height in a flooded paddy field. Three multi-rotor UAVs were utilized to conduct flight missions in order to capture RGB (RedGreenBlue) and multispectral images, and these images were analyzed using several different models to provide the best results. Two image sets taken by two UAVs, mounted with RGB cameras of the same resolution and Global Navigation Satellite System (GNSS) receivers of different accuracies, were applied to perform photogrammetry. Two methods were then proposed for creating crop height models (CHMs), one of which was denoted as the M1 method and was based on the Digital Surface Point Cloud (DSPC) and the Digital Terrain Point Cloud (DSPT). The other was denoted as the M2 method and was based on the DSPC and a bathymetric sensor. An image set taken by another UAV mounted with a multispectral camera was used for multispectral-based photogrammetry. A Normal Differential Vegetation Index (NDVI) and a Vegetation Fraction (VF) were then extracted. A new method based on multiple linear regression (MLR) combining the NDVI, the VF, and a Soil Plant Analysis Development (SPAD) value for estimating the measured height (MH) of rice was then proposed and denoted as the M3 method. The results show that the M1 method, the UAV with a GNSS receiver with a higher accuracy, obtained more reliable estimations, while the M2 method, the UAV with a GNSS receiver of moderate accuracy, was actually slightly better. The effect on the performance of CHMs created by the M1 and M2 methods is more negligible in different plots with different treatments; however, remarkably, the more uniform the distribution of vegetation over the water surface, the better the performance. The M3 method, which was created using only a SPAD value and a canopy NDVI value, showed the highest coefficient of determination (R2) for overall MH estimation, 0.838, compared with other combinations. Full article
Show Figures

Figure 1

9 pages, 246 KiB  
Communication
Using Canopy Measurements to Predict Soybean Seed Yield
by Peder K. Schmitz and Hans J. Kandel
Remote Sens. 2021, 13(16), 3260; https://doi.org/10.3390/rs13163260 - 18 Aug 2021
Cited by 11 | Viewed by 3601
Abstract
Predicting soybean [Glycine max (L.) Merr.] seed yield is of interest for crop producers to make important agronomic and economic decisions. Evaluating the soybean canopy across a range of common agronomic practices, using canopy measurements, provides a large inference for soybean producers. [...] Read more.
Predicting soybean [Glycine max (L.) Merr.] seed yield is of interest for crop producers to make important agronomic and economic decisions. Evaluating the soybean canopy across a range of common agronomic practices, using canopy measurements, provides a large inference for soybean producers. The individual and synergistic relationships between fractional green canopy cover (FGCC), photosynthetically active radiation (PAR) interception, and a normalized difference vegetative index (NDVI) measurements taken throughout the growing season to predict soybean seed yield in North Dakota, USA, were investigated in 12 environments. Canopy measurements were evaluated across early and late planting dates, 407,000 and 457,000 seeds ha−1 seeding rates, 0.5 and 0.8 relative maturities, and 30.5 and 61 cm row spacings. The single best yield predictor was an NDVI measurement at R5 (beginning of seed development) with a coefficient of determination of 0.65 followed by an FGCC measurement at R5 (R2 = 0.52). Stepwise and Lasso multiple regression methods were used to select the best prediction models using the canopy measurements explaining 69% and 67% of the variation in yield, respectively. Including plant density, which can be easily measured by a producer, with an individual canopy measurement did not improve the explanation in yield. Using FGCC to estimate yield across the growing season explained a range of 49% to 56% of yield variation, and a single FGCC measurement at R5 (R2 = 0.52) being the most efficient and practical method for a soybean producer to estimate yield. Full article
(This article belongs to the Section Remote Sensing Communications)
21 pages, 10895 KiB  
Article
Estimating Canopy Density Parameters Time-Series for Winter Wheat Using UAS Mounted LiDAR
by Jordan Steven Bates, Carsten Montzka, Marius Schmidt and François Jonard
Remote Sens. 2021, 13(4), 710; https://doi.org/10.3390/rs13040710 - 15 Feb 2021
Cited by 41 | Viewed by 7661
Abstract
Monitoring of canopy density with related metrics such as leaf area index (LAI) makes a significant contribution to understanding and predicting processes in the soil–plant–atmosphere system and to indicating crop health and potential yield for farm management. Remote sensing methods using optical sensors [...] Read more.
Monitoring of canopy density with related metrics such as leaf area index (LAI) makes a significant contribution to understanding and predicting processes in the soil–plant–atmosphere system and to indicating crop health and potential yield for farm management. Remote sensing methods using optical sensors that rely on spectral reflectance to calculate LAI have become more mainstream due to easy entry and availability. Methods with vegetation indices (VI) based on multispectral reflectance data essentially measure the green area index (GAI) or response to chlorophyll content of the canopy surface and not the entire aboveground biomass that may be present from non-green elements that are key to fully assessing the carbon budget. Methods with light detection and ranging (LiDAR) have started to emerge using gap fraction (GF) to estimate the plant area index (PAI) based on canopy density. These LiDAR methods have the main advantage of being sensitive to both green and non-green plant elements. They have primarily been applied to forest cover with manned airborne LiDAR systems (ALS) and have yet to be used extensively with crops such as winter wheat using LiDAR on unmanned aircraft systems (UAS). This study contributes to a better understanding of the potential of LiDAR as a tool to estimate canopy structure in precision farming. The LiDAR method proved to have a high to moderate correlation in spatial variation to the multispectral method. The LiDAR-derived PAI values closely resemble the SunScan Ceptometer GAI ground measurements taken early in the growing season before major stages of senescence. Later in the growing season, when the canopy density was at its highest, a possible overestimation may have occurred. This was most likely due to the chosen flight parameters not providing the best depictions of canopy density with consideration of the LiDAR’s perspective, as the ground-based destructive measurements provided lower values of PAI. Additionally, a distinction between total LiDAR-derived PAI, multispectral-derived GAI, and brown area index (BAI) is made to show how the active and passive optical sensor methods used in this study can complement each other throughout the growing season. Full article
(This article belongs to the Special Issue LiDAR for Precision Agriculture)
Show Figures

Graphical abstract

24 pages, 4581 KiB  
Article
Surface Energy Flux Estimation in Two Boreal Settings in Alaska Using a Thermal-Based Remote Sensing Model
by Jordi Cristóbal, Anupma Prakash, Martha C. Anderson, William P. Kustas, Joseph G. Alfieri and Rudiger Gens
Remote Sens. 2020, 12(24), 4108; https://doi.org/10.3390/rs12244108 - 16 Dec 2020
Cited by 9 | Viewed by 2325
Abstract
Recent Arctic warming has led to changes in the hydrological cycle. Circum-Arctic and circumboreal ecosystems are showing evidence of “greening” and “browning” due to temperature warming leading to shrub encroachment, tree mortality and deciduousness. Increases in latent heat flux from increased evapotranspiration rates [...] Read more.
Recent Arctic warming has led to changes in the hydrological cycle. Circum-Arctic and circumboreal ecosystems are showing evidence of “greening” and “browning” due to temperature warming leading to shrub encroachment, tree mortality and deciduousness. Increases in latent heat flux from increased evapotranspiration rates associated with deciduous-dominated ecosystems may be significant, because deciduous vegetation has extremely high-water use and water storage capacity compared to coniferous and herbaceous plant species. Thus, the impact of vegetation change in boreal ecosystems on regional surface energy balance is a significant knowledge gap that must be addressed to better understand observed trends in water use/availability and tree mortality. To this end, output from a two-source energy balance model (TSEB) with modifications for high latitude boreal ecosystems was evaluated using flux tower measurements and Terra/Aqua MODIS remote sensing data collected over the two largest boreal forest types in Alaska (birch and black spruce). Data under clear and overcast days and from leaf-out to senescence from 2012 to 2016 were used for validation. Using flux tower observations and local model inputs, modifications to the model formulation for soil heat flux, net radiation partitioning, and canopy transpiration were required for the boreal forest. These improvements resulted in a mean absolute percent difference of around 23% for turbulent daytime fluxes when surface temperature from the flux towers was used, similar to errors reported in other studies conducted in warmer climates. Results when surface temperature from Terra/Aqua MODIS estimates were used as model input suggested that these model improvements are pertinent for regional scale applications. Vegetation indices and LAI time-series from the Terra/Aqua MODIS products were confirmed to be appropriate for energy flux estimation in the boreal forest to describe vegetation properties (LAI and green fraction) when field observations are not available. Model improvements for boreal settings identified in this study will be implemented operationally over North America to map surface energy fluxes at regional scales using long time series of remote sensing estimates as part of NOAA’s GOES Evapotranspiration and Drought Information System. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop