Using Canopy Measurements to Predict Soybean Seed Yield
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NASS-USDA. Crop Production. 2020. Available online: https://www.nass.usda.gov/Quick_Stats/Lite/index.php (accessed on 16 August 2021).
- Hong, D.; Yokoya, N.; Chanussot, J.; Zhu, X.X. An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing. IEEE Trans. Image Process. 2019, 28, 1923–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schnell, J.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. NASA Spec. Publ. 1974, 351, 309–317. [Google Scholar]
- Estep, L.; Terrie, G.; Davis, B. Crop stress detection using AVIRIS hyperspectral imagery and artificial neural networks. Int. J. Remote Sens. 2004, 25, 4999–5004. [Google Scholar] [CrossRef]
- Thapa, S.; Rudd, J.C.; Xue, Q.; Bhandari, M.; Reddy, S.K.; Jessup, K.E.; Liu, S.; Devkota, R.N.; Baker, J.; Baker, S. Use of NDVI for characterizing winter wheat response to water stress in a semi-arid environment. J. Crop. Improv. 2019, 33, 633–648. [Google Scholar] [CrossRef]
- Stoms, D.M.; Hargrove, W.W. Potential NDVI as a baseline for monitoring ecosystem functioning. Int. J. Remote Sens. 2000, 21, 401–407. [Google Scholar] [CrossRef]
- Xu, C.; Katchova, A.L. Predicting Soybean Yield with NDVI Using a Flexible Fourier Transform Model. J. Agric. Appl. Econ. 2019, 51, 402–416. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.L.; Dwyer, L.M.; Costa, C.; Cober, E.R.; Morrison, M.J. Early prediction of soybean yield from canopy reflectance measurements. Agron. J. 2001, 93, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Mourtzinis, S.; Rowntree, S.C.; Suhre, J.J.; Weidenbenner, N.H.; Wilson, E.W.; Davis, V.M.; Naeve, S.L. The use of reflectance data for in-season soybean yield prediction. Agron. J. 2014, 106, 115–1168. [Google Scholar] [CrossRef]
- Vannoppen, A.; Gobin, A.; Kotova, L.; Top, S.; De Cruz, L.; Viksna, A.; Aniskevich, S.; Bobylev, L.; Buntemeyer, L.; Caluwaerts, S.; et al. Wheat yield estimation from NDVI and regional climate models in Latvia. Remote Sens. 2020, 12, 2206. [Google Scholar] [CrossRef]
- Teal, R.K.; Tubana, B.; Girma, K.; Freeman, K.W.; Arnall, D.B.; Walsh, O.; Raun, W.R. In-Season Prediction of Corn Grain Yield Potential Using Normalized Difference Vegetation Index. Agron. J. 2006, 98, 1488–1494. [Google Scholar] [CrossRef] [Green Version]
- Genovese, G.; Vignolles, C.; Nègre, T.; Passera, G. A methodology for a combined use of normalised difference vegetation index and CORINE land cover data for crop yield monitoring and forecasting. A case study on Spain. Agronomie 2001, 21, 91–111. [Google Scholar] [CrossRef] [Green Version]
- Harrell, D.L.; Tubaña, B.S.; Walker, T.W.; Phillips, S.B. Estimating Rice Grain Yield Potential Using Normalized Difference Vegetation Index; Estimating Rice Grain Yield Potential Using Normalized Difference Vegetation Index. Agron. J. 2011, 103, 1717–1723. [Google Scholar] [CrossRef]
- Vannoppen, A.; Gobin, A. Estimating Farm Wheat Yields from NDVI and Meteorological Data. Agronomy 2021, 11, 946. [Google Scholar] [CrossRef]
- Lee, C.D. Reducing Row Widths to Increase Yield: Why It Does Not Always Work. Crop. Manag. 2006, 5, 1–7. [Google Scholar] [CrossRef]
- Wells, R. Soybean Growth Response to Plant Density: Relationships among Canopy Photosynthesis, Leaf Area, and Light Interception. Crop. Sci. 1991, 31, 755–761. [Google Scholar] [CrossRef]
- Egli, D.B. Mechanisms responsible for soybean yield response to equidistant planting patterns. Agron. J. 1994, 86, 1046–1049. [Google Scholar] [CrossRef]
- Patrignani, A.; Ochsner, T.E. Canopeo: A powerful new tool for measuring fractional green canopy cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, W.W.; Ruwe, K.; Schlemmer, M.R. Comparison of three leaf area index meters in a corn canopy. Crop. Sci. 2000, 40, 1179–1183. [Google Scholar] [CrossRef]
- Perry, E.M.; Fitzgerald, G.J.; Poole, N.; Craig, S.; Whitlock, A. Ndvi from Active Optical Sensors as a Measure of Canopy Cover and Biomass. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2012, 317–319. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, A.W.; Lindsey, L.E.; Harrison, S.K.; Paul, P.A. Estimating wheat yield with normalized difference vegetation index and fractional green canopy cover. Crop. Forage Turfgrass Manag. 2018, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Singer, J.W. Soybean light interception and yield response to row spacing and biomass removal. Crop. Sci. 2001, 41, 424–429. [Google Scholar] [CrossRef]
- Gardner, F.P.; Auma, E.O. Canopy structure, light interception, and yield and market quality of peanut genotypes as influenced by planting pattern and planting date. F. Crop. Res. 1989, 20, 13–29. [Google Scholar] [CrossRef]
- Chang, K.W.; Shen, Y.; Lo, J.C. Predicting rice yield using canopy reflectance measured at booting stage. Agron. J. 2005, 97, 872–878. [Google Scholar] [CrossRef]
- Schmitz, P.K.; Stanley, J.D.; Kandel, H.J. Row Spacing and Seeding Rate Effect on Soybean Seed Yield in North Dakota. Crop. Forage Turfgrass Manag. 2020, 6, e20010. [Google Scholar] [CrossRef]
- Stanley, J.D. Yield-Limiting Factors in North Dakota Soybean Fields. Master’s Thesis, North Dakota State University, Fargo, ND, USA, 2017. [Google Scholar]
- Mourtzinis, S.; Conley, S.P. Delineating soybean maturity groups across the US. Agron. J. 2017, 109, 1397–1403. [Google Scholar] [CrossRef] [Green Version]
- Andrade, F.H.; Calviño, P.; Cirilo, A.; Barbieri, P. Yield Responses to Narrow Rows Depend on Increased Radiation Interception. Agron. J. 2002, 94, 975–980. [Google Scholar] [CrossRef]
- Kandel, H.; Endres, G. Soybean Production Field Guide for North Dakota; A1172 (revised); North Dakota State University: Fargo, ND, USA, 2019. [Google Scholar]
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of Development Descriptions for Soybeans, Glycine Max (L.) Merrill1. Crop. Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Kumar, S.; Attri, S.D.; Singh, K.K. Comparison of lasso and stepwise regression technique for wheat yield prediction. J. Agrometeorol. 2019, 21, 188–192. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Information and likelihood theory: A basis for model selection and inference. In e: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2004. [Google Scholar]
- Lollato, R.P.; Diaz, D.A.R.; DeWolf, E.; Knapp, M.; Peterson, D.E.; Fritz, A.K. Agronomic practics for reducing wheat yield gaps: A quantitative appraisal of progressive producers. Crop. Sci. 2019, 59, 333–350. [Google Scholar] [CrossRef] [Green Version]
- Derksen, S.; Keselman, H.J. Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. Br. J. Math. Stat. Psychol. 1992, 45, 265–282. [Google Scholar] [CrossRef]
- Ma, B.L.; Morrison, M.J.; Dwyer, L.M. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agron. J. 1996, 88, 915–920. [Google Scholar] [CrossRef]
- Vega, C.R.; Andrade, F.H.; Sadras, V.O.; Uhart, S.A.; Valentinuz, O.R. Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop. Sci. 2001, 41, 748–754. [Google Scholar] [CrossRef] [Green Version]
- Board, J. Light interception efficiency and light quality affect yield compensation of soybean at low plant populations. Crop. Sci. 2000, 40, 1285–1294. [Google Scholar] [CrossRef]
- Christenson, B.S.; Schapaugh, W.T.; An, N.; Price, K.P.; Prasad, V.; Fritz, A.K. Predicting soybean relative maturity and seed yield using canopy reflectance. Crop. Sci. 2016, 56, 625–643. [Google Scholar] [CrossRef] [Green Version]
- Hoyos-Villegas, V.; Fritschi, F.B. Relationships among vegetation indices derived from aerial photographs and soybean growth and yield. Crop. Sci. 2013, 53, 2631–2642. [Google Scholar] [CrossRef]
- Aparicio, N.; Villegas, D.; Casadesus, J.; Araus, J.L.; Royo, C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron. J. 2000, 92, 83–91. [Google Scholar] [CrossRef]
- Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Hornero, A.; Albà, A.H.; Das, B.; Craufurd, P.; et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 2015, 11, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibshirani, R.J. The LASSO method for variable selection in the cox model. Stat. Med. 1997, 16, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.C.F.; Molin, J.P. Soybean yield estimation and its components: A linear regression approach. Agriculture 2020, 10, 384. [Google Scholar] [CrossRef]
- Schmitz, P.K.; Kandel, H.J. Individual and Combined Effects of Planting Date, Seeding Rate, Relative Maturity, and Row Spacing on Soybean Yield. Agronomy 2021, 11, 605. [Google Scholar] [CrossRef]
- Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sens. Environ. 2016, 187, 91–101. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Yang, G.; Liu, J.; Cao, J.; Li, C.; Zhao, X.; Gai, J. Establishment of plot-yield prediction models in soybean breeding programs using UAV-based hyperspectral remote sensing. Remote Sens. 2019, 11, 2752. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [Google Scholar] [CrossRef]
- Yao, J.; Meng, D.; Zhao, Q.; Cao, W.; Xu, Z. Nonconvex-Sparsity and Nonlocal-Smoothness-Based Blind Hyperspectral Unmixing. IEEE Trans. Image Process. 2019, 28, 2991–3006. [Google Scholar] [CrossRef] [PubMed]
Location | Soil Series | Soil Taxonomy | Tillage | PC 1 | GPS |
---|---|---|---|---|---|
Casselton | Kindred | Fine-silty, mixed, superactive, frigid Typic Endoaquolls | CT | SB | 46.882, −97.251 |
Bearden | Fine-silty, mixed, superactive, frigid Aeric Calciaquolls | ||||
Fargo | Fargo | Fine, smectitic, frigid Typic Epiaquerts | NT | W | 46.932, −96.859 |
Ryan | Fine, smectitic, frigid Typic Natraquerts | ||||
Prosper | Bearden | Fine-silty, mixed, superactive, frigid Aeric Calciaquolls | CT | W | 47.001, −97.112. |
Lindaas | Fine, smectitic, frigid Typic Argiaquolls |
Location | Planting Date | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | Depth | NO3-N | P | K | pH | OM | |
DOY 1 | cm | kg ha−1 | mg kg−1 | g kg−1 | ||||
─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ 2019 ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ | ||||||||
Casselton | 137 | 154 | 0–15 | 16 | 8 | 368 | 7.4 | 5.2 |
15–61 | 37 | 7 | 303 | 7.5 | 3.9 | |||
Fargo | 137 | 154 | 0–15 | 8 | 15 | 495 | 7.8 | 5.8 |
15–61 | 14 | 5 | 300 | 7.8 | 4.0 | |||
Prosper | 136 | 149 | 0–15 | 35 | 20 | 232 | 7.9 | 3.4 |
15–61 | 57 | 6 | 176 | 8.2 | 2.5 | |||
─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ 2020 ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ | ||||||||
Casselton | 142 | 153 | 0–15 | 19 | 18 | 360 | 7.5 | 4.8 |
15–61 | 18 | 7 | 279 | 7.8 | 4.5 | |||
Fargo | 133 | 149 | 0–15 | 22 | 18 | 489 | 7.7 | 5.4 |
15–61 | 26 | 6 | 353 | 8.0 | 4.0 | |||
Prosper | 143 | 153 | 0–15 | 21 | 30 | 269 | 7.2 | 4.5 |
15–61 | 24 | 17 | 216 | 7.4 | 3.2 |
FGCC 1 | PAR | NDVI | ||||
---|---|---|---|---|---|---|
Stage 2 | R2 3 | RMSE | R2 | RMSE | R2 | RMSE |
V2 | 0.05 | 710 | 0.01 | 728 | 0.01 | 725 |
V4 | 0.21 | 646 | 0.21 | 647 | 0.19 | 653 |
R1 | 0.43 | 551 | 0.24 | 635 | 0.41 | 560 |
R3 | 0.49 | 519 | 0.30 | 608 | 0.05 | 708 |
R5 | 0.52 | 507 | 0.01 | 724 | 0.65 | 434 |
R7 | 0.16 | 668 | 0.23 | 637 | 0.01 | 728 |
Parameter 1 | Stepwise Regression | Lasso Regression |
---|---|---|
Adj. R2 | 0.68 | 0.66 |
Validated Adj. R2 | 0.69 | 0.67 |
RMSE | 411 | 425 |
AIC | 3346 | 3362 |
Variables Used 2 | NDVI.R1 PAR.R1 NDVI.R3 FGCC.R3 NDVI.R5 PAR.R5 | NDVI.R1 NDVI.R3 FGCC.R3 NDVI.R5 FGCC.R5 |
Method | Equation 1 |
---|---|
Stepwise | Ŷ = 874 × NDVI.R1 − 8 × PAR.R1 + 1913 × NDVI.R3 + 9 × FGCC.R3 + 9357 × NDVI.R5 – 13 × PAR.R5 − 5604 |
Lasso | Ŷ = 40 × NDVI.R1 + 562 × NDVI.R3 + 7 × FGCC.R3 + 8185 × NDVI.R5 + 5 × FGCC.R5 − 4921 |
Established Plant Density | ||||||
---|---|---|---|---|---|---|
FGCC 1 | PAR | NDVI | ||||
Stage 2 | Adj. R2 3 | RMSE | Adj. R2 | RMSE | Adj. R2 | RMSE |
V2 | 0.05 | 711 | 0.01 | 729 | 0.01 | 726 |
V4 | 0.22 | 643 | 0.21 | 647 | 0.20 | 654 |
R1 | 0.44 | 548 | 0.24 | 636 | 0.42 | 557 |
R3 | 0.49 | 519 | 0.30 | 609 | 0.05 | 710 |
R5 | 0.52 | 508 | 0.01 | 725 | 0.65 | 435 |
R7 | 0.16 | 669 | 0.23 | 638 | 0.01 | 729 |
FGCC 1 | Adj. R2 | RMSE | Equation |
---|---|---|---|
Growth Stage 2 | |||
R3 | 0.49 | 510 | Ŷ = 33.4 × FGCC.R3 + 662.3 |
R5 | 0.52 | 510 | Ŷ = 50.3 × FGCC.R5 − 868.2 |
R3 R5 | 0.54 | 479 | Ŷ = 18.8 × FGCC.R3 + 29.4 × FGCC.R5 − 603.2 |
V2 R1 R3 R5 | 0.56 | 470 | Ŷ = −7 × FGCC.V2 + 7 × FGCC.R1 + 13 × FGCC.R3 + 25 × FGCC.R5 − 132 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitz, P.K.; Kandel, H.J. Using Canopy Measurements to Predict Soybean Seed Yield. Remote Sens. 2021, 13, 3260. https://doi.org/10.3390/rs13163260
Schmitz PK, Kandel HJ. Using Canopy Measurements to Predict Soybean Seed Yield. Remote Sensing. 2021; 13(16):3260. https://doi.org/10.3390/rs13163260
Chicago/Turabian StyleSchmitz, Peder K., and Hans J. Kandel. 2021. "Using Canopy Measurements to Predict Soybean Seed Yield" Remote Sensing 13, no. 16: 3260. https://doi.org/10.3390/rs13163260
APA StyleSchmitz, P. K., & Kandel, H. J. (2021). Using Canopy Measurements to Predict Soybean Seed Yield. Remote Sensing, 13(16), 3260. https://doi.org/10.3390/rs13163260