Surface Energy Flux Estimation in Two Boreal Settings in Alaska Using a Thermal-Based Remote Sensing Model
Abstract
:1. Introduction
2. Methodology
2.1. Overview of the Two-Source Energy Balance (TSEB) Model
2.2. Adjustments to the Effective Priestley–Taylor and the Soil Heat Flux Configurations for Boreal Forest Settings
2.2.1. TSEB Priestley–Taylor Coefficient Modifications and Evaluation
2.2.2. Modifications and Evaluation for Soil Heat Flux
3. Study Area and Instrumentation
4. Model Input and Evaluation
4.1. Micrometeorological Data Processing
4.2. Remote Sensing Estimates of Vegetation Properties
5. Results and Discussion
5.1. Model Performance Using In-Situ TRAD Measurements
5.2. Evaluation of Remote Sensing Vegetation Properties Estimates
5.3. Seasonal Dynamics in Surface Energy Fluxes
5.4. Model Performance Using Remote Sensing TRAD Estimates
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Summary of Equations Used to Estimate Aerodynamic Resistances in TSEB
References
- Serreze, M.C.; Barry, R.G. Processes and impacts of arctic amplification: A research synthesis. Glob. Planet Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- AMAP. Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost; Swipa 2011, Overview Report; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2012; p. 96. [Google Scholar]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water; Technical Paper of the Intergovernmental Panel on Climate Change; IPCC Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Bhatt, U.S.; Walker, D.A.; Raynolds, M.K.; Comiso, J.C.; Epstein, H.E.; Jia, G.S.; Gens, R.; Pinzon, J.E.; Tucker, C.J.; Tweedie, C.E.; et al. Circumpolar arctic tundra vegetation change is linked to sea ice decline. Earth Interact. 2010, 14, 1–20. [Google Scholar] [CrossRef] [Green Version]
- McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F.S.; de Groot, B.; et al. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. J. Veg. Sci. 2002, 13, 301–314. [Google Scholar] [CrossRef]
- Verbyla, D. The greening and browning of alaska based on 1982–2003 satellite data. Glob. Ecol. Biogeogr. 2008, 17, 547–555. [Google Scholar] [CrossRef]
- Yang, F.; Kumar, A.; Schlesinger, M.E.; Wang, W. Intensity of hydrological cycles in warmer climates. J. Clim. 2003, 16, 2419–2423. [Google Scholar] [CrossRef]
- Calef, M.P.; Varvak, A.; McGuire, A.D.; Chapin, F.S.; Reinhold, K.B. Recent changes in annual area burned in interior alaska: The impact of fire management. Earth Interact. 2015, 19, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bintanja, R.; Selten, F.M. Future increases in arctic precipitation linked to local evaporation and sea-ice retreat. Nature 2014, 509, 479–482. [Google Scholar] [CrossRef]
- Wendler, G.; Shulski, M. A century of climate change for fairbanks, alaska. Arctic 2009, 62, 295–300. [Google Scholar] [CrossRef]
- Osterkamp, T.E.; Jorgenson, M.T.; Schuur, E.A.G.; Shur, Y.L.; Kanevskiy, M.Z.; Vogel, J.G.; Tumskoy, V.E. Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska. Permafr. Periglac 2009, 20, 235–256. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Hinzman, L.D.; Peterson, B.J.; Bromwich, D.H.; Hamilton, L.C.; Morison, J.; Romanovsky, V.E.; Sturm, M.; Webb, R.S. The Hydrologic Cycle and its Role in Arctic and Global Environmental Change: A Rationale and Strategy for Synthesis Study; Arctic Research Consortium: Fairbanks, AK, USA, 2001; p. 84. [Google Scholar]
- Rawlins, M.A.; Steele, M.; Holland, M.M.; Adam, J.C.; Cherry, J.E.; Francis, J.A.; Groisman, P.Y.; Hinzman, L.D.; Huntington, T.G.; Kane, D.L.; et al. Analysis of the arctic system for freshwater cycle intensification: Observations and expectations. J. Clim. 2010, 23, 5715–5737. [Google Scholar] [CrossRef]
- Jia, G.J.; Epstein, H.E.; Walker, D.A. Greening of arctic alaska, 1981–2001. Geophys. Res. Lett. 2003, 30, 2067. [Google Scholar] [CrossRef]
- Xu, L.; Myneni, R.B.; Chapin, F.S.; Callaghan, T.V.; Pinzon, J.E.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; Tommervik, H.; et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Chang. 2013, 3, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Myers-Smith, I.H.; Elmendorf, S.C.; Beck, P.S.A.; Wilmking, M.; Hallinger, M.; Blok, D.; Tape, K.D.; Rayback, S.A.; Macias-Fauria, M.; Forbes, B.C.; et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 2015, 5, 887–891. [Google Scholar] [CrossRef]
- Goetz, S.J.; Bunn, A.G.; Fiske, G.J.; Houghton, R.A. Satellite-observed photosynthetic trends across boreal north america associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA 2005, 102, 13521–13525. [Google Scholar] [CrossRef] [Green Version]
- Heskel, M.; Greaves, H.; Kornfeld, A.; Gough, L.; Atkin, O.K.; Turnbull, M.H.; Shaver, G.; Griffin, K.L. Differential physiological responses to environmental change promote woody shrub expansion. Ecol. Evol. 2013, 3, 1149–1162. [Google Scholar] [CrossRef]
- Viereck, L.A. Characteristics of treeline plant communities in Alaska. Ecography 1979, 2, 228–238. [Google Scholar] [CrossRef]
- Suarez, F.; Binkley, D.; Kaye, M.W.; Stottlemyer, R. Expansion of forest stands into tundra in the noatak national preserve, northwest Alaska. Écoscience 1999, 6, 465–470. [Google Scholar] [CrossRef]
- Lloyd, A.H. Ecological histories from alaskan tree lines provide insight into future change. Ecology 2005, 86, 1687–1695. [Google Scholar] [CrossRef] [Green Version]
- Tape, K.E.N.; Sturm, M.; Racine, C. The evidence for shrub expansion in northern alaska and the pan-arctic. Glob. Chang. Biol. 2006, 12, 686–702. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Cable, J.M.; Ogle, K.; Bolton, W.R.; Bentley, L.P.; Romanovsky, V.; Iwata, H.; Harazono, Y.; Welker, J. Permafrost thaw affects boreal deciduous plant transpiration through increased soil water, deeper thaw, and warmer soils. Ecohydrology 2014, 7, 982–997. [Google Scholar] [CrossRef]
- Young-Robertson, J.M.; Bolton, W.R.; Bhatt, U.S.; Cristobal, J.; Thoman, R. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest. Sci. Rep. 2016, 6, 29504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on modis and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Cristóbal, J.; Prakash, A.; Anderson, M.C.; Kustas, W.P.; Euskirchen, E.S.; Kane, D.L. Estimation of surface energy fluxes in the arctic tundra using the remote sensing thermal-based two-source energy balance model. Hydrol. Earth Syst. Sci. 2017, 21, 1339–1358. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface-temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; Gonzalez-Dugo, M.P.; Cammalleri, C.; d’Urso, G.; Pimstein, A.; et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Zhan, X.; Schull, M.; Kalluri, S.; Laszlo, I.; Yu, P.; Carter, C.; Hain, C.; Anderson, M. Evapotranspiration data product from nesdis get-d system upgraded for goes-16 abi observations. Remote Sens. 2019, 11, 2639. [Google Scholar] [CrossRef] [Green Version]
- Kustas, W.P.; Norman, J.M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric. Forest Meteorol. 1999, 94, 13–29. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces. Agron. J. 2000, 92, 847–854. [Google Scholar] [CrossRef]
- Deardorff, J.W. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res. Atmos. 1978, 83, 1889. [Google Scholar] [CrossRef] [Green Version]
- Brutsaert, W. On a derivable formula for long-wave radiation from clear skies. Water Resour. Res. 1975, 11, 742–744. [Google Scholar] [CrossRef]
- Crawford, T.M.; Duchon, C.E. An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. Appl. Meteorol. 1999, 38, 474–480. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Santanello, J.A.; Friedl, M.A. Diurnal covariation in soil heat flux and net radiation. J. Appl. Meteorol. 2003, 42, 851–862. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P.J.; Jackson, R.D.; Brown, P.W.; Nichols, W.D.; Gay, L.W. Spectral estimates of net-radiation and soil heat-flux. Remote Sens. Environ. 1990, 32, 111–124. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Kustas, W.P.; Li, F.Q.; Prueger, J.H.; Mecikalski, J.R. Effects of vegetation clumping on two-source model estimates of surface energy fluxes from an agricultural landscape during smacex. J. Hydrometeorol. 2005, 6, 892–909. [Google Scholar] [CrossRef]
- Li, F.Q.; Kustas, W.P.; Prueger, J.H.; Neale, C.M.U.; Jackson, T.J. Utility of remote sensing-based two-source energy balance model under low- and high-vegetation cover conditions. J. Hydrometeorol. 2005, 6, 878–891. [Google Scholar] [CrossRef]
- Guzinski, R.; Anderson, M.C.; Kustas, W.P.; Nieto, H.; Sandholt, I. Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day–night modis observations. Hydrol. Earth Syst. Sci. 2013, 17, 2809–2825. [Google Scholar] [CrossRef] [Green Version]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Norman, J.M.; Colaizzi, P.D.; Howell, T.A.; Prueger, J.H.; Meyers, T.P.; Wilson, T.B. Application of the priestley–taylor approach in a two-source surface energy balance model. J. Hydrometeorol. 2010, 11, 185–198. [Google Scholar] [CrossRef]
- Baldocchi, D.; Kelliher, F.M.; Black, T.A.; Jarvis, P. Climate and vegetation controls on boreal zone energy exchange. Glob. Chang. Biol. 2000, 6, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Eugster, W.; Rouse, W.R.; Pielke, R.A.; McFadden, J.P.; Baldocchi, D.D.; Kittel, T.G.F.; Chapin, F.S.; Liston, G.E.; Vidale, P.L.; Vaganov, E.; et al. Land-atmosphere energy exchange in arctic tundra and boreal forest: Available data and feedbacks to climate. Glob. Chang. Biol. 2000, 6, 84–115. [Google Scholar] [CrossRef]
- Bolton, W.; Hinzman, L.; Yoshikawa, K. Water balance dynamics of three small catchments in a subarctic boreal forest. IAHS AISH Publ. 2004, 290, 213–223. [Google Scholar]
- Rouse, W.R.; Mills, P.F.; Stewart, R.B. Evaporation in high latitudes. Water Resour. Res. 1977, 13, 909–914. [Google Scholar] [CrossRef]
- Arain, M.A.; Black, T.A.; Barr, A.G.; Griffis, T.J.; Morgenstern, K.; Nesic, Z. Year-round observations of the energy and water vapour fluxes above a boreal black spruce forest. Hydrol. Process 2003, 17, 3581–3600. [Google Scholar] [CrossRef]
- Brümmer, C.; Black, T.A.; Jassal, R.S.; Grant, N.J.; Spittlehouse, D.L.; Chen, B.; Nesic, Z.; Amiro, B.D.; Arain, M.A.; Barr, A.G.; et al. How climate and vegetation type influence evapotranspiration and water use efficiency in canadian forest, peatland and grassland ecosystems. Agric. For. Meteorol. 2012, 153, 14–30. [Google Scholar] [CrossRef]
- Komatsu, H. Forest categorization according to dry-canopy evaporation rates in the growing season: Comparison of the priestley-taylor coefficient values from various observation sites. Hydrol. Process 2005, 19, 3873–3896. [Google Scholar] [CrossRef]
- Gaofeng, Z.; Ling, L.; Yonghong, S.; Xufeng, W.; Xia, C.; Jinzhu, M.; Jianhua, H.; Kun, Z.; Changbin, L. Energy flux partitioning and evapotranspiration in a sub-alpine spruce forest ecosystem. Hydrol. Process 2014, 28, 5093–5104. [Google Scholar] [CrossRef]
- Barr, A.G.; Betts, A.K.; Black, T.A.; McCaughey, J.H.; Smith, C.D. Intercomparison of boreas northern and southern study area surface fluxes in 1994. J. Geophys. Res. Atmos. 2001, 106, 33543–33550. [Google Scholar] [CrossRef]
- Andreu, A.; Kustas, W.; Polo, M.; Carrara, A.; González-Dugo, M. Modeling surface energy fluxes over a dehesa (oak savanna) ecosystem using a thermal based two-source energy balance model (tseb) i. Remote Sens. 2018, 10, 567. [Google Scholar] [CrossRef] [Green Version]
- Spence, C.; Rouse, W.R. The energy budget of canadian shield subarctic terrain and its impact on hillslope hydrological processes. J. Hydrometeorol. 2002, 3, 208–218. [Google Scholar] [CrossRef]
- Blanken, P.D.; Black, T.A.; Yang, P.C.; Neumann, H.H.; Nesic, Z.; Staebler, R.; den Hartog, G.; Novak, M.D.; Lee, X. Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. J. Geophys. Res. Atmos. 1997, 102, 28915–28927. [Google Scholar] [CrossRef] [Green Version]
- Beringer, J.; Chapin, F.S.; Thompson, C.C.; McGuire, A.D. Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agric. For. Meteorol. 2005, 131, 143–161. [Google Scholar] [CrossRef]
- Jarvis, P.G.; Massheder, J.M.; Hale, S.E.; Moncrieff, J.B.; Rayment, M.; Scott, S.L. Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. J. Geophys. Res. Atmos. 1997, 102, 28953–28966. [Google Scholar] [CrossRef]
- Chambers, S.D.; Beringer, J.; Randerson, J.T.; Chapin, F.S., III. Fire effects on net radiation and energy partitioning: Contrasting responses of tundra and boreal forest ecosystems. J. Geoph. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Cristóbal, J.; Graham, P.; Buchhorn, M.; Prakash, A. A new integrated high-latitude thermal laboratory for the characterization of land surface processes in alaska’s arctic and boreal regions. Data 2016, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Detto, M.; Montaldo, N.; Albertson, J.D.; Mancini, M.; Katul, G. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous mediterranean ecosystem on sardinia, Italy. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Goring, D.G.; Nikora, V.I. Despiking acoustic doppler velocimeter data. J. Hydraul. Eng. 2002, 128, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Tanner, C.B.; Thurtell, G.W. Anemoclinometer Measurements of Reynolds Stress and Heat Transport in the Atmospheric Surface Layer: Final Report; United States Army Electronics Command: Phoenix, AZ, USA, 1969. [Google Scholar]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Liu, H.; Peters, G.; Foken, T. New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Bound Lay. Meteorol. 2001, 100, 459–468. [Google Scholar] [CrossRef]
- Massman, W.J. A simple method for estimating frequency response corrections for eddy covariance systems. Agric. Forest Meteorol. 2000, 104, 185–198. [Google Scholar] [CrossRef]
- Massman, W.J.; Lee, X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric. Forest Meteorol. 2002, 113, 121–144. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water-vapor transfer. Q. J. Roy. Meteor. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at fluxnet sites. Agric. Forest Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Foken, T.; Aubinet, M.; Finnigan, J.J.; Leclerc, M.Y.; Mauder, M.; Paw U, K.T. Results of a panel discussion about the energy balance closure correction for trace gases. B Am. Meteorol. Soc. 2011, 92, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Domingo, F.; Villagarcia, L.; Brenner, A.J.; Puigdefabregas, J. Measuring and modelling the radiation balance of a heterogeneous shrubland. Plant. Cell Environ. 2000, 23, 27–38. [Google Scholar] [CrossRef]
- Lund, M.; Hansen, B.U.; Pedersen, S.H.; Stiegler, C.; Tamstorf, M.P. Characteristics of summer-time energy exchange in a high arctic tundra heath 2000–2010. Tellus. B 2014, 66, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; Eklundh, L. Timesat—A program for analyzing time-series of satellite sensor data. Comput. Geosci. UK 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Norman, J.; Kustas, W.; Houborg, R.; Starks, P.; Agam, N. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens. Environ. 2008, 112, 4227–4241. [Google Scholar] [CrossRef]
- Li, F.; Kustas, W.P.; Anderson, M.C.; Prueger, J.H.; Scott, R.L. Effect of remote sensing spatial resolution on interpreting tower-based flux observations. Remote Sens. Environ. 2008, 112, 337–349. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Meyers, T.P.; Diak, G.R. An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiency. Agric. Forest. Meteorol. 2000, 101, 265–289. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric. Forest. Meteorol. 2014, 186, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Stoy, P.C.; Mauder, M.; Foken, T.; Marcolla, B.; Boegh, E.; Ibrom, A.; Arain, M.A.; Arneth, A.; Aurela, M.; Bernhofer, C.; et al. A data-driven analysis of energy balance closure across fluxnet research sites: The role of landscape scale heterogeneity. Agric. Forest. Meteorol. 2013, 171, 137–152. [Google Scholar] [CrossRef]
- Foken, T. The energy balance closure problem: An overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, J.M.; Caselles, V.; Niclòs, R.; Coll, C.; Kustas, W.P. Estimating energy balance fluxes above a boreal forest from radiometric temperature observations. Agric. Forest. Meteorol. 2009, 149, 1037–1049. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Turubanova, S.; Hansen, M.C. Regional-scale boreal forest cover and change mapping using landsat data composites for european russia. Remote Sens. Environ. 2011, 115, 548–561. [Google Scholar] [CrossRef]
- Blanken, P.D.; Black, T.A. The canopy conductance of a boreal aspen forest, prince albert national park, canada. Hydrol. Process 2004, 18, 1561–1578. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Prueger, J.H.; Diak, G.R. Surface flux estimation using radiometric temperature: A dual-temperature-difference method to minimize measurement errors. Water Resour. Res. 2000, 36, 2263. [Google Scholar] [CrossRef] [Green Version]
- Holmes, T.R.H.; Hain, C.R.; Crow, W.T.; Anderson, M.C.; Kustas, W.P. Microwave implementation of two-source energy balance approach for estimating evapotranspiration. Hydrol. Earth Syst. Sci. 2018, 22, 1351–1369. [Google Scholar] [CrossRef] [Green Version]
- Massman, W.J. A model study of kbh−1 for vegetated surfaces using ‘localized near-field’ lagrangian theory. J. Hydrol. 1999, 223, 27–43. [Google Scholar] [CrossRef]
- Weil, J.C.; Massman, W.J. Lagrangian stochastic modeling of scalar transport within and above plant canopies. In Proceedings of the 22nd Conference on Agricultural and Forest Meteorology, Atlanta, AT, USA, 28 Januray–2 February 1996; American Meteorological Society: Boston, MA, USA, 1996; pp. 53–57. [Google Scholar]
- Goudriaan, J. Crop Micrometeorology: A Simulation Study; Pudoc: Wageningen, The Netherlands, 1977. [Google Scholar]
Surface Energy Flux. | TSEB Original Formulation | Modification | Equation |
---|---|---|---|
RN | Net longwave radiation atmospheric emissivity for clear-sky conditions | Net longwave radiation atmospheric emissivity for all-sky conditions | Equation (5) |
LE | Initial αPT = 1.26 for all land covers | Initial αPT values for black spruce and birch forests of 0.6 and 0.9, respectively. | Equation (12) |
LE | Green cover fraction, fG, held constant | Value of fG is varied using temporally smoothed EVI-NDVI MODIS data. | Equation (12) |
G | G estimated using cG = 0.3 | G estimated with a specific cG value of 0.07 for black spruce and birch, and a new proposed model using TRAD-G relationship, cGT | Equations (14) and (18) |
Black Spruce|αPTC = 1.26 | Black Spruce|αPTC = 0.6 | ||||||||||||||
X | R2 | RMSE | MBE | MAD | MAPD | n | X | R2 | RMSE | MBE | MAD | MAPD | n | ||
RN | 308 | 0.98 | 18 | 0 | 14 | 5 | 4067 | RN | 308 | 0.98 | 18 | 0 | 14 | 5 | 4067 |
LE | 183 | 0.76 | 64 | 47 | 53 | 39 | LE | 156 | 0.77 | 41 | 20 | 33 | 24 | ||
H | 114 | 0.81 | 65 | −49 | 53 | 32 | H | 140 | 0.84 | 42 | −23 | 33 | 20 | ||
G | 10 | 0.47 | 5 | 1 | 4 | 44 | G | 10 | 0.47 | 5 | 1 | 4 | 44 | ||
Birch|αPTC = 1.26 | Birch|αPTC = 0.9 | ||||||||||||||
X | R2 | RMSE | MBE | MAD | MAPD | n | X | R2 | RMSE | MBE | MAD | MAPD | n | ||
RN | 339 | 0.98 | 22 | 4 | 18 | 5 | 5528 | RN | 339 | 0.98 | 22 | 4 | 18 | 5 | 5528 |
zLE | 216 | 0.74 | 77 | 56 | 62 | 39 | LE | 184 | 0.76 | 49 | 24 | 39 | 24 | ||
H | 105 | 0.79 | 71 | −52 | 56 | 36 | H | 136 | 0.8 | 46 | −21 | 36 | 23 | ||
G | 14 | 0.65 | 7 | −3 | 3 | 47 | G | 14 | 0.65 | 7 | −3 | 3 | 47 |
RN | LE | ||||||||||
n | R2 | RMSE | MBE | MAD | MAPD | R2 | RMSE | MBE | MAD | MAPD | |
May | 887 | 0.98 | 20 | −9 | 15 | 5 | 0.80 | 42 | 21 | 34 | 26 |
June | 996 | 0.98 | 18 | −4 | 14 | 4 | 0.81 | 38 | 15 | 30 | 20 |
July | 1098 | 0.98 | 17 | −1 | 13 | 4 | 0.79 | 38 | 15 | 30 | 21 |
August | 852 | 0.98 | 18 | 5 | 14 | 5 | 0.75 | 44 | 26 | 35 | 28 |
September | 234 | 0.95 | 17 | 2 | 13 | 6 | 0.74 | 55 | 43 | 48 | 45 |
H | G | ||||||||||
n | R2 | RMSE | MBE | MAD | MAPD | R2 | RMSE | MBE | MAD | MAPD | |
May | 887 | 0.84 | 49 | −36 | 40 | 25 | 0.10 | 7 | 5 | 6 | 163 |
June | 996 | 0.88 | 41 | −21 | 32 | 19 | 0.38 | 6 | 2 | 5 | 53 |
July | 1098 | 0.86 | 36 | −13 | 28 | 19 | 0.72 | 5 | −3 | 4 | 24 |
August | 852 | 0.82 | 39 | −20 | 31 | 25 | 0.68 | 4 | −1 | 3 | 26 |
September | 234 | 0.70 | 55 | −42 | 46 | 46 | 0.41 | 4 | 2 | 3 | 57 |
RN | LE | ||||||||||
n | R2 | RMSE | MBE | MAD | MAPD | R2 | RMSE | MBE | MAD | MAPD | |
May | 1273 | 0.98 | 21 | −7 | 16 | 5 | 0.70 | 62 | 45 | 52 | 43 |
June | 1409 | 0.98 | 22 | 1 | 18 | 5 | 0.78 | 46 | 20 | 36 | 19 |
July | 1227 | 0.98 | 19 | 3 | 16 | 5 | 0.76 | 42 | 9 | 33 | 16 |
August | 1063 | 0.98 | 21 | 9 | 17 | 6 | 0.77 | 43 | 17 | 34 | 19 |
September | 556 | 0.95 | 25 | 13 | 20 | 10 | 0.68 | 69 | 58 | 59 | 62 |
H | G | ||||||||||
n | R2 | RMSE | MBE | MAD | MAPD | R2 | RMSE | MBE | MAD | MAPD | |
May | 1273 | 0.85 | 65 | −53 | 56 | 34 | 0.40 | 9 | 1 | 7 | 54 |
June | 1409 | 0.87 | 40 | −14 | 31 | 22 | 0.76 | 7 | −5 | 6 | 28 |
July | 1227 | 0.84 | 36 | −5 | 28 | 23 | 0.79 | 5 | −2 | 4 | 21 |
August | 1063 | 0.79 | 36 | −10 | 28 | 28 | 0.77 | 6 | 2 | 5 | 37 |
September | 556 | 0.71 | 60 | −50 | 51 | 50 | 0.70 | 8 | 6 | 6 | 167 |
Black Spruce|αPT = 0.6 | Birch|αPT = 0.9 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X | R2 | RMSE | MBE | MAD | MAPD | n | X | R2 | RMSE | MBE | MAD | MAPD | n | ||
RN | 469 | 0.98 | 17 | 10 | 14 | 3 | 183 | RN | 466 | 0.99 | 25 | 19 | 21 | 5 | 261 |
LE | 277 | 0.74 | 66 | 57 | 62 | 32 | LE | 307 | 0.78 | 60 | 51 | 58 | 25 | ||
H | 180 | 0.72 | 59 | −49 | 54 | 20 | H | 143 | 0.76 | 48 | −31 | 42 | 18 | ||
G | 12 | 0.32 | 5 | 2 | 4 | 46 | G | 15 | 0.71 | 6 | −2 | 7 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristóbal, J.; Prakash, A.; Anderson, M.C.; Kustas, W.P.; Alfieri, J.G.; Gens, R. Surface Energy Flux Estimation in Two Boreal Settings in Alaska Using a Thermal-Based Remote Sensing Model. Remote Sens. 2020, 12, 4108. https://doi.org/10.3390/rs12244108
Cristóbal J, Prakash A, Anderson MC, Kustas WP, Alfieri JG, Gens R. Surface Energy Flux Estimation in Two Boreal Settings in Alaska Using a Thermal-Based Remote Sensing Model. Remote Sensing. 2020; 12(24):4108. https://doi.org/10.3390/rs12244108
Chicago/Turabian StyleCristóbal, Jordi, Anupma Prakash, Martha C. Anderson, William P. Kustas, Joseph G. Alfieri, and Rudiger Gens. 2020. "Surface Energy Flux Estimation in Two Boreal Settings in Alaska Using a Thermal-Based Remote Sensing Model" Remote Sensing 12, no. 24: 4108. https://doi.org/10.3390/rs12244108
APA StyleCristóbal, J., Prakash, A., Anderson, M. C., Kustas, W. P., Alfieri, J. G., & Gens, R. (2020). Surface Energy Flux Estimation in Two Boreal Settings in Alaska Using a Thermal-Based Remote Sensing Model. Remote Sensing, 12(24), 4108. https://doi.org/10.3390/rs12244108