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Abstract: Accurate retrieval of canopy nutrient content has been made possible using visible-to-
shortwave infrared (VSWIR) imaging spectroscopy. While this strategy has often been tested on
closed green plant canopies, little is known about how nutrient content estimates perform when
applied to pixels not dominated by photosynthetic vegetation (PV). In such cases, contributions of
bare soil (BS) and non-photosynthetic vegetation (NPV), may significantly and nonlinearly reduce
the spectral features relied upon for nutrient content retrieval. We attempted to define the loss
of prediction accuracy under reduced PV fractional cover levels. To do so, we utilized VSWIR
imaging spectroscopy data from the Global Airborne Observatory (GAO) and a large collection of
lab-calibrated field samples of nitrogen (N) content collected across numerous crop species grown
in several farming regions of the United States. Fractional cover values of PV, NPV, and BS were
estimated from the GAO data using the Automated Monte Carlo Unmixing algorithm (AutoMCU).
Errors in prediction from a partial least squares N model applied to the spectral data were examined in
relation to the fractional cover of the unmixed components. We found that the most important factor
in the accuracy of the partial least squares regression (PLSR) model is the fraction of photosynthetic
vegetation (PV) cover, with pixels greater than 60% cover performing at the optimal level, where the
coefficient of determination (R2) peaks to 0.66 for PV fractions of more than 60% and bare soil (BS)
fractions of less than 20%. Our findings guide future spaceborne imaging spectroscopy missions as
applied to agricultural cropland N monitoring.

Keywords: imaging spectroscopy; photosynthetic vegetation; nitrogen estimation; partial least
squares; AutoMCU; spectral unmixing

1. Introduction

Imaging spectroscopy has emerged as a powerful tool to monitor and characterize
Earth’s surface, providing unprecedented spectral information about the properties of
land cover components. Among the many applications of imaging spectroscopy, the
quantification of photosynthetic vegetation (PV); non-photosynthetic vegetation (NPV),
i.e., the vegetation that cannot perform photosynthetic function, e.g., dead biomass; and
bare soil (BS) fractions are of particular importance [1–3], particularly for studies on car-
bon storage [4] and tillage management [5], hydrology (through controlling mass and
energy balance), uptake of nutrients, and soil wind erosion in croplands [6,7]. However,
quantifying these fractions from imaging spectroscopy is a challenging task, as it requires
separating the mixed spectral signatures of different land cover components [8–10]. In
previous studies, various unmixing methods have been developed to address this chal-
lenge, providing promising solutions for quantifying the fractions of PV, NPV, and BS
from imaging spectroscopy [11], ranging from linear unmixing [3] to machine learning
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algorithms [12,13] to separate the mixed spectral signatures of different land cover compo-
nents [14]. These methods have been applied to a wide range of applications, including
vegetation monitoring [15], land cover change detection [16], and agricultural productivity
mapping [17].

Precision agriculture aims to optimize crop production by tailoring management
practices to the specific needs of individual plants or field areas. One key aspect of precision
agriculture is the accurate estimation of nitrogen (N) content in crops, as it directly impacts
crop growth and productivity [18]. Imaging spectroscopy has emerged as a valuable tool
for the nondestructive and large-scale estimation of N content in crops [19,20]. However,
the accuracy of these estimates is influenced by the presence of other components in the
field of view, and consideration of the cover fractions of different land cover components,
such as PV, NPV, and BS [21,22], is necessary. The PV, NPV, and BS fractions play a
role in estimating the N crop canopy from imaging spectroscopy through their direct
connection to plant tissue storage of N. PV is a primary source of chlorophyll, which
correlates highly with the total stored nitrogen in a plant [23]. Several studies have been
conducted to estimate nitrogen content in crops using imaging spectroscopy, for instance
in our previous study [24], the reflectance data are used to train and develop a partial
least squares regression (PLSR) model over the homogeneous green pixels, i.e., spectral
filters are applied to exclude pixels with significant contributions of NPV and BS. Asner
et al. [25] employed GAO visible-to-shortwave (VSWIR) infrared imaging spectroscopy
and LiDAR to map the foliar traits (including N) of tropical forests in the Amazon. PLSR is
employed in the mentioned study to quantitatively associate airborne VSWIR spectroscopy
data with foliar traits assessed in the laboratory from field-collected samples. In another
research, the PLSR model is used to investigate the capacity of field spectroscopy to predict
seasonal changes in leaf functional traits across eight deciduous tree species in the UK [26].
It finds that while leaf spectroscopy can accurately estimate the seasonal variation in most
traits, the accuracy of a single PLSR model varies among traits and species through the
growing season. However, studies quantifying the effect of changes in fractional cover on
this relationship are lacking in the literature to the best knowledge of the authors. This
paper aims to investigate the impact of cover fractions on estimating N from imaging
spectroscopy using a statistical model.

In this study, we sought to understand the impact of fractional cover on the re-
trieval of N content in agricultural landscapes using imaging spectroscopy. This was
conducted as part of the research program for the Carbon Mapper Land and Ocean mission
(https://carbonmapper.org/ (accessed on 24 May 2021)), which was designed to study
and assess current methodologies in imaging spectroscopy for delivering comprehensive
insights into land and ocean resources [27]. For this study, airborne imagery was col-
lected concurrently with a series of field campaigns using the Global Airborne Observatory
(GAO), which is equipped with advanced visible-to-shortwave infrared (VSWIR) technol-
ogy. We used AutoMCU, an automated Monte Carlo Unmixing approach, to unmix the
fractional cover of three target endmembers (here PV, NPV, and BS) within each pixel [3].
We used these estimated fractional cover values to assess the impact of these fractional
cover estimates on the performance of models of plant N content derived from a model
directly linking N content to the spectral reflectance of the pixel. In the current study,
the obtained reflectance data are fed into the PLSR and AutoMCU models to retrieve N
content and cover fraction, respectively. Then, the relation between the fractional cover
over agricultural lands and estimated N content is investigated. While the methods of the
lab measurement and PLSR model of plant N content are briefly discussed in this paper,
more comprehensive details can be found in a companion paper [24]. Using these tools,
we examined the impact of cover fraction variations on the accuracy of N estimation from
the PLSR model. Our results contribute to a better understanding of the factors affecting
the accuracy of N estimation in mixed pixels and provide insights into the development of
more accurate models using imaging spectroscopy.

https://carbonmapper.org/
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2. Methods
2.1. Field Campaigns to Collect Leaf Samples

To obtain leaf samples from various crops, we visited farms in six states within the
USA: Florida (FL), California (CA), Colorado (CO), Iowa (IA), Kansas (KS), and Missouri
(MO). Sampled species represented commodity crops such as corn, soybean, sorghum,
miscanthus, green bean, alfalfa, cotton, vegetables, and orchard fruits. A complete list of
the species collected at each site and their relative sample sizes can be found in Table 1.
Sampling efforts were concentrated in areas where crop conditions appeared uniform,
with samples collected within a one-meter radius at each recorded point. Depending on
the leaf size, we harvested up to twenty mature leaves from the sunlit upper canopy of
each plant for each sampling location. Then, clipped foliage was immediately sealed in
polyethylene bags and stored on ice in coolers to preserve moisture. For each species at
every location, our protocol was to collect 15 samples from a single field, or a total of
20 samples across multiple fields when feasible. GPS readings were recorded at the sample
locations using Arrow Gold RTK Global Navigation Satellite Systems receiver with an
estimated horizontal positioning precision of ≤1 cm. The complete dataset comprised
469 individual foliage samples, representing 23 species collected from eight sites in six
states. Foliage samples were processed within two hours of collection. The processing steps
are explained comprehensively in [24]. The N concentration of each processed leaf sample
was determined in the lab by flash combustion in a conventional elemental analyzer (PE
2400; PerkinElmer Inc., Waltham, MA, USA).

Table 1. List of sampled crops with the number of samplings from six states in the USA: California
(CA), Florida (FL), Missouri (MO), Iowa (IA), Kansas (KS), Colorado (CO).

Crop # Samples State

Alfalfa 15 CA
Cotton 20 MO

Green Bean 16 FL
Grain corn 103 IA, KS, CO, FL, MO
Sweet corn 15 FL

Soybean 38 IA, KS
Sorghum 59 IA, KS, CO

Miscanthus 18 IA
Peanut 15 MO

Tree nuts: 45 CA
Walnut, Almond, Pecan (3×15)

Fruit tree: 110 CA
Peach, Orange, Mandarin,

Avocado, Olive, Pomegranate,
Orange, Clementine

(15 sampling points for the
first 7 crops and 5 sampling

points for the last crop)
Vegetables: 15 CA

Pumpkin, Broccoli, Melon (3×5)

Total 469 6

The location of the sampling points with the farm names and the dates when the
leaves were collected is shown in Figure 1.
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Figure 1. Geographical locations of study sites in the contiguous United States, with relative field
sampling dates (month/day) and crop species labeled. All fieldwork was conducted in the year 2022
(modified from [24]).

2.2. Airborne Imaging Spectroscopy

Within fewer than six days of the collection of field samples, the GAO collected
imaging spectroscopy data in the VSWIR region of the spectrum. The dataset collected
for this study contained 428 spectral channels with a sampling spectral resolution of 5 nm,
covering the wavelength range between 350 nm and 2490 nm. The flights were conducted
at a height of 600 m above the ground, which led to an average ground sampling distance of
0.6 m. In addition, LiDAR data were collected concurrently with the imaging spectroscopy
data to assist in the ortho-georeferencing of the images, generating digital terrain and
surface models. To obtain surface reflectance, the VSWIR data were first preprocessed
into orthorectified radiance and then corrected for atmospheric interference using ACORN
v6.0 (Atmospheric CORrection Now; AIG LLC; Boulder, CO [28]). The wavelength range
with significant atmospheric interference was removed, resulting in three spectral regions
spanning wavelengths from 420 to 1330, 1500 to 1775, and 2030 to 2445 nm [24].

2.3. Quantifying Cover Fraction Using AutoMCU

Spectral Mixture Analysis (SMA) is a widely used unmixing method that decomposes
a mixed pixel spectrum into a linear combination of multiple endmember spectra, represent-
ing pure materials such as vegetation or soil. SMA assumes that the spectrum of a mixed
pixel can be modeled as a linear mixture of the spectra of its constituent materials, with the
mixing coefficients representing the cover fractions of each endmember in the pixel [29].
This can be represented as in Equation (1), where fx is the fraction coefficient that should
sum to nearly 1.0, ρ(λ)x are the input class example constituent spectra along wavelength
λ, and ϵ is an error term. SMA can be applied to both multispectral and hyperspectral data
and has been used to quantify the cover fractions of PV, NPV, and BS [30,31].

ρ(λ)pixel = fPVρ(λ)PV + fNPVρ(λ)NPV + fBSρ(λ)BS + ϵ (1)

Typically, photosynthetic vegetation (PV) effectively absorbs photons in the visible
wavelengths, whereas non-photosynthetic vegetation (NPV) and bare soil have lower
absorption rates. The red-edge slope, which is indicative of chlorophyll and structural
differences, can differentiate between PV and NPV and bare soil [1,2]. Moreover, in the
SWIR-2 wavelength range (2100–2400 nm), water effectively absorbs photons, leading to
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lower PV reflectance compared with NPV and bare soil [3]. Unlike PV, which efficiently
absorbs SWIR wavelengths, dead, dry, or senescent vegetation (NPV) scatters photons
throughout the SWIR range. The SWIR region (1300–2500 nm) is primarily dominated
by water absorption and an increase in leaf water content results in decreased reflectance.
Thus, the reflectance of PV in the SWIR region is lower than that of NPV [3]. Additionally,
the unique absorption features of lignin and cellulose within this range allow for the identi-
fication of NPV and soil in the SWIR wavelength region. Understanding these absorption
features is crucial for applying the AutoMCU algorithm in finding fractional coverage.

2.3.1. AutoMCU Description

The Automatic Monte Carlo spectral Unmixing model (AutoMCU) is based on SMA
that was proposed by Asner and Heidebrecht [3], in which a large number of endmember
combinations for each pixel is calculated by randomly selecting spectral data from a
spectral library. Based on prior research conducted to develop AutoMCU by [2,3], it has
been observed that when a sufficient number of endmember combinations are accessible,
the fractional cover of different endmembers each exhibits a normal distribution. Thus,
to obtain the final fractional cover for each pixel, the average value of each cover fraction
across a large number of example endmember spectra can provide a reasonable estimate
of the desired cover constituent. To achieve this, AutoMCU uses an iterative Monte Carlo
resampling approach to quantify the fractional coverage of specified target constituents.
For each of m user-specified iterations, the algorithm selects a new random combination of
one endmember spectra from each of the endmember library bundles to unmix the image
spectrum. Subsequently, endmember fraction means and standard deviations are computed
across the m sets of fractions estimated from all iterations. The algorithm generates subpixel
cover fraction values along with uncertainty estimates, which account for the variability
in the endmember bundles. A schematic workflow of the AutoMCU algorithm is shown
in Figure 2. The AutoMCU code used in this manuscript is accessible upon request to the
corresponding author (gasner@asu.edu).
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Figure 2. Flow chart of AutoMCU algorithm from [3].

The AutoMCU capitalizes on two spectrum regions proved in previous studies [2,3]
to strongly differentiate the spectral characteristics of PV, NPV, and BS, illustrated in
Figure 3, which depicts the distinctions among the spectral characteristics of PV, NPV,
and BS. The shaded region corresponds to the range of wavelengths employed by the
AutoMCU algorithm in the present study for quantifying the fractions of each cover type
within mixed pixels.

Figure 2. Flow chart of AutoMCU algorithm from [3].

The AutoMCU capitalizes on two spectrum regions proved in previous studies [2,3]
to strongly differentiate the spectral characteristics of PV, NPV, and BS, illustrated in
Figure 3, which depicts the distinctions among the spectral characteristics of PV, NPV,
and BS. The shaded region corresponds to the range of wavelengths employed by the
AutoMCU algorithm in the present study for quantifying the fractions of each cover type
within mixed pixels.
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Figure 3. Example spectra for the three classes separated by the AutoMCU algorithm. Band windows
used in unmixing are shown in gray.

As explained above, the SWIR-2 (2100–2400 nm) region is dominated by foliar water
absorption in PV spectra, whereas drier NPV vegetation allows the absorption features of
organic compounds like cellulose and lignin to stand out at 2100 and 2300 nm. In contrast,
BS spectra typically have a hydroxyl absorption feature at 2200 nm. The visible-to-NIR
range (600–800 nm) contains the red edge feature of green vegetation. In general, reflectance
decreases with increasing organic matter and/or water content in vegetation or soil. Due
to the unique spectral shape of green vegetation in the red edge, this region provides good
separation between PV from both NPV and BS [2].

To reduce the effects of brightness changes across an input image, some form of
regularization is needed to ensure that the example spectra for each class can properly fit
the observed spectra. Traditional brightness normalization methods, where spectra are
divided by some measure of total brightness such as the vector norm, would destroy the
linearity assumption of SMA. Instead, in AutoMCU, all spectra are “tied” to maintain this
linearity. To tie the spectra, the reflectance value of the first entry in each fitting window
(red edge, SWIR2) is subtracted from all reflectance values within that window (Figure 4).
This zeroes out the first value of each window but standardizes the remaining spectra to
stabilize PV retrievals across variations in biomass, canopy architecture, and biochemistry.
After all the iterations are complete, the estimated fractions for each input image pixel are
determined by computing the trimmed mean endmember fractions for this pixel across
all iterations.

The cover fraction values obtained from AutoMCU are typically expected to fall
within the range of [0, 1], representing the absence or presence of specific endmember
fractions within a pixel. Because only a weak constraint is used to coerce the coefficients
to sum to 1, an extra column of 1 values is added at the end of both fitting windows in
both the endmember and observed spectra, and sums differing from 1 and negative cover
coefficients occur. This is due to various factors including shading or discrepancies between
observed spectra and the library dataset. These factors also introduce uncertainties that
should be taken into account when interpreting the results and evaluating the accuracy of
cover fraction estimation [32]. In this study, cover fraction values were truncated into the
range [0, 1] and rescaled to sum to 1. Two measures of uncertainty were also saved: (1) the
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standard deviation (std dev) of the fractions across iterations, and (2) the RMSE derived by
comparing the model-estimated mixture spectra using the averaged coefficients against the
observed spectrum for each input image pixel.

Figure 4. Example of tied spectra within the VIS and SWIR band window used by the AutoMCU
algorithm for the 3 selected endmembers: PV, NPV, and BS. For each endmember, 10 samples of
spectra are shown.
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2.3.2. Spectral Library

Spectral libraries are an essential component of remote sensing analysis. A spectral
library is a collection of spectra representing different materials, such as green vegetation,
dead vegetation, soils, water bodies, and human-made objects. These libraries provide a
reference for the comparison and identification of unknown spectra. In the context of cover
fraction mapping and the scope of this research, spectral libraries for PV, NPV, and BS are
particularly useful. These spectral libraries are typically derived from field or laboratory
measurements of reflectance spectra.

There are several publicly available sources of spectral libraries that can be used for
remote sensing analysis. One such source is the United States Geological Survey (USGS)
Spectral Library [33], which contains spectra of minerals, rocks, soils, vegetation, and
man-made materials. Another source is the ASTER Spectral Library [34], which contains
reflectance spectra of minerals, rocks, soils, and vegetation. Additionally, the NASA Jet
Propulsion Laboratory (JPL) Spectral Library contains laboratory measurements of a wide
range of materials, including minerals, rocks, soils, vegetation, and man-made materials.
These publicly available spectral libraries can be used to train and validate remote sensing
algorithms and models, and to aid in the interpretation of remote sensing data. In this study,
the spectral library from ECOSLib (https://speclib.jpl.nasa.gov (accessed on 2 February
2018)) [35] was used as the input for AutoMCU. ECOSpecLib includes data from three
other libraries (John Hopkins University, JPL, and USGS; it is an update of the ASTER SLI
2.0 [34]).

2.4. Crop Nitrogen (N) Estimation

Partial least squares regression (PLSR) was used to link wet assay estimates of leaf N to
imaging spectroscopy data collected by GAO [36]. PLSR is a linear regression technique for
imaging spectroscopy that easily incorporates hundreds of bands of spectral information
using a built-in data reduction akin to principal components analysis to eliminate the
correlation between input variables [24,37]. This method has been widely employed in
remote sensing applications to quantify plant functional traits [38–40]. Model reliability was
addressed by utilizing two levels of iteration in the calibration–validation step. During each
iteration, PLSR outcomes were evaluated using testing data and two performance statistics,
the coefficient of determination (R2) and Root Mean Square Error (RMSE), generated for
both training and testing datasets. The final PLSR model was created by averaging the
outcomes from all iterations. For a detailed description of the implementation of PLSR
to these data, refer to our recent study [24]. In the current study, the spectral coefficients
to fit on the dataset were retrieved for green pixels, based on NDVI filter ≥ 0.7 [24]. The
coefficients were then implemented through the PLSR model, which was fit to the spectral
dataset over all sampled locations that include 469 pixels from aerial images. Additional
details regarding the algorithm employed for N retrieval and the corresponding Python
code can be found in the NitrogenRetrieval repository on our GitHub page, accessible at
the following URL: https://github.com/CMLandOcean/NitrogenRetrieval [41] (accessed
on 24 May 2021).

2.5. Cover Fraction Effect on the Estimated Nitrogen

N concentrations in the leaf samples as measured in the laboratory, Nlab, [24] were
compared with N concentrations returned from the fitted PLSR model, Nmodel . To assess
how the model performance changed as proportional cover of each of the three AutoMCU
endmembers, PV, NPV, and BS, we binned the samples falling within 5 bins ((0, 0.2],
(0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8, 1.0]) of each of the three endmembers PV, NPV, and
BS. Model performance for each of the bins was assessed using two metrics, normalized
RMSE (NRMSE), i.e., RMSE divided by the range of observation, and R2, applied to all
samples within a bin.

https://speclib.jpl.nasa.gov
https://github.com/CMLandOcean/NitrogenRetrieval
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We also investigated the relative effect of changes in cover fractions of each of the three
endmembers to better understand the causes of model performance losses. To do so, we
modeled changes in residual error as a function of these fractional cover values. Residuals
were first transformed by computing a normalized difference between Nlab and Nmodel for
each sample relative to Nlab using Equation (2):

Rnorm =
abs(Nmodel−Nlab)

Nlab
(2)

To determine the relative influence of each cover fraction on Rnorm, a random for-
est (RF) regressor algorithm was employed, using the scikit-learn Python package. The
input features used for prediction were the estimated PV, NPV, and BS cover fractions
and the output was Rnorm. We used a train/test split of 80%/20%. The random forest
model consists of several hyperparameters that need to be fine-tuned. We used a grid
optimization approach where the model was fit using 10-fold cross-validation for each com-
bination of candidate values for four hyperparameters (Table 2). These hyperparameters
included the number of trees in the forest (n-estimator), (b) the maximum depth of the trees,
(c) the minimum number of samples required for node splitting (min-samples-split), and
(d) the minimum number of samples required at a leaf node (min-samples-leaf). The
hyperparameter combination resulting in the best cross-validation performance was kept,
and the RF model was trained to the full dataset using these optimized parameters. After
building the RF model, the feature importance for the prediction of Rnorm was computed
for each of the three main endmembers, f (PV), f (NPV), and f (BS).

Table 2. List of candidate values for hyperparameters for the RF model.

RF Parameters Tested Values

n-estimator [10, 50, 100, 200, 300, 500, 700, 1000, 1500, 2000]
max-tree-depth [10, 30, 50, 70, 100, 150, 200]

min-samples-split [2, 3, 4, 5, 8, 10]
min-samples-leaf [1, 2, 3, 4, 5]

3. Results and Discussion

While validation of the AutoMCU algorithm is outside of the scope of this study be-
cause of a sufficient amount of prior research and publication, we found that the AutoMCU
algorithm produced values of endmember cover fraction that were highly consistent with
field observations (Figure 5). Maps produced by the algorithm matched well with the
expected spatial arrangement of the different cover types (Figure 6), and we found no
reason to doubt that the AutoMCU algorithm successfully identified and distinguished
between PV, NPV, and BS in the spectrometer imagery for the purposes of evaluating their
effects on nitrogen content estimation.

We found that cover fractions of each of the three endmembers varied by crop species
and location (Figure 7). The highest median values for f (PV) were found in fields planted
with green bean, pecan, and grain corn crops. Similarly, olive had the highest median
value for f (NPV), and sweet corn and melon shared the highest median values of f (BS).
Among the crops, grain corn showed the largest diversity of cover values, largely due to
crop age as a result of it being planted across all three field campaigns. Approximately
21% of the pixels exhibited f (PV) exceeding 0.9, while 62% of the pixels showed f (PV)
surpassing 0.5. Conversely, the analysis revealed that f (NPV) values exceeding 0.5 were
observed in only 5% of the pixels, primarily concentrated in grain corn farms. Moreover,
approximately 20% of the pixels displayed f (BS) values surpassing 0.5, with sweet corn
and sorghum crops being the primary contributors to this category.
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f (PV) =0.75, f (NPV) =0.03, f (BS) =0.28
(a)

f (PV) =0.32, f (NPV) =0.15, f (BS) =0.53
(b)

Figure 5. AutoMCU estimates of the endmember cover fractions for two example sample points in
the studied field locations: (a) soybean in Iowa; (b) sorghum in Kansas.
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(a) (b)

Figure 6. An example of the flight line images from the Iowa farm used in the study: Maps are
(a) the GAO VSWIR reflectance image showing bands for red (650 nm) and green (550 nm), and blue
(460 nm) and (b) the resulting fractional cover map from the AutoMCU algorithm as a false-color
representation using red = non-photosynthetic vegetation, green = photosynthetic vegetation, and
blue = bare soil.
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Figure 7. Boxplot showing the cover fractions for the pixels that contain the leaf samples, for
photosynthetic vegetation fraction, f (PV); non-photosynthetic vegetation fraction, f (NPV); and
bare soil fraction, f (BS). Each crop type is presented in different colors.
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Impact of Cover Fractions on the Estimated Nitrogen

The performance of the PLSR N content model was strongly affected by variations in
the proportional cover of the three endmembers, PV, NPV, and BS. As PV cover decreased
from >80% to <20%, R2 values declined from 0.64 to 0.03 and NRMSE decreased from 0.46
to 0.11 (Figure 8a). This was the expected result since PV corresponds to the photosyn-
thetically active plant material that is more likely to accumulate nitrogen. However, no
relationship was found between NPV fraction variations and PLSR model performance
(Figure 8b). In parallel, a decrease in BS fraction was associated with an increase in model
performance (Figure 8c), with the sharpest reduction in R2, occurring with BS between 0.6
and 0.8. Generally, as f (BS) increased, NRMSE values also increased except for the f (BS)
values within the last range (0.8, 1]. The obtained results in this study support the findings
of the previous research conducted in [24], which focused on investigating the influence of
the Normalized Difference Vegetation Index (NDVI), a vegetation metric loosely correlated
with PV fraction, on the accuracy of nitrogen estimation using the PLSR method.

Looking at the normalized residuals (Equation (2)), a similar pattern unfolded. Re-
gression lines fit to Rnorm values against the fractional cover values had a negative slope
for PV fraction (smaller Rnorm equates to a lower variation in the residuals) and positive
slopes for both NPV and BS (Figure 9). This suggests that the estimated N in image pixels
with a higher f (PV) was closer to the lab-measured concentration from leaf samples. In
comparison, a positive correlation was observed between both f (BS) and f (NPV) values
and the Rnorm. Thus, as the f (BS) values increased in mixed pixels, the performance of
the PLSR model weakened in estimating crop canopy N. However, correlation coefficients
were relatively small in all cases, likely due to a moderate number of extreme outliers. The
outlier data points exhibiting Rnorm values greater than 1 (shown in the red closed curve
in Figure 9) occurred mainly when f (PV) was less than 0.6 and f (BS) was greater than
0.4. Notably, the relationship between f (NPV) and Rnorm was the weakest of the three,
likely a result of the fact that NPV can also contain smaller (but detectable) amounts of
N compared with PV [42,43]. In contrast, BS is composed of soil and other nonvegetated
materials that typically have lower nitrogen content.

We were unable to identify a pattern between crop species and Rnorm (colors/shapes
in Figure 9). The same general trend was dominated by cover fractions rather than any
species-specific differences in N allocation, indicating that the fitted model found spectral
features showing N response independent of species. The impact of the cover fraction
on Rnorm highlights the importance of accounting for vegetation cover when estimating
crop nutrient content from spectral reflectance, f (PV) can significantly impact the spectral
response of pixels over agricultural lands, while significant values of f (BS) lead to errors
in the estimation of crop nutrient content from spectral data.

To find the relative feature importance of f (PV), f (NPV), and f (BS) on estimating
Rnorm, an RF model was trained and tested over the dataset. After the cross-validation
analysis, we found that the best candidates for n-estimator, max-tree-depth, min-sample-
split, and min-sample-leaf were 300, 70, 10, and 5, respectively. The factor importance
values revealed that the PV value had the strongest effect on Rnorm predictions with a score
of 0.43 (Figure 10). The next important feature was BS, with a score of 0.30. Finally, NPV
was the least important factor, with a score of 0.27, supporting the earlier result that NPV
had the lowest correlation with Rnorm (Figure 9). The elevated feature importance scores of
PV and BS suggest that these factors exert a more substantial influence on nitrogen content
estimation from a mixed pixel than NPV. Increasing BS had a stronger effect on model
performance than increasing NPV in multiple tests, suggesting the problem might have less
to do with the addition of confusing spectral features than a simple reduction in features
important to N retrieval.
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Figure 8. PLSR model performance to estimate N for various (a) PV fractions, (b) NPV fractions, and
(c) BS fractions. The solid dark line and the dashed red line represent NRMSE and R2, respectively.
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Figure 9. Relation between nitrogen (N) concentration from PLSR model and lab measurements from
the samples gathered from agricultural lands.
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Figure 10. Feature importance plot, presenting the impact of each cover fraction on the Rnorm.

4. Conclusions

We quantified the effect of mixed pixel fraction on partial least squares regression
(PLSR) model estimates of canopy N content. We found that the pixel area covered with
photosynthetic vegetation, f (PV), had the strongest effect on PLSR model prediction
errors, with increasing cover values associated with lower variation in residuals. Moreover,
we found model performance losses were not indifferent to the material that replaced
the lost PV cover. The model residuals were more sensitive to increases in bare soil (BS)
cover than to increases in non-photosynthetic vegetation (NPV) cover. Importantly, these
results appeared to be independent across the four regions of the United States and across
24 species mapped with airborne imaging spectroscopy data.

While our results contribute valuable insights for precision agriculture and demon-
strate the potential of remote sensing in the estimation of N in crops, we recognize certain
limitations and opportunities for refinement. A primary concern is the accuracy of the
PLSR model when applied to mixed pixels, achieving a maximum R2 value of approx-
imately 0.64. This accuracy is contingent upon the proportion of PV and BS within the
mixed pixels. Results suggest that while the model can provide useful general insights into
nitrogen content across varied cover fractions, its precision may not meet the threshold for
all practical applications in precision agriculture.

These findings enhance our understanding of the relationship between cover fractions
and crop canopy N estimation, providing new insights for precision agriculture applica-
tions. They also demonstrate the potential of remote sensing techniques in providing an
estimate of nutrient content across the highly variable cover fractions resulting from coarser
resolution spectroscopy data increasingly available from spaceborne instruments. Future
research could explore the integration of AutoMCU and PLSR to incorporate the influence
of cover fractions into models for estimating N content. In such a way, the accuracy of
nitrogen estimation could potentially be further improved, leading to more precise and
reliable results.
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