Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = graphene nanoribbon FET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2036 KiB  
Article
New Label-Free DNA Nanosensor Based on Top-Gated Metal–Ferroelectric–Metal Graphene Nanoribbon on Insulator Field-Effect Transistor: A Quantum Simulation Study
by Khalil Tamersit, Abdellah Kouzou, José Rodriguez and Mohamed Abdelrahem
Nanomaterials 2024, 14(24), 2038; https://doi.org/10.3390/nano14242038 - 19 Dec 2024
Cited by 1 | Viewed by 998
Abstract
In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal–ferroelectric–metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a simulation approach. The DNA sensing principle is founded on the dielectric modulation concept. The computational method employed to [...] Read more.
In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal–ferroelectric–metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a simulation approach. The DNA sensing principle is founded on the dielectric modulation concept. The computational method employed to evaluate the proposed nanobiosensor relies on the coupled solutions of a rigorous quantum simulation with the Landau–Khalatnikov equation, considering ballistic transport conditions. The investigation analyzes the effects of DNA molecules on nanodevice behavior, encompassing potential distribution, ferroelectric-induced gate voltage amplification, transfer characteristics, subthreshold swing, and current ratio. It has been observed that the feature of ferroelectric-induced gate voltage amplification using the integrated MFM structure can significantly enhance the biosensor’s sensitivity to DNA molecules, whether in terms of threshold voltage shift or drain current variation. Additionally, we propose the current ratio as a sensing metric due to its ability to consider all DNA-induced modulations of electrical parameters, specifically the increase in on-state current and the decrease in off-state current and subthreshold swing. The obtained results indicate that the proposed negative-capacitance GNRFET-based DNA nanosensor could be considered an intriguing option for advanced point-of-care testing. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

16 pages, 3407 KiB  
Article
Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics
by Khalil Tamersit, Abdellah Kouzou, José Rodriguez and Mohamed Abdelrahem
Nanomaterials 2024, 14(11), 962; https://doi.org/10.3390/nano14110962 - 1 Jun 2024
Cited by 5 | Viewed by 1695
Abstract
This paper investigates the performance of vacuum gate dielectric doping-free carbon nanotube/nanoribbon field-effect transistors (VGD-DL CNT/GNRFETs) via computational analysis employing a quantum simulation approach. The methodology integrates the self-consistent solution of the Poisson solver with the mode space non-equilibrium Green’s function (NEGF) in [...] Read more.
This paper investigates the performance of vacuum gate dielectric doping-free carbon nanotube/nanoribbon field-effect transistors (VGD-DL CNT/GNRFETs) via computational analysis employing a quantum simulation approach. The methodology integrates the self-consistent solution of the Poisson solver with the mode space non-equilibrium Green’s function (NEGF) in the ballistic limit. Adopting the vacuum gate dielectric (VGD) paradigm ensures radiation-hardened functionality while avoiding radiation-induced trapped charge mechanisms, while the doping-free paradigm facilitates fabrication flexibility by avoiding the realization of a sharp doping gradient in the nanoscale regime. Electrostatic doping of the nanodevices is achieved via source and drain doping gates. The simulations encompass MOSFET and tunnel FET (TFET) modes. The numerical investigation comprehensively examines potential distribution, transfer characteristics, subthreshold swing, leakage current, on-state current, current ratio, and scaling capability. Results demonstrate the robustness of vacuum nanodevices for high-performance, radiation-hardened switching applications. Furthermore, a proposal for extrinsic enhancement via doping gate voltage adjustment to optimize band diagrams and improve switching performance at ultra-scaled regimes is successfully presented. These findings underscore the potential of vacuum gate dielectric carbon-based nanotransistors for ultrascaled, high-performance, energy-efficient, and radiation-immune nanoelectronics. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

9 pages, 1496 KiB  
Article
Investigation of Single-Event Upset in Graphene Nano-Ribbon FET SRAM Cell
by Naheem Olakunle Adesina
Micromachines 2023, 14(7), 1449; https://doi.org/10.3390/mi14071449 - 19 Jul 2023
Cited by 3 | Viewed by 1584
Abstract
In recent years, graphene has received so much attention because of its superlative properties and its potential to revolutionize electronics, especially in VLSI. This study analyzes the effect of single-event upset (SEU) in an SRAM cell, which employs a metal-oxide semiconductor type graphene [...] Read more.
In recent years, graphene has received so much attention because of its superlative properties and its potential to revolutionize electronics, especially in VLSI. This study analyzes the effect of single-event upset (SEU) in an SRAM cell, which employs a metal-oxide semiconductor type graphene nano-ribbon field effect transistor (MOS-GNRFET) and compares the results with another SRAM cell designed using a PTM 10 nm FinFET node. Our simulations show that there is a change in the data stored in the SRAM after a heavy ion strike. However, it recovers from radiation effects after 0.46 ns for GNRFET and 0.51 ns for FinFET. Since the degradation observed in Q and Qb of GNRFET SRAM are 2.7X and 2.16X as compared to PTM nano-MOSFET, we can conclude that GNRFET is less robust to single effect upset. In addition, the stability of SRAM is improved by increasing the supply voltage VDD. Full article
(This article belongs to the Special Issue 2D Material-Based Semiconductors: Design and Applications)
Show Figures

Figure 1

15 pages, 6776 KiB  
Communication
Graphene Nanoribbon Field Effect Transistor Simulations for the Detection of Sugar Molecules: Semi-Empirical Modeling
by Asma Wasfi, Ahmed Al Hamarna, Omar Mohammed Hasani Al Shehhi, Hazza Fahad Muhsen Al Ameri and Falah Awwad
Sensors 2023, 23(6), 3010; https://doi.org/10.3390/s23063010 - 10 Mar 2023
Cited by 5 | Viewed by 2953
Abstract
Graphene has remarkable characteristics that make it a potential candidate for optoelectronics and electronics applications. Graphene is a sensitive material that reacts to any physical variation in its environment. Due to its extremely low intrinsic electrical noise, graphene can detect even a single [...] Read more.
Graphene has remarkable characteristics that make it a potential candidate for optoelectronics and electronics applications. Graphene is a sensitive material that reacts to any physical variation in its environment. Due to its extremely low intrinsic electrical noise, graphene can detect even a single molecule in its proximity. This feature makes graphene a potential candidate for identifying a wide range of organic and inorganic compounds. Graphene and its derivatives are considered one of the best materials to detect sugar molecules due to their electronic properties. Graphene has low intrinsic noise, making it an ideal membrane for detecting low concentrations of sugar molecules. In this work, a graphene nanoribbon field effect transistor (GNR-FET) is designed and utilized to identify sugar molecules such as fructose, xylose, and glucose. The variation in the current of the GNR-FET in the presence of each of the sugar molecules is utilized as the detection signal. The designed GNR-FET shows a clear change in the device density of states, transmission spectrum, and current in the presence of each of the sugar molecules. The simulated sensor is made of a pair of metallic zigzag graphene nanoribbons (ZGNR) joint via a channel of armchair graphene nanoribbon (AGNR) and a gate. The Quantumwise Atomistix Toolkit (ATK) is used to design and conduct the nanoscale simulations of the GNR-FET. Semi-empirical modeling, along with non-equilibrium Green’s functional theory (SE + NEGF), is used to develop and study the designed sensor. This article suggests that the designed GNR transistor has the potential to identify each of the sugar molecules in real time with high accuracy. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

17 pages, 6923 KiB  
Article
Simulations of Graphene Nanoribbon Field Effect Transistor for the Detection of Propane and Butane Gases: A First Principles Study
by Muhammad Haroon Rashid, Ants Koel and Toomas Rang
Nanomaterials 2020, 10(1), 98; https://doi.org/10.3390/nano10010098 - 3 Jan 2020
Cited by 18 | Viewed by 6125
Abstract
During the last few years graphene has emerged as a potential candidate for electronics and optoelectronics applications due to its several salient features. Graphene is a smart material that responds to any physical change in its surrounding environment. Graphene has a very low [...] Read more.
During the last few years graphene has emerged as a potential candidate for electronics and optoelectronics applications due to its several salient features. Graphene is a smart material that responds to any physical change in its surrounding environment. Graphene has a very low intrinsic electronic noise and it can detect even a single gas molecule in its proximity. This property of graphene makes is a suitable and promising candidate to detect a large variety of organic/inorganic chemicals and gases. Typical solid state gas sensors usually requires high operating temperature and they cannot detect very low concentrations of gases efficiently due to intrinsic noise caused by thermal motion of charge carriers at high temperatures. They also have low resolution and stability issues of their constituent materials (such as electrolytes, electrodes, and sensing material itself) in harsh environments. It accelerates the need of development of robust, highly sensitive and efficient gas sensor with low operating temperature. Graphene and its derivatives could be a prospective replacement of these solid-state sensors due to their better electronic attributes for moderate temperature applications. The presence of extremely low intrinsic noise in graphene makes it highly suitable to detect a very low concentration of organic/inorganic compounds (even a single molecule ca be detected with graphene). In this article, we simulated a novel graphene nanoribbon based field effect transistor (FET) and used it to detect propane and butane gases. These are flammable household/industrial gases that must be detected to avoid serious accidents. The effects of atmospheric oxygen and humidity have also been studied by mixing oxygen and water molecules with desired target gases (propane and butane). The change in source-to-drain current of FET in the proximity of the target gases has been used as a detection signal. Our simulated FET device showed a noticeable change in density of states and IV-characteristics in the presence of target gas molecules. Nanoscale simulations of FET based gas sensor have been done in Quantumwise Atomistix Toolkit (ATK). ATK is a commercially available nanoscale semiconductor device simulator that is used to model a large variety of nanoscale devices. Our proposed device can be converted into a physical device to get a low cost and small sized integrated gas sensor. Full article
(This article belongs to the Special Issue Carbon-Based Nanomaterials for (Bio)Sensors Development)
Show Figures

Figure 1

18 pages, 2200 KiB  
Article
Fault Modeling of Graphene Nanoribbon FET Logic Circuits
by D. Gil-Tomàs, J. Gracia-Morán, L.J. Saiz-Adalid and P.J. Gil-Vicente
Electronics 2019, 8(8), 851; https://doi.org/10.3390/electronics8080851 - 31 Jul 2019
Cited by 3 | Viewed by 3501
Abstract
Due to the increasing defect rates in highly scaled complementary metal-oxide-semiconductor (CMOS) devices, and the emergence of alternative nanotechnology devices, reliability challenges are of growing importance. Understanding and controlling the fault mechanisms associated with new materials and structures for both transistors and interconnection [...] Read more.
Due to the increasing defect rates in highly scaled complementary metal-oxide-semiconductor (CMOS) devices, and the emergence of alternative nanotechnology devices, reliability challenges are of growing importance. Understanding and controlling the fault mechanisms associated with new materials and structures for both transistors and interconnection is a key issue in novel nanodevices. The graphene nanoribbon field-effect transistor (GNR FET) has revealed itself as a promising technology to design emerging research logic circuits, because of its outstanding potential speed and power properties. This work presents a study of fault causes, mechanisms, and models at the device level, as well as their impact on logic circuits based on GNR FETs. From a literature review of fault causes and mechanisms, fault propagation was analyzed, and fault models were derived for device and logic circuit levels. This study may be helpful for the prevention of faults in the design process of graphene nanodevices. In addition, it can help in the design and evaluation of defect- and fault-tolerant nanoarchitectures based on graphene circuits. Results are compared with other emerging devices, such as carbon nanotube (CNT) FET and nanowire (NW) FET. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

10 pages, 2903 KiB  
Article
Graphene Nanogrids FET Immunosensor: Signal to Noise Ratio Enhancement
by Jayeeta Basu and Chirasree RoyChaudhuri
Sensors 2016, 16(10), 1481; https://doi.org/10.3390/s16101481 - 8 Oct 2016
Cited by 19 | Viewed by 6034
Abstract
Recently, a reproducible and scalable chemical method for fabrication of smooth graphene nanogrids has been reported which addresses the challenges of graphene nanoribbons (GNR). These nanogrids have been found to be capable of attomolar detection of biomolecules in field effect transistor (FET) mode. [...] Read more.
Recently, a reproducible and scalable chemical method for fabrication of smooth graphene nanogrids has been reported which addresses the challenges of graphene nanoribbons (GNR). These nanogrids have been found to be capable of attomolar detection of biomolecules in field effect transistor (FET) mode. However, for detection of sub-femtomolar concentrations of target molecule in complex mixtures with reasonable accuracy, it is not sufficient to only explore the steady state sensitivities, but is also necessary to investigate the flicker noise which dominates at frequencies below 100 kHz. This low frequency noise is dependent on the exposure time of the graphene layer in the buffer solution and concentration of charged impurities at the surface. In this paper, the functionalization strategy of graphene nanogrids has been optimized with respect to concentration and incubation time of the cross linker for an enhancement in signal to noise ratio (SNR). It has been interestingly observed that as the sensitivity and noise power change at different rates with the functionalization parameters, SNR does not vary monotonically but is maximum corresponding to a particular parameter. The optimized parameter has improved the SNR by 50% which has enabled a detection of 0.05 fM Hep-B virus molecules with a sensitivity of around 30% and a standard deviation within 3%. Further, the SNR enhancement has resulted in improvement of quantification accuracy by five times and selectivity by two orders of magnitude. Full article
(This article belongs to the Special Issue Carbon MEMS and NEMS for Sensor Applications)
Show Figures

Figure 1

19 pages, 3625 KiB  
Article
Effect of Edge Roughness on Static Characteristics of Graphene Nanoribbon Field Effect Transistor
by Yaser M. Banadaki and Ashok Srivastava
Electronics 2016, 5(1), 11; https://doi.org/10.3390/electronics5010011 - 18 Mar 2016
Cited by 18 | Viewed by 8618
Abstract
In this paper, we present a physics-based analytical model of GNR FET, which allows for the evaluation of GNR FET performance including the effects of line-edge roughness as its practical specific non-ideality. The line-edge roughness is modeled in edge-enhanced band-to-band-tunneling and localization regimes, [...] Read more.
In this paper, we present a physics-based analytical model of GNR FET, which allows for the evaluation of GNR FET performance including the effects of line-edge roughness as its practical specific non-ideality. The line-edge roughness is modeled in edge-enhanced band-to-band-tunneling and localization regimes, and then verified for various roughness amplitudes. Corresponding to these two regimes, the off-current is initially increased, then decreased; while, on the other hand, the on-current is continuously decreased by increasing the roughness amplitude. Full article
(This article belongs to the Special Issue Two-Dimensional Electronics - Prospects and Challenges)
Show Figures

Graphical abstract

17 pages, 2384 KiB  
Article
Simulation of 50-nm Gate Graphene Nanoribbon Transistors
by Cedric Nanmeni Bondja, Zhansong Geng, Ralf Granzner, Jörg Pezoldt and Frank Schwierz
Electronics 2016, 5(1), 3; https://doi.org/10.3390/electronics5010003 - 12 Jan 2016
Cited by 32 | Viewed by 9046
Abstract
An approach to simulate the steady-state and small-signal behavior of GNR MOSFETs (graphene nanoribbon metal-semiconductor-oxide field-effect transistor) is presented. GNR material parameters and a method to account for the density of states of one-dimensional systems like GNRs are implemented in a commercial device [...] Read more.
An approach to simulate the steady-state and small-signal behavior of GNR MOSFETs (graphene nanoribbon metal-semiconductor-oxide field-effect transistor) is presented. GNR material parameters and a method to account for the density of states of one-dimensional systems like GNRs are implemented in a commercial device simulator. This modified tool is used to calculate the current-voltage characteristics as well the cutoff frequency fT and the maximum frequency of oscillation fmax of GNR MOSFETs. Exemplarily, we consider 50-nm gate GNR MOSFETs with N = 7 armchair GNR channels and examine two transistor configurations. The first configuration is a simplified MOSFET structure with a single GNR channel as usually studied by other groups. Furthermore, and for the first time in the literature, we study in detail a transistor structure with multiple parallel GNR channels and interribbon gates. It is shown that the calculated fT of GNR MOSFETs is significantly lower than that of GFETs (FET with gapless large-area graphene channel) with comparable gate length due to the mobility degradation in GNRs. On the other hand, GNR MOSFETs show much higher fmax compared to experimental GFETs due the semiconducting nature of the GNR channels and the resulting better saturation of the drain current. Finally, it is shown that the gate control in FETs with multiple parallel GNR channels is improved while the cutoff frequency is degraded compared to single-channel GNR MOSFETs due to parasitic capacitances of the interribbon gates. Full article
(This article belongs to the Special Issue Two-Dimensional Electronics - Prospects and Challenges)
Show Figures

Graphical abstract

Back to TopTop