Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,606)

Search Parameters:
Keywords = graph conductance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3834 KB  
Article
Image-Based Spatio-Temporal Graph Learning for Diffusion Forecasting in Digital Management Systems
by Chenxi Du, Zhengjie Fu, Yifan Hu, Yibin Liu, Jingwen Cao, Siyuan Liu and Yan Zhan
Electronics 2026, 15(2), 356; https://doi.org/10.3390/electronics15020356 (registering DOI) - 13 Jan 2026
Abstract
With the widespread application of high-resolution remote sensing imagery and unmanned aerial vehicle technologies in agricultural scenarios, accurately characterizing spatial pest diffusion from multi-temporal images has become a critical issue in intelligent agricultural management. To overcome the limitations of existing machine learning approaches [...] Read more.
With the widespread application of high-resolution remote sensing imagery and unmanned aerial vehicle technologies in agricultural scenarios, accurately characterizing spatial pest diffusion from multi-temporal images has become a critical issue in intelligent agricultural management. To overcome the limitations of existing machine learning approaches that focus mainly on static recognition and lack effective spatio-temporal diffusion modeling, a UAV-based pest diffusion prediction and simulation framework is proposed. Multi-temporal UAV RGB and multispectral imagery are jointly modeled using a graph-based representation of farmland parcels, while temporal modeling and environmental embedding mechanisms are incorporated to enable simultaneous prediction of diffusion intensity and propagation paths. Experiments conducted on two real agricultural regions, Bayan Nur and Tangshan, demonstrate that the proposed method consistently outperforms representative spatio-temporal baselines. Compared with ST-GCN, the proposed framework achieves approximately 17–22% reductions in MAE and MSE, together with 8–12% improvements in PMR, while maintaining robust classification performance with precision, recall, and F1-score exceeding 0.82. These results indicate that the proposed approach can provide reliable support for agricultural information systems and diffusion-aware decision generation. Full article
(This article belongs to the Special Issue Application of Machine Learning in Graphics and Images, 2nd Edition)
Show Figures

Figure 1

23 pages, 2168 KB  
Article
Course-Oriented Knowledge Service-Based AI Teaching Assistant System for Higher Education Sustainable Development Demand
by Ling Wang, Tingkai Wang, Tie Hua Zhou and Zehuan Liu
Sustainability 2026, 18(2), 807; https://doi.org/10.3390/su18020807 (registering DOI) - 13 Jan 2026
Abstract
With the advancement of artificial intelligence and educational informatization, there is a growing demand for intelligent teaching assistance systems in universities. Focusing on the university “Algorithms” course in the computer science department, this study develops a multi-terminal collaborative knowledge service system, Course-Oriented Knowledge [...] Read more.
With the advancement of artificial intelligence and educational informatization, there is a growing demand for intelligent teaching assistance systems in universities. Focusing on the university “Algorithms” course in the computer science department, this study develops a multi-terminal collaborative knowledge service system, Course-Oriented Knowledge Service–Based AI Teaching Assistant System (CKS-AITAS), which consists of a PC terminal and a mobile terminal, where the PC terminal integrates functions including knowledge graph, semantic retrieval, intelligent question-answering, and knowledge recommendation. While the mobile terminal enables classroom check-in and teaching interaction, thus forming a closed-loop platform for teaching organization, resource acquisition, and knowledge inquiry. For the document retrieval module, paragraph-level semantic modeling of textbook content is conducted using Word2Vec, combined with approximate nearest neighbor indexing, and this module achieves an MRR@10 of 0.641 and an average query time of 0.128 s, balancing accuracy and efficiency; the intelligent question-answering module, based on a self-built course FAQ dataset, is trained via the BERT model to enable question matching and answer retrieval, achieving an accuracy rate of 86.3% and an average response time of 0.31 s. Overall, CKS-AITAS meets the core teaching needs of the course, provides an AI-empowered solution for university teaching, and boasts promising application prospects in facilitating education sustainability. Full article
(This article belongs to the Special Issue Sustainable Digital Education: Innovations in Teaching and Learning)
45 pages, 17180 KB  
Article
Regime-Dependent Graph Neural Networks for Enhanced Volatility Prediction in Financial Markets
by Pulikandala Nithish Kumar, Nneka Umeorah and Alex Alochukwu
Mathematics 2026, 14(2), 289; https://doi.org/10.3390/math14020289 (registering DOI) - 13 Jan 2026
Abstract
Accurate volatility forecasting is essential for risk management in increasingly interconnected financial markets. Traditional econometric models capture volatility clustering but struggle to model nonlinear cross-market spillovers. This study proposes a Temporal Graph Attention Network (TemporalGAT) for multi-horizon volatility forecasting, integrating LSTM-based temporal encoding [...] Read more.
Accurate volatility forecasting is essential for risk management in increasingly interconnected financial markets. Traditional econometric models capture volatility clustering but struggle to model nonlinear cross-market spillovers. This study proposes a Temporal Graph Attention Network (TemporalGAT) for multi-horizon volatility forecasting, integrating LSTM-based temporal encoding with graph convolutional and attention layers to jointly model volatility persistence and inter-market dependencies. Market linkages are constructed using the Diebold–Yilmaz volatility spillover index, providing an economically interpretable representation of directional shock transmission. Using daily data from major global equity indices, the model is evaluated against econometric, machine learning, and graph-based benchmarks across multiple forecast horizons. Performance is assessed using MSE, R2, MAFE, and MAPE, with statistical significance validated via Diebold–Mariano tests and bootstrap confidence intervals. The study further conducts a strict expanding-window robustness test, comparing fixed and dynamically re-estimated spillover graphs in a fully out-of-sample setting. Sensitivity and scenario analyses confirm robustness across hyperparameter configurations and market regimes, while results show no systematic gains from dynamic graph updating over a fixed spillover network. Full article
(This article belongs to the Special Issue Financial Econometrics and Machine Learning)
Show Figures

Figure 1

19 pages, 6052 KB  
Article
SGMT-IDS: A Dual-Branch Semi-Supervised Intrusion Detection Model Based on Graphs and Transformers
by Yifei Wu and Liang Wan
Electronics 2026, 15(2), 348; https://doi.org/10.3390/electronics15020348 - 13 Jan 2026
Abstract
Network intrusion behaviors exhibit high concealment and diversity, making intrusion detection methods based on single-behavior modeling unable to accurately characterize such activities. To overcome this limitation, we propose SGMT-IDS, a dual-branch semi-supervised intrusion detection model based on Graph Neural Networks (GNNs) and Transformers. [...] Read more.
Network intrusion behaviors exhibit high concealment and diversity, making intrusion detection methods based on single-behavior modeling unable to accurately characterize such activities. To overcome this limitation, we propose SGMT-IDS, a dual-branch semi-supervised intrusion detection model based on Graph Neural Networks (GNNs) and Transformers. By constructing two views of network attacks, namely structural and behavioral semantics, the model performs collaborative analysis of intrusion behaviors from both perspectives. The model adopts a dual-branch architecture. The SGT branch captures the structural embeddings of network intrusion behaviors, and the GML-Transformer branch extracts the semantic information of intrusion behaviors. In addition, we introduce a two-stage training strategy that optimizes the model through pseudo-labeling and contrastive learning, enabling accurate intrusion detection with only a small amount of labeled data. We conduct experiments on the NF-Bot-IoT-V2, NF-ToN-IoT-V2, and NF-CSE-CIC-IDS2018-V2 datasets. The experimental results demonstrate that SGMT-IDS achieves superior performance across multiple evaluation metrics. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

23 pages, 54003 KB  
Article
TRACE: Topical Reasoning with Adaptive Contextual Experts
by Jiabin Ye, Qiuyi Xin, Chu Zhang and Hengnian Qi
Big Data Cogn. Comput. 2026, 10(1), 31; https://doi.org/10.3390/bdcc10010031 - 13 Jan 2026
Abstract
Retrieval-Augmented Generation (RAG) is widely used for long-text summarization due to its efficiency and scalability. However, standard RAG methods flatten documents into independent chunks, disrupting sequential flow and thematic structure, resulting in significant loss of contextual information. This paper presents MOEGAT, a novel [...] Read more.
Retrieval-Augmented Generation (RAG) is widely used for long-text summarization due to its efficiency and scalability. However, standard RAG methods flatten documents into independent chunks, disrupting sequential flow and thematic structure, resulting in significant loss of contextual information. This paper presents MOEGAT, a novel graph-enhanced retrieval framework that addresses this limitation by explicitly modeling document structure. MOEGAT constructs an Orthogonal Context Graph to capture sequential discourse and global semantic relationships—long-range dependencies between non-adjacent text spans that reflect topical similarity and logical associations beyond local context. It then employs a query-aware Mixture-of-Experts Graph Attention Network to dynamically activate specialized reasoning pathways. Experiments conducted on three public long-text summarization datasets demonstrate that MOEGAT achieves state-of-the-art performance. Notably, on the WCEP dataset, it outperforms the previous state-of-the-art Graph of Records (GOR) baseline by 14.9%, 18.1%, and 18.4% on ROUGE-L, ROUGE-1, and ROUGE-2, respectively. These substantial gains, especially the 14.9% improvement in ROUGE-L, reflect significantly better capture of long-range coherence and thematic integrity in summaries. Ablation studies confirm the effectiveness of the orthogonal graph and Mixture-of-Experts components. Overall, this work introduces a novel structure-aware approach to RAG that explicitly models and leverages document structure through an orthogonal graph representation and query-aware Mixture-of-Experts reasoning. Full article
(This article belongs to the Special Issue Generative AI and Large Language Models)
Show Figures

Figure 1

21 pages, 2506 KB  
Article
Collaborative Dispatch of Power–Transportation Coupled Networks Based on Physics-Informed Priors
by Zhizeng Kou, Yingli Wei, Shiyan Luan, Yungang Wu, Hancong Guo, Bochao Yang and Su Su
Electronics 2026, 15(2), 343; https://doi.org/10.3390/electronics15020343 - 13 Jan 2026
Abstract
Under China’s “dual-carbon” strategic goals and the advancement of smart city development, the rapid adoption of electric vehicles (EVs) has deepened the spatiotemporal coupling between transportation networks and distribution grids, posing new challenges for integrated energy systems. To address this, we propose a [...] Read more.
Under China’s “dual-carbon” strategic goals and the advancement of smart city development, the rapid adoption of electric vehicles (EVs) has deepened the spatiotemporal coupling between transportation networks and distribution grids, posing new challenges for integrated energy systems. To address this, we propose a collaborative optimization framework for power–transportation coupled networks that integrates multi-modal data with physical priors. The framework constructs a joint feature space from traffic flow, pedestrian density, charging behavior, and grid operating states, and employs hypergraph modeling—guided by power flow balance and traffic flow conservation principles—to capture high-order cross-domain coupling. For prediction, spatiotemporal graph convolution combined with physics-informed attention significantly improves the accuracy of EV charging load forecasting. For optimization, a hierarchical multi-agent strategy integrating federated learning and the Alternating Direction Method of Multipliers (ADMM) enables privacy-preserving, distributed charging load scheduling. Case studies conducted on a 69-node distribution network using real traffic and charging data demonstrate that the proposed method reduces the grid’s peak–valley difference by 20.16%, reduces system operating costs by approximately 25%, and outperforms mainstream baseline models in prediction accuracy, algorithm convergence speed, and long-term operational stability. This work provides a practical and scalable technical pathway for the deep integration of energy and transportation systems in future smart cities. Full article
Show Figures

Figure 1

14 pages, 1218 KB  
Article
Finding Influencers Based on Social Interaction and Graph Structure in Social Media
by Jongtae Lim, Hwanyong Choi, Sanghyun Choi, Kyoungsoo Bok and Jaesoo Yoo
Appl. Sci. 2026, 16(2), 738; https://doi.org/10.3390/app16020738 - 10 Jan 2026
Viewed by 106
Abstract
With the development of online social media, influencer detection methods on these platforms have become an important area of study. However, existing influencer detection methods often place significant emphasis on the number of followers, which can lead to a drawback in maintaining the [...] Read more.
With the development of online social media, influencer detection methods on these platforms have become an important area of study. However, existing influencer detection methods often place significant emphasis on the number of followers, which can lead to a drawback in maintaining the influence of users who have not been very active recently. In this paper, we propose an influencer detection method that takes both social interactions and the graph structure of social media into account. By considering both social interactions and graph structure, the proposed method prevents influence scores of users who have not been recently active from remaining disproportionately high. To demonstrate the superiority of the proposed method, we conducted a performance comparison with existing methods. Full article
(This article belongs to the Special Issue AI-Based Data Science and Database Systems)
15 pages, 986 KB  
Article
Knowledge Graphs as Cognitive Scaffolding for Sustainable Engineering Education: A Quasi-Experimental Study in Structural Geology
by Xiaoling Tang, Jinlong Ni, Yuanku Meng, Qiao Chen and Liping Zhang
Sustainability 2026, 18(2), 736; https://doi.org/10.3390/su18020736 - 10 Jan 2026
Viewed by 104
Abstract
The transition to Outcome-Based Education (OBE) in engineering demands instructional tools that bridge theoretical knowledge and practical engineering competencies. However, traditional Learning Management Systems (LMS) primarily function as static resource repositories, lacking the semantic structure necessary to support deep learning and precise competency [...] Read more.
The transition to Outcome-Based Education (OBE) in engineering demands instructional tools that bridge theoretical knowledge and practical engineering competencies. However, traditional Learning Management Systems (LMS) primarily function as static resource repositories, lacking the semantic structure necessary to support deep learning and precise competency tracking. To address this, this study developed a three-layer domain Knowledge Graph (KG) for Structural Geology and integrated it into the ChaoXing LMS (a widely used Learning Management System in Chinese higher education). A semester-long quasi-experimental study (N = 84) was conducted to evaluate its impact on student performance and specific graduation attribute achievement compared to a conventional folder-based approach. Empirical results demonstrate that the KG-integrated group significantly outperformed the control group (p < 0.01, Cohen’s d = 0.74). Notably, while performance on rote memorization tasks was similar, the experimental group showed marked improvement in identifying and solving complex engineering problems. LMS log analysis confirmed a strong positive correlation (r = 0.68) between graph navigation depth and academic success. KG effectively bridged the gap between theoretical knowledge and practical engineering applications (e.g., geohazard analysis). This research confirms that explicit semantic visualization acts as vital cognitive scaffolding, effectively enhancing higher-order thinking and ensuring the rigorous alignment of instruction with engineering accreditation standards. Ultimately, this approach promotes sustainable learning capabilities and prepares future engineers to address complex, interdisciplinary challenges in sustainable development. Full article
(This article belongs to the Special Issue AI for Sustainable and Creative Learning in Education)
22 pages, 891 KB  
Article
Rapid MRTA in Large UAV Swarms Based on Topological Graph Construction in Obstacle Environments
by Jinlong Liu, Zexu Zhang, Shan Wen, Jingzong Liu and Kai Zhang
Drones 2026, 10(1), 48; https://doi.org/10.3390/drones10010048 - 9 Jan 2026
Viewed by 79
Abstract
In large-scale Unmanned Aerial Vehicle (UAV) and task environments—particularly those involving obstacles—dimensional explosion remains a significant challenge in Multi-Robot Task Allocation (MRTA). To this end, a novel heuristic MRTA framework based on Topological Graph Construction (TGC) is proposed. First, the physical map is [...] Read more.
In large-scale Unmanned Aerial Vehicle (UAV) and task environments—particularly those involving obstacles—dimensional explosion remains a significant challenge in Multi-Robot Task Allocation (MRTA). To this end, a novel heuristic MRTA framework based on Topological Graph Construction (TGC) is proposed. First, the physical map is transformed into a pixel map, from which a Generalized Voronoi Graph (GVG) is generated by extracting clearance points, which is then used to construct the topological graph of the obstacle environment. Next, the affiliations of UAVs and tasks within the topological graph are determined to partition different topological regions, and the task value of each topological node is calculated, followed by the first-phase Task Allocation (TA) on these topological nodes. Finally, UAVs within the same topological region with their allocated tasks perform a local second-phase TA and generate the final TA result. The simulation experiments analyze the influence of different pixel resolutions on the performance of the proposed method. Subsequently, robustness experiments under localization noise, path cost noise, and communication delays demonstrate that the total benefit achieved by the proposed method remains relatively stable, while the computational time is moderately affected. Moreover, comparative experiments and statistical analyses were conducted against k-means clustering-based MRTA methods in different UAV, task, and obstacle scale environments. The results show that the proposed method improves computational speed while maintaining solution quality, with the PI-based method achieving speedups of over 60 times and the CBBA-based method over 10 times compared with the baseline method. Full article
31 pages, 10745 KB  
Article
CNN-GCN Coordinated Multimodal Frequency Network for Hyperspectral Image and LiDAR Classification
by Haibin Wu, Haoran Lv, Aili Wang, Siqi Yan, Gabor Molnar, Liang Yu and Minhui Wang
Remote Sens. 2026, 18(2), 216; https://doi.org/10.3390/rs18020216 - 9 Jan 2026
Viewed by 154
Abstract
The existing multimodal image classification methods often suffer from several key limitations: difficulty in effectively balancing local detail and global topological relationships in hyperspectral image (HSI) feature extraction; insufficient multi-scale characterization of terrain features from light detection and ranging (LiDAR) elevation data; and [...] Read more.
The existing multimodal image classification methods often suffer from several key limitations: difficulty in effectively balancing local detail and global topological relationships in hyperspectral image (HSI) feature extraction; insufficient multi-scale characterization of terrain features from light detection and ranging (LiDAR) elevation data; and neglect of deep inter-modal interactions in traditional fusion methods, often accompanied by high computational complexity. To address these issues, this paper proposes a comprehensive deep learning framework combining convolutional neural network (CNN), a graph convolutional network (GCN), and wavelet transform for the joint classification of HSI and LiDAR data, including several novel components: a Spectral Graph Mixer Block (SGMB), where a CNN branch captures fine-grained spectral–spatial features by multi-scale convolutions, while a parallel GCN branch models long-range contextual features through an enhanced gated graph network. This dual-path design enables simultaneous extraction of local detail and global topological features from HSI data; a Spatial Coordinate Block (SCB) to enhance spatial awareness and improve the perception of object contours and distribution patterns; a Multi-Scale Elevation Feature Extraction Block (MSFE) for capturing terrain representations across varying scales; and a Bidirectional Frequency Attention Encoder (BiFAE) to enable efficient and deep interaction between multimodal features. These modules are intricately designed to work in concert, forming a cohesive end-to-end framework, which not only achieves a more effective balance between local details and global contexts but also enables deep yet computationally efficient interaction across features, significantly strengthening the discriminability and robustness of the learned representation. To evaluate the proposed method, we conducted experiments on three multimodal remote sensing datasets: Houston2013, Augsburg, and Trento. Quantitative results demonstrate that our framework outperforms state-of-the-art methods, achieving OA values of 98.93%, 88.05%, and 99.59% on the respective datasets. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

23 pages, 1172 KB  
Article
SDN-Oriented 6G Industrial IoT Architecture Design and Application to Optimal RIS Placement and Selection
by Francesco Chiti, Matteo Lotti, Sara Picchioni and Laura Pierucci
Sensors 2026, 26(2), 411; https://doi.org/10.3390/s26020411 - 8 Jan 2026
Viewed by 141
Abstract
This paper presents a high-level system architecture that integrates the Software Defined Networking (SDN) paradigm in 5G/6G networks with the aim of supporting the requirements expected for Industrial Internet of Things (IIoT) devices and services. To this purpose, we include multiple Reconfigurable Intelligent [...] Read more.
This paper presents a high-level system architecture that integrates the Software Defined Networking (SDN) paradigm in 5G/6G networks with the aim of supporting the requirements expected for Industrial Internet of Things (IIoT) devices and services. To this purpose, we include multiple Reconfigurable Intelligent Surfaces (RISs) systems and provide for them an abstract representation consistent with the OpenFlow interface and messaging framework. The main contribution of this is firstly focused on designing a comprehensive framework that specifies the modules, components, interfaces, protocols, and message exchanges across the typical three layers SDN architecture. In addition, we characterize the Network Discovery (ND) and Host Discovery (HD) protocols that enable the SDN Controller to achieve a global and updated view of the network. Then, the RIS Placement and Selection Problem (RPSP) is formulated by using two graph-theory approaches, i.e., Set Covering (SC) and Minimum Spanning Tree (MST). Finally, we conduct an extensive simulation campaign that evaluates the performance of the discovery phases and the RIS placement/selection algorithms in realistic industrial environments. The results highlight the advantages achieved in terms of coverage and complexity. Full article
Show Figures

Figure 1

39 pages, 2885 KB  
Article
Usability Assessment Framework for Crowdsensing Data and the Implicit Spatiotemporal Information
by Ying Chen, He Zhang, Jixian Zhang, Jing Shen and Yahang Li
ISPRS Int. J. Geo-Inf. 2026, 15(1), 29; https://doi.org/10.3390/ijgi15010029 - 7 Jan 2026
Viewed by 98
Abstract
Crowdsensing data serves as a crucial resource for supporting spatiotemporal applications and services. However, its inherent heterogeneity and quality uncertainty present significant challenges for data usability assessment: the evaluation methods are difficult to standardize due to the diverse types of data; assessment dimensions [...] Read more.
Crowdsensing data serves as a crucial resource for supporting spatiotemporal applications and services. However, its inherent heterogeneity and quality uncertainty present significant challenges for data usability assessment: the evaluation methods are difficult to standardize due to the diverse types of data; assessment dimensions are predominantly confined to internal quality attributes; and a comprehensive framework for data usability evaluation remains lacking. To address these challenges, this study proposes an innovative, multi-layered usability assessment framework applicable to six major categories of crowdsensing data: specialized spatial data, Internet of Things (IoT) sensing data, trajectory data, geographic semantic web, scientific literature, and web texts. Building upon a systematic review of existing research on data quality and usability, our framework conducts a comprehensive evaluation of data efficiency, effectiveness, and satisfaction from dual perspectives—data sources and content. We present a complete system comprising primary and secondary indicators and elaborate on their computation and aggregation methods. Indicator weights are determined through the Analytic Hierarchy Process (AHP) and expert consultations, with sensitivity analysis performed to validate the robustness of the framework. The practical applicability of the framework is demonstrated through a case study of constructing a spatiotemporal knowledge graph, where we assess all six types of data. The results indicate that the framework generates distinguishable usability scores and provides actionable insights for improvement. This framework offers a universal standard for selecting high-quality data in complex decision-making scenarios and facilitates the development of reliable spatiotemporal knowledge services. Full article
Show Figures

Figure 1

28 pages, 8796 KB  
Article
CPU-Only Spatiotemporal Anomaly Detection in Microservice Systems via Dynamic Graph Neural Networks and LSTM
by Jiaqi Zhang and Hao Yang
Symmetry 2026, 18(1), 87; https://doi.org/10.3390/sym18010087 - 3 Jan 2026
Viewed by 183
Abstract
Microservice architecture has become a foundational component of modern distributed systems due to its modularity, scalability, and deployment flexibility. However, the increasing complexity and dynamic nature of service interactions have introduced substantial challenges in accurately detecting runtime anomalies. Existing methods often rely on [...] Read more.
Microservice architecture has become a foundational component of modern distributed systems due to its modularity, scalability, and deployment flexibility. However, the increasing complexity and dynamic nature of service interactions have introduced substantial challenges in accurately detecting runtime anomalies. Existing methods often rely on multiple monitoring metrics, which introduce redundancy and noise while increasing the complexity of data collection and model design. This paper proposes a novel spatiotemporal anomaly detection framework that integrates Dynamic Graph Neural Networks (D-GNN) combined with Long Short-Term Memory (LSTM) networks to model both the structural dependencies and temporal evolution of microservice behaviors. Unlike traditional approaches, our method uses only CPU utilization as the sole monitoring metric, leveraging its high observability and strong correlation with service performance. From a symmetry perspective, normal microservice behaviors exhibit approximately symmetric spatiotemporal patterns: structurally similar services tend to share similar CPU trajectories, and recurring workload cycles induce quasi-periodic temporal symmetries in utilization signals. Runtime anomalies can therefore be interpreted as symmetry-breaking events that create localized structural and temporal asymmetries in the service graph. The proposed framework is explicitly designed to exploit such symmetry properties: the D-GNN component respects permutation symmetry on the microservice graph while embedding the evolving structural context of each service, and the LSTM module captures shift-invariant temporal trends in CPU usage to highlight asymmetric deviations over time. Experiments conducted on real-world microservice datasets demonstrate that the proposed method delivers excellent performance, achieving 98 percent accuracy and 98 percent F1-score. Compared to baseline methods such as DeepTraLog, which achieves 0.93 precision, 0.978 recall, and 0.954 F1-score, our approach performs competitively, achieving 0.980 precision, 0.980 recall, and 0.980 F1-score. Our results indicate that a single-metric, symmetry-aware spatiotemporal modeling approach can achieve competitive performance without the complexity of multi-metric inputs, providing a lightweight and robust solution for real-time anomaly detection in large-scale microservice environments. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

15 pages, 2605 KB  
Article
A Two-Stage Voltage Sag Source Localization Method in Microgrids
by Ruotian Yao, Hao Bai, Shiqi Jiang, Tong Liu, Yiyong Lei and Yawen Zheng
Energies 2026, 19(1), 258; https://doi.org/10.3390/en19010258 - 3 Jan 2026
Viewed by 214
Abstract
Accurate localization of voltage sag sources is crucial for maintaining reliable and stable operation in microgrids with high penetration of distributed generation (DG). However, the complex topology, bidirectional and time-varying power flows, and measurement uncertainty make it difficult for these conventional model-based approaches [...] Read more.
Accurate localization of voltage sag sources is crucial for maintaining reliable and stable operation in microgrids with high penetration of distributed generation (DG). However, the complex topology, bidirectional and time-varying power flows, and measurement uncertainty make it difficult for these conventional model-based approaches to achieve high accuracy. To address these challenges, this paper proposes a two-stage voltage sag source localization method that integrates a data-driven spatio-temporal learning model with a model-based binary search refinement. In the first stage, an improved spatial-temporal graph convolutional network (STGCN) is developed to extract temporal and spatial correlations among voltage and current measurements, enabling section-level localization of sag sources. In the second stage, a binary search–based refinement strategy is applied within the candidate section to iteratively converge on the exact fault location with high precision and robustness. Simulations are conducted on a modified IEEE 33-node system with diverse PV output scenarios, covering combinations of fault types and locations. The results demonstrate that the proposed method maintains stable localization performance under high DG penetration and achieves high accuracy despite multiple fault types and noise interference. Full article
(This article belongs to the Special Issue Modeling, Stability Analysis and Control of Microgrids)
Show Figures

Figure 1

41 pages, 2277 KB  
Article
Navigating Technological Frontiers: Explainable Patent Recommendation with Temporal Dynamics and Uncertainty Modeling
by Kuan-Wei Huang
Symmetry 2026, 18(1), 78; https://doi.org/10.3390/sym18010078 - 2 Jan 2026
Viewed by 243
Abstract
Rapid technological innovation has made navigating millions of new patent filings a critical challenge for corporations and research institutions. Existing patent recommendation systems, largely constrained by their static designs, struggle to capture the dynamic pulse of an ever-evolving technological ecosystem. At the same [...] Read more.
Rapid technological innovation has made navigating millions of new patent filings a critical challenge for corporations and research institutions. Existing patent recommendation systems, largely constrained by their static designs, struggle to capture the dynamic pulse of an ever-evolving technological ecosystem. At the same time, their “black-box” decision-making processes severely limit their trustworthiness and practical value in high-stakes, real-world scenarios. To address this impasse, we introduce TEAHG-EPR, a novel, end-to-end framework for explainable patent recommendation. The core of our approach is to reframe the recommendation task as a dynamic learning and reasoning process on a temporal-aware attributed heterogeneous graph. Specifically, we first construct a sequence of patent knowledge graphs that evolve on a yearly basis. A dual-encoder architecture, comprising a Relational Graph Convolutional Network (R-GCN) and a Bidirectional Long Short-Term Memory network (Bi-LSTM), is then employed to simultaneously capture the spatial structural information within each time snapshot and the evolutionary patterns across time. Building on this foundation, we innovatively introduce uncertainty modeling, learning a dual “deterministic core + probabilistic potential” representation for each entity and balancing recommendation precision with exploration through a hybrid similarity metric. Finally, to achieve true explainability, we design a feature-guided controllable text generation module that can attach a well-reasoned, faithful textual explanation to every single recommendation. We conducted comprehensive experiments on two large-scale datasets: a real-world industrial patent dataset (USPTO) and a classic academic dataset (AMiner). The results are compelling: TEAHG-EPR not only significantly outperforms all state-of-the-art baselines in recommendation accuracy but also demonstrates a decisive advantage across multiple “beyond-accuracy” dimensions, including explanation quality, diversity, and novelty. Full article
Show Figures

Figure 1

Back to TopTop