Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,676)

Search Parameters:
Keywords = granite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6304 KiB  
Article
Influence of Dominant Structural Faces on Anti-Sliding Stability of Gravity Dams in Granite Intrusion Regions
by Menglong Dong, Xiaokai Li, Yuezu Huang, Huaqing Zhang and Xiaolong Zhang
Appl. Sci. 2025, 15(15), 8657; https://doi.org/10.3390/app15158657 (registering DOI) - 5 Aug 2025
Abstract
Granite formations provide suitable geological conditions for building gravity dams. However, the presence of intruding granite creates a fractured zone. The interaction of this fractured zone with structural planes and faults can create geological conditions that are unfavorable for the anti-sliding stability of [...] Read more.
Granite formations provide suitable geological conditions for building gravity dams. However, the presence of intruding granite creates a fractured zone. The interaction of this fractured zone with structural planes and faults can create geological conditions that are unfavorable for the anti-sliding stability of gravity dams. This paper identifies the dominant structural planes that affect the anti-sliding stability of dams by studying the three-dimensional intersection relationships between groups of structural planes, faults, and fracture zones. The three-dimensional distribution and occurrence of the dominant structural planes directly impact the anti-sliding stability and sliding failure mode of gravity dams. Through comprehensive field investigations and systematic analysis of engineering geological data, the spatial distribution characteristics of structural planes and fracture zones were quantitatively characterized. Subsequently, the potential for deep-seated sliding failure of the gravity dam was rigorously evaluated and conclusively dismissed through application of the rigid body limit equilibrium method. It was established that the sliding mode of the foundation of the dam under this combination of structural planes is primarily shallow sliding. Additionally, based on the engineering geological data of the area around the dam, a three-dimensional finite element numerical model was developed to analyze stress–strain calculations under seepage stress coupling conditions and compared with calculations made without considering seepage stress coupling. The importance of seepage in the anti-sliding stability of the foundation of the dam was determined. The research findings provide engineering insights into enhancing the anti-sliding stability of gravity dams in granite distribution areas by (1) identifying critical structural planes and fracture zones that control sliding behavior, (2) demonstrating the necessity of seepage-stress coupling analysis in stability assessments, and (3) guiding targeted reinforcement measures to mitigate shallow sliding risks. Full article
(This article belongs to the Special Issue Paleoseismology and Disaster Prevention)
Show Figures

Figure 1

16 pages, 3826 KiB  
Article
Surface Resistivity Imaging for Drilling Columnar Cores
by Qi Ran, Qiang Lai, Benjian Zhang, Yuyu Wu, Jun Tang and Zhe Wu
Symmetry 2025, 17(8), 1238; https://doi.org/10.3390/sym17081238 - 5 Aug 2025
Abstract
The resistivity imaging system is specifically designed for the precise measurement of resistivity distributions within drilled columnar core samples. Its coaxial symmetric configuration enables the non-destructive characterization of electrical properties, with broad applications in oil and gas exploration, reservoir evaluation, and geological research. [...] Read more.
The resistivity imaging system is specifically designed for the precise measurement of resistivity distributions within drilled columnar core samples. Its coaxial symmetric configuration enables the non-destructive characterization of electrical properties, with broad applications in oil and gas exploration, reservoir evaluation, and geological research. By integrating a ring return electrode and full-circumference electrode arrays, the system can acquire core-scale resistivity data in conductive media environments. The self-developed imaging software employs advanced processing algorithms—including depth correction, amplitude normalization, and image enhancement—to transform raw resistivity measurements into high-resolution surface imaging maps. Experimental results demonstrate that the system can resolve features such as cracks with a minimum width of 0.5 mm and pores with a minimum inner diameter of 0.4 mm in granite core, providing a novel technical approach for the fine-scale characterization of core materials. Full article
(This article belongs to the Special Issue Symmetry in Civil Transportation Engineering—2nd Edition)
Show Figures

Figure 1

17 pages, 2287 KiB  
Article
Compressive Strength Impact on Cut Depth of Granite During Abrasive Water Jet Machining
by Isam Qasem, La’aly A. Al-Samrraie and Khalideh Al Bkoor Alrawashdeh
J. Manuf. Mater. Process. 2025, 9(8), 262; https://doi.org/10.3390/jmmp9080262 - 5 Aug 2025
Abstract
Background: Compared to the conventional method of machining granite, abrasive water jet machining (AWJM) offers several benefits, including flexible cutting mechanisms and machine efficiency, among other possible advantages. The high-speed particles carried by water remove the materials, preventing heat damage and maintaining the [...] Read more.
Background: Compared to the conventional method of machining granite, abrasive water jet machining (AWJM) offers several benefits, including flexible cutting mechanisms and machine efficiency, among other possible advantages. The high-speed particles carried by water remove the materials, preventing heat damage and maintaining the granite’s structure. Methods: Three types of granite with different compressive strengths are investigated in terms of the effects of pump pressure (P), traverse speed (T), and abrasive mass flow (A) on the cutting depth. Results: The results of the study demonstrated that the coarse-grained granite negatively affected the penetration depth, while the fine-grained granite produced a higher cutting depth. The value of an optimal depth of penetration was also generated; for example, the optimum depth obtained for Black Galaxy Granite, M1 (32.27 mm), was achieved at P = 300 MPa, T = 100 mm/min, and A = 180.59 g/min. Conclusions: In terms of processing parameters, the maximum penetration depth can be achieved in granite with a higher compressive strength. Full article
Show Figures

Figure 1

23 pages, 7821 KiB  
Article
The Multiple Stages of Regional Triassic Crustal Reworking in Eastern Tianshan, NW China: Evidence from the Xigebi Area
by Ming Wei, Haiquan Li, Wenxiao Zhou, Mahemuti Muredili, Ernest Chi Fru and Thomas Sheldrick
Minerals 2025, 15(8), 829; https://doi.org/10.3390/min15080829 (registering DOI) - 4 Aug 2025
Abstract
The eastern Tianshan region in the Central Asian Orogenic Belt (CAOB) is characterized by multiple complex tectonic activity of uncertain historical contribution to the construction of the CAOB. This study utilizes a multi-proxy geochemical approach to characterize I-type monzogranite pluton rocks and their [...] Read more.
The eastern Tianshan region in the Central Asian Orogenic Belt (CAOB) is characterized by multiple complex tectonic activity of uncertain historical contribution to the construction of the CAOB. This study utilizes a multi-proxy geochemical approach to characterize I-type monzogranite pluton rocks and their associated hornblende-rich dioritic enclaves to decipher the tectonic and magmatic evolution of the Xigebi area, eastern Tianshan. Zircon geochronology indicates a Triassic and Permian crystallization age of ca. 224.2 ± 1.7 Ma and ca. 268.3 ± 3.0 Ma for the host monzogranites and the dioritic enclaves, respectively. Major, trace and rare earth element distribution, together with Hf isotope systematics displaying noticeable positive εHf(t) anomalies for both rock types, point to partial melting of meta-mafic rocks in an intraplate extensional setting. The diorite was formed by the melting of lower crustal meta-igneous rocks mixed with mantle melts, and the monzogranite, predominantly from deep crustal meta-basalts contaminated by shallow metasedimentary rocks, with some degree of mixing with deeply sourced mantle magma. While both the host monzogranites and their dioritic enclaves are the products of upwelling magma, the younger Triassic monzogranites captured and preserved fragments of the dioritic Permian lower continental crust during crystallization. These multiple stages of magmatic underplating and crustal reworking associated with vertical stratification of the juvenile paleo-continental crust suggest the monzogranites and diorites indicate a change from a post-collisional setting to a regional intraplate regime on the southern margin of the CAOB. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

13 pages, 1635 KiB  
Article
Mechanical Performance of Sustainable Asphalt Mixtures Incorporating RAP and Panasqueira Mine Waste
by Hernan Patricio Moyano Ayala and Marisa Sofia Fernandes Dinis de Almeida
Constr. Mater. 2025, 5(3), 52; https://doi.org/10.3390/constrmater5030052 - 4 Aug 2025
Abstract
The increasing demand for sustainable practices in road construction has prompted the search for environmentally friendly and cost-effective materials. This study explores the incorporation of reclaimed asphalt pavement (RAP) and Panasqueira mine waste (greywacke aggregates) as full replacements for virgin aggregates in hot [...] Read more.
The increasing demand for sustainable practices in road construction has prompted the search for environmentally friendly and cost-effective materials. This study explores the incorporation of reclaimed asphalt pavement (RAP) and Panasqueira mine waste (greywacke aggregates) as full replacements for virgin aggregates in hot mix asphalt (HMA), aligning with the objectives of UN Sustainable Development Goal 9. Three asphalt mixtures were prepared: a reference mixture (MR) with granite aggregates, and two modified mixtures (M15 and M20) with 15% and 20% RAP, respectively. All mixtures were evaluated through Marshall stability, stiffness modulus, water sensitivity, and wheel tracking tests. The results demonstrated that mixtures containing RAP and mine waste met Portuguese specifications for surface courses. Specifically, the M20 mixture showed the highest stiffness modulus, improved moisture resistance, and the best performance against permanent deformation. These improvements are attributed to the presence of stiff aged binder in RAP and the mechanical characteristics of the greywacke aggregates. Overall, the findings confirm that the combined use of RAP and mining waste provides a technically viable and sustainable alternative for asphalt pavement construction, contributing to resource efficiency and circular economy goals. Full article
Show Figures

Figure 1

23 pages, 8340 KiB  
Article
Numerical Analysis of the Stability of Underground Granite Chamber Under the Combined Effect of Penetration and Explosion
by Yuchao Zhang, Shaohu Jin, Kewei Liu and Rukun Guo
Buildings 2025, 15(15), 2741; https://doi.org/10.3390/buildings15152741 - 4 Aug 2025
Abstract
In recent years, the majority of countries have focused on the development of earth-penetrating weapons and the construction of deep underground fortifications. It is therefore necessary to assess the damage to underground structures under the attacks of earth-penetrating weapons. In this paper, fluid–solid [...] Read more.
In recent years, the majority of countries have focused on the development of earth-penetrating weapons and the construction of deep underground fortifications. It is therefore necessary to assess the damage to underground structures under the attacks of earth-penetrating weapons. In this paper, fluid–solid coupling and restarting methods are used to simulate the damage processes of a granite chamber subjected to the combined action of penetration and explosion with the commercial software of LS-DYNA R11. The applicability of the penetration model and the blasting model is verified by the previous penetration and blasting tests. The verified models are used to simulate the complete process of the underground granite chamber attacked by the earth-penetrating weapons. Based on peak particle velocity (PPV) damage criteria, the numerical results show that the hypervelocity impact of the earth penetrating weapons only causes local damage to the granite rock mass, and more serious damage is caused by the subsequent explosion. During the subsequent explosion, part of the detonation products and energy can escape along the penetration trajectory with the blast loading, resulting in the attenuation of blast stress waves. Subsequently, the relationship between the overlay thickness and the vibration attenuation in granite is also studied, which provides a fast method to determine the threshold damage level for an underground chamber to collapse under the attacks of earth-penetrating weapons. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 7203 KiB  
Article
Experimental Lateral Behavior of Porcelain-Clad Cold-Formed Steel Shear Walls Under Cyclic-Gravity Loading
by Caeed Reza Sowlat-Tafti, Mohammad Reza Javaheri-Tafti and Hesam Varaee
Infrastructures 2025, 10(8), 202; https://doi.org/10.3390/infrastructures10080202 - 2 Aug 2025
Viewed by 179
Abstract
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative [...] Read more.
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative porcelain sheathing system for cold-formed steel (CFS) shear walls. Porcelain has no veins thus it offers integrated and reliable strength unlike granite. Four full-scale CFS shear walls incorporating screwed porcelain sheathing (SPS) were tested under combined cyclic lateral and constant gravity loading. The experimental program investigated key seismic characteristics, including lateral stiffness and strength, deformation capacity, failure modes, and energy dissipation, to calculate the system response modification factor (R). The test results showed that configurations with horizontal sheathing, double mid-studs, and three blocking rows improved performance, achieving up to 21.1 kN lateral resistance and 2.5% drift capacity. The average R-factor was 4.2, which exceeds the current design code values (AISI S213: R = 3; AS/NZS 4600: R = 2), suggesting the enhanced seismic resilience of the SPS-CFS system. This study also proposes design improvements to reduce the risk of brittle failure and enhance inelastic behavior. In addition, the results inform discussions on permissible building heights and contribute to the advancement of CFS design codes for seismic regions. Full article
Show Figures

Figure 1

19 pages, 6085 KiB  
Article
Earthquake Precursors Based on Rock Acoustic Emission and Deep Learning
by Zihan Jiang, Zhiwen Zhu, Giuseppe Lacidogna, Leandro F. Friedrich and Ignacio Iturrioz
Sci 2025, 7(3), 103; https://doi.org/10.3390/sci7030103 - 1 Aug 2025
Viewed by 141
Abstract
China is one of the countries severely affected by earthquakes, making precise and timely identification of earthquake precursors essential for reducing casualties and property damage. A novel method is proposed that combines a rock acoustic emission (AE) detection technique with deep learning methods [...] Read more.
China is one of the countries severely affected by earthquakes, making precise and timely identification of earthquake precursors essential for reducing casualties and property damage. A novel method is proposed that combines a rock acoustic emission (AE) detection technique with deep learning methods to facilitate real-time monitoring and advance earthquake precursor detection. The AE equipment and seismometers were installed in a granite tunnel 150 m deep in the mountains of eastern Guangdong, China, allowing for the collection of experimental data on the correlation between rock AE and seismic activity. The deep learning model uses features from rock AE time series, including AE events, rate, frequency, and amplitude, as inputs, and estimates the likelihood of seismic events as the output. Precursor features are extracted to create the AE and seismic dataset, and three deep learning models are trained using neural networks, with validation and testing. The results show that after 1000 training cycles, the deep learning model achieves an accuracy of 98.7% on the validation set. On the test set, it reaches a recognition accuracy of 97.6%, with a recall rate of 99.6% and an F1 score of 0.975. Additionally, it successfully identified the two biggest seismic events during the monitoring period, confirming its effectiveness in practical applications. Compared to traditional analysis methods, the deep learning model can automatically process and analyse recorded massive AE data, enabling real-time monitoring of seismic events and timely earthquake warning in the future. This study serves as a valuable reference for earthquake disaster prevention and intelligent early warning. Full article
Show Figures

Figure 1

26 pages, 6611 KiB  
Article
The Geochronology, Geochemical Characteristics, and Tectonic Settings of the Granites, Yexilinhundi, Southern Great Xing’an Range
by Haixin Yue, Henan Yu, Zhenjun Sun, Yanping He, Mengfan Guan, Yingbo Yu and Xi Chen
Minerals 2025, 15(8), 813; https://doi.org/10.3390/min15080813 (registering DOI) - 31 Jul 2025
Viewed by 157
Abstract
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late [...] Read more.
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late Mesozoic. The study area is situated within the Huanggangliang-Ganzhuermiao metallogenic belt in the southern Great Xing’an Range. The region has witnessed extensive magmatism, with Mesozoic magmatic activities being particularly closely linked to regional mineralization. We present petrographic, zircon U-Pb chronological, lithogeochemical, and Lu-Hf isotopic analyses of the Yexilinhundi granites. The results indicate that the granite porphyry and granodiorite were emplaced during the Late Jurassic. Both rocks exhibit high SiO2, K2O + Na2O, differentiation index (DI), and 10,000 Ga/Al ratios, coupled with low MgO contents. They show distinct fractionation between light and heavy rare earth elements (LREEs and HREEs), exhibit Eu anomalies, and have low whole-rock zircon saturation temperatures (Tzr), collectively demonstrating characteristics of highly fractionated I-type granites. The εHf(t) values of the granites range from 0.600 to 9.14, with young two-stage model ages (TDM2 = 616.0~1158 Ma), indicating that the magmatic source originated from partial melting of Mesoproterozoic-Neoproterozoic juvenile crust. This study proposes that the granites formed in a post-collisional/post-orogenic extensional setting associated with the subduction of the Mongol-Okhotsk Ocean, providing a scientific basis for understanding the relationship between the formation of Sn-polymetallic deposits and granitic magmatic evolution in the study area. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

13 pages, 5465 KiB  
Article
Molybdenite Re-Os Isotopic Ages of Two Late Mesozoic Giant Mo Deposits in the Eastern Qinling Orogenic Belt, Central China
by Yuanshuo Zhang, Li Yang, Herong Gui, Dejin Wang, Mengqiu He and Jun He
Minerals 2025, 15(8), 800; https://doi.org/10.3390/min15080800 - 30 Jul 2025
Viewed by 247
Abstract
Precise Re-Os isotopic ages of the Jinduicheng and Donggou Mo deposits in the East Qinling orogenic belt can shed light on the controversies about multiple-stage pulses of mineralization and further elucidate the genesis and metallogenic process of the deposits. In this study, we [...] Read more.
Precise Re-Os isotopic ages of the Jinduicheng and Donggou Mo deposits in the East Qinling orogenic belt can shed light on the controversies about multiple-stage pulses of mineralization and further elucidate the genesis and metallogenic process of the deposits. In this study, we propose two major events of Mo mineralization in this orogenic belt occurring during the Late Mesozoic: the early stage of 156–130 Ma and late stage of 122–114 Ma. Results of molybdenite Re-Os isotopic analysis reveal that the Jinduicheng deposit formed at 139.2 ± 2.9 Ma, while the Donggou deposit exhibited two-stage mineralization at 115.4 ± 1.6 Ma and 111.9 ± 1.3 Ma. These isotopic ages align with the spatiotemporal evolution of coeval ore-barren granites exposed in eastern Qinling, pointing to a close genetic relationship between the magmatism and mineralization that was controlled by the same tectonic activity, likely in a post-collisional setting. This highlights the multiple-stage Mo mineralization and provides evidence for further understanding the geodynamics and metallogenic process in the eastern Qinling orogenic belt. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

15 pages, 2361 KiB  
Article
Geochemical Characteristics of the Hida Granitoids in the Unazuki and Katakaigawa Areas, Central Japan
by Kazuki Oishi, Rui Kuwahara, Kazuya Shimooka and Motohiro Tsuboi
Geosciences 2025, 15(8), 285; https://doi.org/10.3390/geosciences15080285 - 29 Jul 2025
Viewed by 240
Abstract
The Hida Belt in central Japan is a key geological unit for understanding the crustal growth of the Eurasian continent in the Mesozoic. However, while previous studies have focused primarily on geochronology, the geochemical characteristics of its rocks and minerals remain largely unexplored. [...] Read more.
The Hida Belt in central Japan is a key geological unit for understanding the crustal growth of the Eurasian continent in the Mesozoic. However, while previous studies have focused primarily on geochronology, the geochemical characteristics of its rocks and minerals remain largely unexplored. This study investigates the geochemical characteristics and magmatic processes of the Hida granitoids, including adakitic rocks, distributed in the Unazuki and Katakaigawa areas. Whole-rock major oxides and trace elements, as well as Rb-Sr isotopes, were analyzed. Based on Rb–Sr isotopic compositions, the Hida granitoids are classified into two types. The younger and older granitoids in the Unazuki area, categorized as Type I, exhibit a narrow range of isotopic ratios, whereas the older granitoids in the Katakaigawa area, classified as Type II, display significantly higher values than those of Type I. The geochemical data suggest that the adakitic rocks in the older granitoids originated from interaction with alkali-rich melts or fluids, while those in the younger granitoids were derived from hydrous felsic magmas sourced from subducted oceanic crust. These findings provide new insights into the formation and evolution of granitic magmatism in the Hida Belt. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

17 pages, 5178 KiB  
Article
Improvement of Unconfined Compressive Strength in Granite Residual Soil by Indigenous Microorganisms
by Ya Wang, Meiqi Li, Hao Peng, Jiaxin Kang, Hong Guo, Yasheng Luo and Mingjiang Tao
Sustainability 2025, 17(15), 6895; https://doi.org/10.3390/su17156895 - 29 Jul 2025
Viewed by 228
Abstract
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, [...] Read more.
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, and they were used for the solidification and improvement of the granite residual soil. Unconfined compressive strength tests, scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were systematically used to analyze the influence and mechanism of different cementation solution concentrations on the improvement effect. It has been found that with the growth of cementing fluid concentration, the unconfined compressive strength of improved soil specimens shows an increasing tendency, reaching its highest value when the cementing solution concentration is 2.0 mol/L. Among different bacterial species, curing results vary; Bacillus tequilensis demonstrates better performance across various cementing solution concentrations. The examination of failure strain in improved soil samples indicates that brittleness has been successfully alleviated, with optimal outcomes obtained at a cementing solution concentration of 1.0 mol/L. SEM and XRD analyses show that calcium carbonate precipitates (CaCO3) are formed in soil samples treated by both strains. These precipitates effectively bond soil particles, verifying improvement effects on a microscopic level. The present study proposes an environmentally friendly and economical method for enhancing engineering applications of granite residual soil in Hanzhong area, which holds significant importance for projects such as artificial slope filling, subgrade filling, and foundation pit backfilling. Full article
Show Figures

Figure 1

16 pages, 5933 KiB  
Article
Chemical Peculiarities of Quartz from Peralkaline Granitoids
by Karel Breiter, Jindřich Kynický, Michaela Vašinová Galiová and Michaela Hložková
Minerals 2025, 15(8), 790; https://doi.org/10.3390/min15080790 - 28 Jul 2025
Viewed by 249
Abstract
Quartz from four typical but contrasting peralkaline quartz-saturated granite systems (Khan Bogd and Khalzan Buregte plutons (Mongolia), Ivigtut stock (Greenland), Europa and Madeira plutons (Pitinga magmatic province, Brazil)) was analyzed using LA-ICP-MS to define the range of selected trace element content and trends [...] Read more.
Quartz from four typical but contrasting peralkaline quartz-saturated granite systems (Khan Bogd and Khalzan Buregte plutons (Mongolia), Ivigtut stock (Greenland), Europa and Madeira plutons (Pitinga magmatic province, Brazil)) was analyzed using LA-ICP-MS to define the range of selected trace element content and trends in their evolution and to compare this content with published data from granitoids of other geochemical types. The evaluation of about 1100 analyses found the studied trace elements mostly in ranges <0.01–18 ppm Li (median 2.41 ppm), 1.2–77 ppm Ti (median 8.2 ppm), 8.3–163 ppm Al (median 42 ppm) and 0.05–5.7 ppm Ge (median 0.98 ppm) (in all cases 5% of the lowest and 5% of the highest values were omitted). Quartz from geochemically less evolved riebeckite-bearing granite plutons shows no Ti/Ge fractionation and displays either a positive Ti–Al correlation or no Ti–Al correlation. More fractionated and potentially mineralized peralkaline magmatic systems were formed within two distinct magmatic episodes: quartz from the older phases is relatively Ti-rich and evolved via Ti decrease with no possible Ge enrichment, while quartz from younger phases is Ti-poor from the beginning and has the ability of enrichment in Al and Ge. Relative enrichment in Al and increase in Ge/Ti value of quartz can serve as a supporting method for the identification of potentially ore-bearing magmatic systems. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Figure 1

22 pages, 12147 KiB  
Technical Note
Effects of the Aggregate Shape and Petrography on the Durability of Stone Mastic Asphalt
by Alain Stony Bile Sondey, Vincent Aaron Maleriado, Helga Ros Fridgeirsdottir, Damian Serwin, Carl Christian Thodesen and Diego Maria Barbieri
Infrastructures 2025, 10(8), 198; https://doi.org/10.3390/infrastructures10080198 - 26 Jul 2025
Viewed by 309
Abstract
Compared to traditional dense asphalt concrete mixtures, stone mastic asphalt (SMA) generally offers superior performance in terms of its mechanical resistance and extended pavement lifespan. Focusing on the Norwegian scenario, this laboratory-based study investigated the durability of SMA considering the influence of the [...] Read more.
Compared to traditional dense asphalt concrete mixtures, stone mastic asphalt (SMA) generally offers superior performance in terms of its mechanical resistance and extended pavement lifespan. Focusing on the Norwegian scenario, this laboratory-based study investigated the durability of SMA considering the influence of the aggregate shape and petrography. The rock aggregates were classified according to three different-shaped refinement stages involving vertical shaft impact crushing. Further, the aggregates were sourced from three distinct locations (Jelsa, Tau and Dirdal) characterized by different petrographic origins: granodiorite, quartz diorite and granite, respectively. Two mixtures with maximum aggregate sizes of 16 mm (SMA 16) and 11 mm (SMA 11) were designed according to Norwegian standards and investigated in terms of their durability performance. In this regard, two main functional tests were performed for the asphalt mixture, namely resistance against permanent deformation and abrasion by studded tyres, and one for the asphalt mortar, namely water sensitivity. Overall, the best test results were related to the aggregates sourced from Jelsa and Tau, thus highlighting that the geological origin exerts a major impact on SMA’s durability performance. On the other hand, the different aggregate shapes related to the crushing refinement treatments seem to play an effective but secondary role. Full article
Show Figures

Figure 1

18 pages, 7521 KiB  
Article
Study on Optimization of Construction Parameters and Schemes for Complex Connecting Tunnels of Extra-Long Highway Tunnels Based on Field Monitoring and Numerical Simulation
by Shaohui He, Jiaxuan Liu, Dawei Huang and Jianfei Ma
Infrastructures 2025, 10(8), 197; https://doi.org/10.3390/infrastructures10080197 - 26 Jul 2025
Viewed by 241
Abstract
To study the optimization of construction parameters and schemes for complex connecting tunnels in extra-long highway tunnels in granite strata, the research team, relying on the construction project of the complex connecting tunnel between the Xiaolongmen Extra-long Highway Tunnel and the ultra-deep shaft, [...] Read more.
To study the optimization of construction parameters and schemes for complex connecting tunnels in extra-long highway tunnels in granite strata, the research team, relying on the construction project of the complex connecting tunnel between the Xiaolongmen Extra-long Highway Tunnel and the ultra-deep shaft, established an on-site monitoring scheme and a refined numerical simulation model. It systematically analyzed the impact of various construction parameters on the construction process of connecting tunnels and the main tunnel, and on this basis, optimized the construction scheme, improving construction efficiency. The research results show that (1) after the excavation of the connecting tunnel, the confining pressure at the top of the working face decreases rapidly, while the confining pressure on both sides increases rapidly; the extreme point of the confining pressure decrease is located at the central point at the top of the excavated working face. (2) For Class III surrounding rock excavated using the full-face blasting method, the maximum influence range of working face excavation on the stratum along the tunneling direction is approximately 4D (where D represents the excavation step). (3) The larger the excavation step of the connecting tunnel, the more obvious the stress concentration phenomenon at the central point of the working face arch crown, and the excavation step should be optimally controlled within the range of 2–3 m. (4) When explosives in the blast hole adopt decoupled charging, the ratio of borehole diameter to charge diameter can be increased to utilize the air gap to buffer the energy generated by the explosion. Full article
Show Figures

Figure 1

Back to TopTop