Numerical Analysis of the Stability of Underground Granite Chamber Under the Combined Effect of Penetration and Explosion
Abstract
1. Introduction
2. Numerical Model and Calibration
2.1. Penetration and Explosion Tests
2.1.1. Penetration Test
2.1.2. Explosion Test
2.2. Numerical Models
2.2.1. Penetration Models
2.2.2. Explosion Models
2.3. Numerical Calibration
2.3.1. Calibration of Penetration Models
2.3.2. Calibration of Explosion Models
3. Numerical Investigation
3.1. Analysis of Penetration Process
3.2. Combined Effect of Penetration and Explosion
3.3. Effect of Overlay Thickness
4. Discussion
- (1)
- Developing improved constitutive relationships and equations of state for rock media through uniaxial, triaxial, and impact dynamics experiments coupled with numerical simulations, enabling more accurate prediction of dynamic mechanical responses under the combined penetration–explosion effects;
- (2)
- Collaborating with military enterprises to acquire unclassified field test data, or utilizing existing reports and literature about the destructive effects of EPWs, for rigorous model validation;
- (3)
- Conducting numerical simulations incorporating complex geotechnical conditions, like discontinuities, groundwater, and layered structures, in real underground environments to enhance practical applicability.
5. Conclusions
- (1)
- The methods of fluid–solid coupling and restarting can effectively predict the dynamic response and damage evolution of the underground granite chamber under the combined action of penetration and explosion.
- (2)
- The hypervelocity impact of the earth-penetrating weapons only causes local damage to the granite rock mass, and more serious damage is caused by the subsequent explosion. When the missile strike speed is 1196 m/s and the TNT equivalent is 300 kg, it is enough for the granite overlays with a critical thickness of 19 m to protect the underground chamber from the attack of the EPW. Therefore, it is feasible to construct military fortifications within natural granite formations to shield underground structures from the EPWs’ strike.
- (3)
- The initial penetration damage subjected to the projectile has a significant influence on the damage of the subsequent explosion. During the explosion, part of the detonation products and energy may escape along the penetration trajectory with the blast loading. Meanwhile, the damaged rock mass surrounding the penetration path can be regarded as a buffer zone, where the attenuation of blast stress waves is generated rapidly. In contrast, if the charge is directly buried in the rock mass, there will be no path for the explosive products to overflow. More blast energy is accumulated to break the rock mass, and the underground chamber is further damaged. Therefore, it is necessary to consider the effects of detonation products overflow and study the combined action of penetration and explosion in analyzing the damage of the EPW on underground structures.
- (4)
- Building upon numerical simulations and PPV damage criteria, a calculation method is proposed to determine the critical burial depth of underground fortifications, which can prevent destruction from the EPW attacks. This method provides certain reference significance for evaluating the damage effects of underground buildings under the combined action of penetration and explosion, as well as for the designs of anti-penetration and anti-explosion in underground structures.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, X.J.; Zhao, C.; Xu, L.J.; Wang, Y.J.; Lin, S.B.; Zhao, G.C. Numerical integration study of penetration and blasting damage for composite underground protective structure with reinforcement layers. Buildings 2024, 14, 1848. [Google Scholar] [CrossRef]
- Wang, H.Y.; Liu, Z.B.; Lin, C.; Yang, Q.; Hamdi, E. Non-monotonic effect of differential stress and temperature on mechanical property and rockburst proneness of granite under high-temperature true triaxial compression. Geomech. Geophys. Geo-Energy Geo-Resour. 2024, 10, 162. [Google Scholar] [CrossRef]
- Tham, C.Y. Numerical and empirical approach in predicting the penetration of a concrete target by an ogive-nosed projectile. Finite. Elem. Anal. Des. 2006, 42, 1258–1268. [Google Scholar] [CrossRef]
- Basu, B.; Bursi, O.S.; Casciati, F.; Casciati, S.; Del Grosso, A.E.; Domaneschi, M.; Faravelli, L.; Holnicki-Szulc, J.; Irschik, H.; Krommer, M.; et al. A European Association for the Control of Structures joint perspective. Recent studies in civil structural control across Europe. Struct. Control Health Monit. 2014, 21, 1414–1436. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Liu, Z.B.; Liu, F.Z.; Shao, J.F.; Li, J.L. Anisotropic strength, deformation and failure of gneiss granite under high stress and temperature coupled true triaxial compression. J. Rock Mech. Geotech. 2024, 16, 860–876. [Google Scholar] [CrossRef]
- Ramsey, S.D.; Baty, R.S. Symmetry Structure of a Riccati Equation Appearing in Penetration Mechanics. Int. J. Nonlin. Mech. 2025, 178, 105161. [Google Scholar] [CrossRef]
- Xu, X.Z.; Su, Y.C.; Feng, Y.B. Optimization analysis of state equation and failure criterion for concrete slab subjected to impact loading. Int. J. Impact Eng. 2024, 186, 104872. [Google Scholar] [CrossRef]
- Dubey, R.; Jayaganthan, R.; Ruan, D.; Gupta, N.K.; Jones, N.; Velmurugan, R. Ballistic perforation and penetration of 6xxx-series aluminium alloys: A review. Int. J. Impact Eng. 2023, 172, 104426. [Google Scholar] [CrossRef]
- Li, C.; Lu, M.M.; Zhu, B.; Liu, C.; Li, G.Y.; Mo, P.Q. Analysis of cavity expansion based on general strength criterion and energy theory. Geomech. Eng. 2024, 37, 9–19. [Google Scholar] [CrossRef]
- Liu, T.L.; Wang, X.F.; Jia, B.; Xu, Y.X. Oblique penetration of tungsten spheres against steel targets based on compressible and in-compressible cavity expansion theory. Int. J. Impact Eng. 2024, 188, 104914. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Xue, Y.J.; Zhang, Q.M.; Shang, C.; Liu, W.J. Experimental and theoretical study on cavitation of concrete targets penetrated by hypervelocity long rod projectiles. Structures 2023, 58, 105385. [Google Scholar] [CrossRef]
- Zhang, S.B.; Kong, X.Z.; Fang, Q.; Peng, Y. The maximum penetration depth of hypervelocity projectile penetration into concrete targets: Experimental and numerical investigation. Int. J. Impact Eng. 2023, 181, 104734. [Google Scholar] [CrossRef]
- Ali, I.; Long, X. Penetration resistance of reinforced concrete slab subjected to rigid projectile impact based on finite element and analytical models. Constr. Build. Mater. 2025, 473, 140828. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Zhang, Q.M.; Xue, Y.J.; Guo, X.H.; Shang, C.; Liu, W.J.; Ren, S.Y.; Long, R.R. Hypervelocity penetration of concrete targets with long-rod steel projectiles: Experimental and theoretical analysis. Int. J. Impact Eng. 2021, 148, 103742. [Google Scholar] [CrossRef]
- Yao, S.J.; Wang, Y.J.; Chen, F.P.; Zhao, N.; Zhang, D.; Lu, F.Y. Equivalent method of stiffened plates for dynamic response and damage assessment under internal blast. Structures 2025, 76, 109046. [Google Scholar] [CrossRef]
- Forrestal, M.J.; Altman, B.S.; Cargile, J.D.; Hanchak, S.J. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. Int. J. Impact Eng. 1994, 15, 395–405. [Google Scholar] [CrossRef]
- Frew, D.J.; Forrestal, M.J.; Hanchak, S.J. Penetration experiments with limestone targets and ogive-nose steel projectiles. J. Appl. Mech. 2000, 67, 841–845. [Google Scholar] [CrossRef]
- Bishop, R.F.; Hill, R.; Mott, N.F. The theory of indentation and hardness tests. Proc. Phys. Soc. 1945, 57, 147. [Google Scholar] [CrossRef]
- Chadwick, P. The Quasi-Static Expansion of A Spherical Cavity in Metals and Ideal Soils. Q. J. Mech. Appl. Math. 1959, 12, 52–71. [Google Scholar] [CrossRef]
- Hopkins, H.G. Dynamic expansion of spherical cavities in metals. Prog. Solid Mech. 1960, 1, 83–164. [Google Scholar]
- Young, C.W. Depth prediction for earth-penetrating projectiles. J. Soil Mech. Found. Div. 1969, 95, 803–817. [Google Scholar] [CrossRef]
- Kong, X.Z.; Wu, H.; Fang, Q.; Peng, Y. Rigid and eroding projectile penetration into concrete targets based on an extended dynamic cavity expansion model. Int. J. Impact Eng. 2017, 100, 13–22. [Google Scholar] [CrossRef]
- Li, P.C.; Zhang, X.F.; Liu, C.; Deng, Y.X.; Sheng, Q.; Wang, J.M. Trajectory characteristics of oblique penetration of projectile into concrete targets considering cratering effect. Int. J. Impact Eng. 2024, 185, 104864. [Google Scholar] [CrossRef]
- Bakhtiari, A.; Sheikhi, M.M.; Arab, N.B.M.; Khodarahmi, H. Studying the ballistic performance of a metal target under combined KE projectile impact. Phys. Scr. 2023, 98, 095207. [Google Scholar] [CrossRef]
- Lai, J.Z.; Zhou, J.H.; Yin, X.X.; Zheng, X.B. Dynamic behavior of functional graded cementitious composite under the coupling of high speed penetration and explosion. Compos. Struct. 2021, 274, 114326. [Google Scholar] [CrossRef]
- Hu, F.; Wu, H.; Fang, Q.; Liu, J.C.; Liang, B.; Kong, X.Z. Impact performance of explosively formed projectile (EFP) into concrete targets. Int. J. Impact Eng. 2017, 109, 150–166. [Google Scholar] [CrossRef]
- Chen, X.W.; Li, Q.M. Deep penetration of a non-deformable projectile with different geometrical characteristics. Int. J. Impact Eng. 2002, 27, 619–637. [Google Scholar] [CrossRef]
- Lai, J.Z.; Guo, X.J.; Zhu, Y.Y. Repeated penetration and different depth explosion of ultra-high performance concrete. Int. J. Impact Eng. 2015, 84, 1–12. [Google Scholar] [CrossRef]
- Xu, S.L.; Wu, P.; Li, Q.H.; Zhou, F.; Chen, B.K. Experimental investigation and numerical simulation on the blast resistance of reactive powder concrete subjected to blast by embedded explosive. Cem. Concr. Comp. 2021, 119, 103989. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, L.; Yu, R.Q.; Xiang, H.B.; Fang, Q. Experimental study of damage to ultra-high performance concrete slabs subjected to partially embedded cylindrical explosive charges. Int. J. Impact Eng. 2022, 168, 104298. [Google Scholar] [CrossRef]
- Gao, C.; Kong, X.Z.; Fang, Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion. Int. J. Impact Eng. 2023, 174, 104491. [Google Scholar] [CrossRef]
- Sun, S.Z.; Lu, H.; Yue, S.L.; Geng, H.; Jiang, Z.Z. The composite damage effects of explosion after penetration in plain concrete targets. Int. J. Impact Eng. 2021, 153, 103862. [Google Scholar] [CrossRef]
- Shu, Y.Z.; Wang, G.H.; Lu, W.B.; Chen, M.; Lv, L.M.; Chen, Y.Q. Damage characteristics and failure modes of concrete gravity dams subjected to penetration and explosion. Eng. Fail. Anal. 2022, 134, 106030. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Zhang, K.Y.; Hao, Y.F.; Wu, H. Experimental and numerical study on high-strength steel bars reinforced UHPC against projectile penetration and successive charge explosion. Eng. Struct. 2025, 322, 119176. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Fang, Q.; Kong, X.Z. Failure mode and stress wave propagation in concrete target subjected to a projectile penetration followed by charge explosion: Experimental and numerical investigation. Int. J. Impact Eng. 2023, 177, 104595. [Google Scholar] [CrossRef]
- Liu, Z.H.; Yu, J.; Ren, C.H.; Elbaze, K.; Zhu, D.F.; Cai, Y.Y. Fatigue behaviour characteristics and life prediction of rock under low-cycle loading. Int. J. Min. Sci. Technol. 2025, 35, 737–752. [Google Scholar] [CrossRef]
- Wu, C.Q.; Hao, H. Numerical prediction of rock mass damage due to accidental explosions in an underground ammunition storage chamber. Shock. Waves 2006, 15, 43–54. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.Y.; Cheng, Y.H.; Qiu, Y.Y. Analytical model of hypervelocity penetration into rock. Int. J. Impact Eng. 2018, 122, 384–394. [Google Scholar] [CrossRef]
- Banadaki, M.M.D. Stress-Wave Induced Fracture in Rock Due to Explosive Action. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2010. [Google Scholar]
- Banadaki, M.M.D.; Mohanty, B. Numerical simulation of stress wave induced fractures in rock. Int. J. Impact Eng. 2012, 40–41, 16–25. [Google Scholar] [CrossRef]
- Riedel, W.; Kawai, N.; Kondo, K.I. Numerical assessment for impact strength measurements in concrete materials. Int. J. Impact Eng. 2009, 36, 283–293. [Google Scholar] [CrossRef]
- Yao, S.J.; Chen, Y.K.; Sun, C.M.; Zhao, N.; Wang, Z.G.; Zhang, D. Dynamic Response Mechanism of Thin-Walled Plate under Confined and Unconfined Blast Loads. J. Mar. Sci. Eng. 2024, 12, 224. [Google Scholar] [CrossRef]
- Liu, K.W.; Hao, H.; Li, X.B. Numerical analysis of the stability of abandoned cavities in bench blasting. Int. J. Rock Mech. Min. 2017, 92, 30–39. [Google Scholar] [CrossRef]
- Yang, G.D.; Wang, G.H.; Lu, W.B.; Yan, P.; Chen, M.; Wu, X.X. A SPH-Lagrangian-Eulerian Approach for the Simulation of Concrete Gravity Dams under Combined Effects of Penetration and Explosion. KSCE J. Civ. Eng. 2018, 22, 3085–3101. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Qiu, X.Y.; Shi, X.Z.; Luo, Z.H.; Chen, H.; Zong, C.X. Burden effects on rock fragmentation and damage, and stress wave attenuation in cut blasting of large-diameter long-hole stopes. Rock Mech. Rock Eng. 2023, 56, 8657–8675. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, Z.D.; Dai, L.; Wang, S.Y.; Shi, C. The incompatible deformation mechanism of underground tunnels crossing fault conditions in the southwest edge strong seismic zone of the Qinghai-Tibet Plateau: A study of shaking table test. Soil Dyn. Earthq. Eng. 2025, 197, 109482. [Google Scholar] [CrossRef]
Rock Type | Density (kg/m3) | Uniaxial Compressive Strength (MPa) | Young’s Modulus (GPa) | P-Wave Velocity (m/s) | Shear Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|---|---|
Wulian granite [38] | 2670 | 150 | 54.6 | 4200 | 21 | 0.21 |
Barre granite [39,40] | 2660 | 155.7~164.8 | 35.1~48.2 | 4040~4530 | 21.9 | 0.15~0.23 |
Test No. | Lunch Velocity (m/s) | Penetration Depth (mm) | Residual Mass of Projectile (g) |
---|---|---|---|
1 | 1196 | 118.80 | 31.64 |
2 | 1426 | 146.02 | 31.41 |
3 | 1430 | 155.79 | 31.31 |
4 | 1600 | 163.89 | 30.83 |
Parameter | Value | Parameter | Value |
---|---|---|---|
R0 (kg/m3) | 7850 | E (GPa) | 211 |
PR | 0.3 | SIGY (GPa) | 0.83 |
ETAN (GPa) | 6.1 | BETA | 1 |
C | 0.219 | P | 3.3 |
FS | 1.5 | VP | 0 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Mass density (kg/m3) | 2670.0 | Tensile strain rate dependence exponent | 0.012 |
Elastic shear modulus (GPa) | 21.0 | Pressure influence on plastic flow in tension | 0.001 |
Eroding plastic strain | 2.0 | Compressive yield surface parameter | 0.40 |
Parameter for polynomial EOS B0 | 1.68 | Tensile yield surface parameter | 0.70 |
Parameter for polynomial EOS B1 | 1.68 | Shear modulus reduction factor | 0.48 |
Parameter for polynomial EOS T1 (GPa) | 47.1 | Damage parameter D1 | 0.042 |
Failure surface parameter A | 1.60 | Damage parameter D2 | 1.0 |
Failure surface parameter N | 0.56 | Minimum damaged residual strain | 0.012 |
Compressive strength (MPa) | 150.0 | Residual surface parameter AF | 1.60 |
Relative shear strength | 0.38 | Residual surface parameter NF | 0.60 |
Relative tensile strength | 0.10 | Gruneisen gamma | 0.0 |
Lode angle dependence factor Q0 | 0.64 | Hugoniot polynomial coefficient A1 (GPa) | 47.10 |
Lode angle dependence factor B | 0.05 | Hugoniot polynomial coefficient A2 (GPa) | 79.13 |
Parameter for polynomial EOS T2 (GPa) | 0.0 | Hugoniot polynomial coefficient A3 (GPa) | 48.36 |
Reference compressive strain rate | 3.0 × 10−5 | Crush pressure (MPa) | 50.0 |
Reference tensile strain rate | 3.0 × 10−6 | Compaction pressure (GPa) | 6.0 |
Break compressive strain rate | 3.0 × 1025 | Porosity exponent | 4.0 |
Break tensile strain rate | 3.0 × 1025 | Initial porosity | 1.01 |
Compressive strain rate dependence exponent | 0.0085 |
No. | Mesh Size | Penetration Depth (mm) | No. | Mesh Size | Penetration Depth (mm) |
---|---|---|---|---|---|
1 | 1:1 | 50.10 | 4 | 1:4 | 115.04 |
2 | 1:2 | 94.33 | 5 | 1:5 | 117.29 |
3 | 1:3 | 100.79 | 6 | 1:6 | 117.30 |
Rock Type | Compressive Strength (MPa) | No Damage (m/s) | Slight Damage (m/s) | Intermediate Damage (m/s) | Serious Damage (m/s) |
---|---|---|---|---|---|
Hard rock | 110–180 | 0.31 | 0.62 | 0.96 | 1.78 |
180–200 | 0.36 | 0.72 | 1.11 | 2.09 |
No. | H (Overlays Thickness) (m) | PPV (m/s) | Q (kg) | R (m) |
---|---|---|---|---|
1 | 12 | 3.52 | 300 | 7 |
2 | 15 | 1.26 | 300 | 10 |
3 | 18 | 1.07 | 300 | 13 |
4 | 20 | 0.85 | 300 | 15 |
5 | 23 | 0.74 | 300 | 18 |
No. | Explosive Charge (kg) | Critical Protection Thickness (m) | PPV (m/s) | Penetration Depth (m) |
---|---|---|---|---|
1 | 300 | 19 | 0.96 | 6.67 |
2 | 600 | 23 | 0.96 | 6.67 |
3 | 900 | 25.5 | 0.96 | 6.67 |
4 | 1200 | 27.6 | 0.96 | 6.67 |
5 | 1400 | 28.8 | 0.96 | 6.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jin, S.; Liu, K.; Guo, R. Numerical Analysis of the Stability of Underground Granite Chamber Under the Combined Effect of Penetration and Explosion. Buildings 2025, 15, 2741. https://doi.org/10.3390/buildings15152741
Zhang Y, Jin S, Liu K, Guo R. Numerical Analysis of the Stability of Underground Granite Chamber Under the Combined Effect of Penetration and Explosion. Buildings. 2025; 15(15):2741. https://doi.org/10.3390/buildings15152741
Chicago/Turabian StyleZhang, Yuchao, Shaohu Jin, Kewei Liu, and Rukun Guo. 2025. "Numerical Analysis of the Stability of Underground Granite Chamber Under the Combined Effect of Penetration and Explosion" Buildings 15, no. 15: 2741. https://doi.org/10.3390/buildings15152741
APA StyleZhang, Y., Jin, S., Liu, K., & Guo, R. (2025). Numerical Analysis of the Stability of Underground Granite Chamber Under the Combined Effect of Penetration and Explosion. Buildings, 15(15), 2741. https://doi.org/10.3390/buildings15152741