Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (408)

Search Parameters:
Keywords = gold adsorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2269 KiB  
Article
Sulfonated Biopolymer Derived from Wheat Straw for the Recovery of Au(III)
by Nyamjargal Lkhamtogmid, Burmaa Gunchin, Burmaa Dashdendev, Munkhbaatar Punsantsogvoo, Munkhpurev Bat-Amgalan and Ganchimeg Yunden
Polymers 2025, 17(14), 1914; https://doi.org/10.3390/polym17141914 - 11 Jul 2025
Viewed by 331
Abstract
This study investigates the potential of sulfuric acid modified wheat straw, polysaccharide-rich agricultural byproduct, as a low-cost adsorbent for the selective adsorption of Au(III) ions from aqueous solutions. The wheat straw was treated with concentrated sulfuric acid to enhance its surface properties and [...] Read more.
This study investigates the potential of sulfuric acid modified wheat straw, polysaccharide-rich agricultural byproduct, as a low-cost adsorbent for the selective adsorption of Au(III) ions from aqueous solutions. The wheat straw was treated with concentrated sulfuric acid to enhance its surface properties and functional groups, particularly sulfonic and oxygen-containing functional groups. Adsorption experiments were performed under various conditions, including acid concentrations ranging from 1.0 to 3.0 mol/L, contact times from 1 to 6 h, and initial Au(III) concentrations of 60.36, 90.0, and 150.0 mg/L. The highest adsorption efficiency, 99.0%, was achieved at an acid concentration of 1.0 mol/L. Furthermore, it was determined that an increase in the initial Au(III) concentration from 60.36 mg/L to 150.0 mg/L resulted in a 4.5 times increase in maximum adsorption capacity under optimal conditions. Kinetic modeling revealed that the adsorption process followed pseudo-second order kinetics, suggesting chemisorption as the rate-limiting step. Characterization techniques such as SEM/EDS, XRD, BET and XPS confirmed structural modification, surface sulfonating, and the successful adsorption and reduction of Au(III) to elemental gold (Au0) on the modified straw surface. This work demonstrates that modified wheat straw is a promising, effective, and low cost for the recovery of gold from low-concentration solutions and provides insight into the adsorption and reduction mechanisms at the molecular level. Full article
(This article belongs to the Special Issue Polysaccharides: From Synthesis to Applications)
Show Figures

Figure 1

14 pages, 2434 KiB  
Article
Surface-Enhanced Raman Spectroscopy (SERS) Method for Rapid Detection of Neomycin and Chloramphenicol Residues in Chicken Meat
by Yan Wu, Junshi Huang, Ni Tong, Qi Chen, Fang Peng, Muhua Liu, Jinhui Zhao and Shuanggen Huang
Sensors 2025, 25(13), 3920; https://doi.org/10.3390/s25133920 - 24 Jun 2025
Viewed by 378
Abstract
In the process of chicken breeding, there has been a great deal of abuse of antibiotics. Antibiotics can enter the human body along with the chicken meat, comprising a possible risk to human health. In this paper, principal component analysis (PCA)–linear discriminant analysis [...] Read more.
In the process of chicken breeding, there has been a great deal of abuse of antibiotics. Antibiotics can enter the human body along with the chicken meat, comprising a possible risk to human health. In this paper, principal component analysis (PCA)–linear discriminant analysis (LDA) was chosen to classify neomycin (NEO) and chloramphenicol (CAP) residues in chicken meat. A total of 400 chicken meat samples were used for the classification, of which 268 samples and 132 samples were used as the training sets and the test sets, respectively. The experimental condition of SERS spectrum collection was optimized, including the use of a gold colloid and active agent, and an improvement in the adsorption time. The optimal measurement conditions for the SERS spectra were an adsorption time of 4 min and the use of a 14th-generation gold colloid as the enhanced substrate without a surfactant. For three groups of different spectral preprocessing methods, the classification accuracies of PCA-LDA models for test sets were 78.79% for baseline correction, 84.85% for the second derivative and 100% for the second derivative combined with baseline correction. LDA was used to establish a classification model to realize the quick determination of NEO and CAP residues in chicken meat by SERS. The results showed that the characteristic peaks at 546 and 666 cm−1 could be used to distinguish NEO and CAP residues in chicken meat. The classification model based on PCA-LDA had higher classification accuracy, sensitivity and specificity using a second derivative combined with baseline correction as the spectral preprocessing method, which shows that the SERS method based on PCA-LDA could be used to perform the classification of NEO and CAP residues in chicken meat quickly and effectively. It also verified the feasibility of PCA-LDA to effectively classify chicken meat samples into four types. This research method could provide a reference for the measurement of such antibiotic residues in chicken meat in the future. Full article
Show Figures

Figure 1

10 pages, 1560 KiB  
Article
The Synergistic Effect of Electric-Field and Adsorption Enhancement of Amino Acid Carbon Dots Significantly Improves the Detection Sensitivity of SPR Sensors
by Jing Ouyang, Xiantong Yu, Mengjie Wang, Longfei Wang, Zhao Li, Chaojun Shi, Hao Li, Yufeng Yuan, Jun Zhou and Min Chang
Sensors 2025, 25(13), 3903; https://doi.org/10.3390/s25133903 - 23 Jun 2025
Viewed by 356
Abstract
Surface plasmon resonance (SPR) detection technology is playing an important role in various fields such as food safety and environmental monitoring due to its excellent stability and reliability. However, there is also a growing demand for higher sensitivity in SPR sensors. Therefore, this [...] Read more.
Surface plasmon resonance (SPR) detection technology is playing an important role in various fields such as food safety and environmental monitoring due to its excellent stability and reliability. However, there is also a growing demand for higher sensitivity in SPR sensors. Therefore, this work developed an SPR sensor based on the synergistic effect of electric-field enhancement and adsorption enhancement by using amino acid-derived carbon dots (CDs). The results showed that the incorporation of amino acid CDs can generate a maximum electric-field enhancement of up to 6.44 × 105 V/m in the near-field region, which is 312% of that achieved by a bare gold film. And the adsorption kinetics results indicate that the active groups on the surface of amino acid CDs exhibit a notable adsorption enhancement effect for the target molecule (NaCl), with an adsorption capacity 335% higher than that of the bare gold film. This designed SPR sensor demonstrates a detection sensitivity of 167.28 a.u./RIU for NaCl solution, representing a 247.8% improvement compared to an SPR sensor without amino acid CDs under the same conditions. This SPR sensor shows promising potential for applications in biomedical and environmental detection fields. Full article
(This article belongs to the Special Issue Biomedical Applications of Optical Sensing Technology)
Show Figures

Figure 1

15 pages, 1281 KiB  
Article
CEA-Functionalized Gold Nanoparticles as a Nanovaccine Platform: In Vitro Evaluation of Cytocompatibility, Cellular Uptake, and Antigen Processing
by Razvan-Septimiu Zdrehus, Teodora Mocan, Lavinia Ioana Sabau, Cristian Tudor Matea, Flaviu Tăbăran, Teodora Pop, Cristian Delcea, Ofelia Mosteanu and Lucian Mocan
Vaccines 2025, 13(7), 668; https://doi.org/10.3390/vaccines13070668 - 21 Jun 2025
Viewed by 580
Abstract
Background and aim. Gold nanoparticles (AuNPs) offer promising potential as nanocarriers in vaccine development due to their biocompatibility, tunable surface properties and capacity to enhance antigen presentation. This study aimed to evaluate the in vitro cytocompatibility, cellular uptake and antigen processing of carcinoembryonic [...] Read more.
Background and aim. Gold nanoparticles (AuNPs) offer promising potential as nanocarriers in vaccine development due to their biocompatibility, tunable surface properties and capacity to enhance antigen presentation. This study aimed to evaluate the in vitro cytocompatibility, cellular uptake and antigen processing of carcinoembryonic antigen (CEA)-functionalized AuNPs as a nanovaccine candidate. Materials and Methods. AuNPs were synthesized by citrate reduction and subsequently functionalized with CEA through physical adsorption. Nanoparticle size, morphology, and surface charge were characterized using UV–Vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Cytocompatibility was assessed via MTT assay on RAW 264.7 murine macrophages. Cellular uptake and antigen processing were evaluated using hyperspectral dark-field microscopy and fluorescence microscopy with proteasomal pathway markers. Results. The synthesized AuNPs displayed a uniform spherical morphology with a mean hydrodynamic diameter of ~50 nm and a stable zeta potential. CEA conjugation slightly altered the surface charge and spectral profile. MTT assays confirmed good cytocompatibility across tested concentrations. Hyperspectral and confocal microscopy revealed the efficient uptake of CEA-AuNPs by RAW 264.7 cells and colocalization with lysosomal compartments, suggesting successful antigen processing. Conclusions. The in vitro data support the safety and biological interaction of CEA-functionalized AuNPs with macrophages. These findings highlight their potential as a nanovaccine delivery platform and warrant further in vivo evaluation to assess immunogenicity and protective efficacy. Full article
(This article belongs to the Special Issue Advances in Vaccine Adjuvants)
Show Figures

Figure 1

15 pages, 3873 KiB  
Article
Porous Silica Gels Doped with Gold Nanoparticles: Preparation, Microstructure, Optical and Textural Properties
by Nina Danchova, Dimitar Shandurkov, Roumen Tsekov, Luben Mihaylov, Tony Spassov and Stoyan Gutzov
Gels 2025, 11(6), 454; https://doi.org/10.3390/gels11060454 - 13 Jun 2025
Viewed by 346
Abstract
Porous silica gel powders, doped with gold nanoparticles (AuNPs), were obtained by heating silica gels containing 1-dodecanethiol and tetrachloroauric acid at temperatures of 450 °C, 700 °C and 900 °C, and characterized using X-ray diffraction, TEM/EDS studies, UV/Vis reflectance spectroscopy and DTA/TG investigations. [...] Read more.
Porous silica gel powders, doped with gold nanoparticles (AuNPs), were obtained by heating silica gels containing 1-dodecanethiol and tetrachloroauric acid at temperatures of 450 °C, 700 °C and 900 °C, and characterized using X-ray diffraction, TEM/EDS studies, UV/Vis reflectance spectroscopy and DTA/TG investigations. The color and microstructure of the obtained samples with a composition SiO2:AuNPs (about 0.03% Au) depend on the heating temperature. The UV/Vis reflection spectra of the samples are explained using Mie’s theory. The thermal stability of the obtained samples, as well as the processes occurring in the sol–gel matrix upon heating, were monitored by DTA/TG. The textural properties of the obtained materials were described based on adsorption–desorption isotherms. The obtained nanocomposites are promising pigments for ceramic glazes, similar to the Purple of Cassius. The textural properties of certain samples, SBET = 200–350 m2/g, a mean pore diameter (DAV) of approximately 10 nm and a specific pore volume (Vt) between 0.5 and 0.8 cm3/g, make them promising candidates for catalytic applications, comparable to aerogel-like materials. Full article
(This article belongs to the Special Issue Aerogels—Preparation and Properties)
Show Figures

Figure 1

20 pages, 3217 KiB  
Article
Kinetic Monte Carlo Modeling of the Spontaneous Deposition of Platinum on Au(111) Surfaces
by María Cecilia Gimenez, Oscar A. Oviedo and Ezequiel P. M. Leiva
Entropy 2025, 27(6), 619; https://doi.org/10.3390/e27060619 - 11 Jun 2025
Viewed by 799
Abstract
The spontaneous deposition of platinum (Pt) atoms on Au(111) surfaces is systematically investigated through kinetic Monte Carlo simulations within the Embedded Atom Model framework. The kinetic model aims to capture both stoichiometric, atomic-scale interactions and the [...] Read more.
The spontaneous deposition of platinum (Pt) atoms on Au(111) surfaces is systematically investigated through kinetic Monte Carlo simulations within the Embedded Atom Model framework. The kinetic model aims to capture both stoichiometric, atomic-scale interactions and the more relevant processes that describe the kinetics of a physical problem. Various deposition rates are examined, encompassing a thorough exploration of Pt adsorption up to a coverage degree of θ=0.25. The resulting 2D islands exhibit a ramified structure, mirroring the experimental methodologies. For the first time, this study extensively analyzes the dependence of both the mean island size and island density on spontaneous deposition, thereby offering valuable insights into the intricate dynamics of the system. Full article
(This article belongs to the Special Issue Statistical Mechanics of Lattice Gases)
Show Figures

Figure 1

14 pages, 2913 KiB  
Article
Sensitive Gold Nanostar-Based Adsorption Sensor for the Determination of Dexamethasone
by Riccarda Thelma MacDonald, Keagan Pokpas, Emmanuel Iwuoha and Candice Cupido
Chemosensors 2025, 13(6), 208; https://doi.org/10.3390/chemosensors13060208 - 7 Jun 2025
Viewed by 1042
Abstract
Herein, a novel, highly efficient electrochemical adsorption method is introduced for detection of the potent anti-inflammatory synthetic corticosteroid, dexamethasone (DEX). Unlike conventional electrochemical techniques that rely on high reduction potentials, the proposed sensor offers an alternative adsorption-based mechanism with a gold nanostar-modified glassy [...] Read more.
Herein, a novel, highly efficient electrochemical adsorption method is introduced for detection of the potent anti-inflammatory synthetic corticosteroid, dexamethasone (DEX). Unlike conventional electrochemical techniques that rely on high reduction potentials, the proposed sensor offers an alternative adsorption-based mechanism with a gold nanostar-modified glassy carbon electrode (AuNS|GCE). This enables DEX detection at a less negative or moderate reduction potential of +200 mV, circumventing potential window limitations of a GCE and providing a suitable microenvironment for detection in biological media. DEX is known to effectively prevent or suppress symptoms of inflammation due to its small applied dosage; however, an overdose thereof in the human body could lead to adverse drug effects such as gastrointestinal perforation, seizures, and heart attacks. Therefore, a sensitive method is essential to monitor DEX concentration in biofluids such as urine. NMGA-capped AuNSs were leveraged to enhance the active surface area of the sensing platform and allow adsorption of DEX onto the gold surfaces through its highly electronegative fluorine atom. Under optimized experimental conditions, the developed AuNS|GCE sensor showed excellent analytical performance with a remarkably low limit of detection (LOD) of 1.11 nM, a good sensitivity of 0.187 µA.nM−1, and a high percentage recovery of 92.5% over the dynamic linear range of 20–120 nM (linear regression of 0.995). The favourable electrochemical performance of this sensor allowed for successful application in the sensitive determination of DEX in synthetic urine (20% v/v in PBS, pH 7). Full article
Show Figures

Graphical abstract

21 pages, 3470 KiB  
Article
Lignin-Based Nanostructured Sensor for Selective Detection of Volatile Amines at Trace Levels
by Paolo Papa, Giuseppina Luciani, Rossella Grappa, Virginia Venezia, Ettore Guerriero, Simone Serrecchia, Fabrizio De Cesare, Emiliano Zampetti, Anna Rita Taddei and Antonella Macagnano
Sensors 2025, 25(11), 3536; https://doi.org/10.3390/s25113536 - 4 Jun 2025
Viewed by 630
Abstract
A nanostructured sensing platform was developed by integrating gold-decorated lignin nanoparticles (AuLNPs) into electrospun polylactic acid (PLA) fibre mats. The composite material combines the high surface-to-volume ratio of PLA nanofibres with the chemical functionality of lignin—a polyphenolic biopolymer rich in hydroxyl and aromatic [...] Read more.
A nanostructured sensing platform was developed by integrating gold-decorated lignin nanoparticles (AuLNPs) into electrospun polylactic acid (PLA) fibre mats. The composite material combines the high surface-to-volume ratio of PLA nanofibres with the chemical functionality of lignin—a polyphenolic biopolymer rich in hydroxyl and aromatic groups—enabling selective interactions with volatile amines through hydrogen bonding and Van der Waals forces. The embedded gold nanoparticles (AuNPs) further enhance the sensor’s electrical conductivity and provide catalytic sites for improved analyte interaction. The sensor exhibited selective adsorption of amine vapours, showing particularly strong affinity for dimethylamine (DMA), with a limit of detection (LOD) of approximately 440 ppb. Relative humidity (RH) was found to significantly influence sensor performance by facilitating amine protonation, thus promoting interaction with the sensing surface. The developed sensor demonstrated excellent selectivity, sensitivity and reproducibility, highlighting its potential for real-time detection of amines in environmental monitoring, industrial safety and healthcare diagnostics. Full article
(This article belongs to the Special Issue Gas Sensors: Progress, Perspectives and Challenges)
Show Figures

Figure 1

13 pages, 10700 KiB  
Article
Antifouling Modification of Gold Surfaces for Acoustic Wave Sensor Applications
by Aries Delica, Mikhail A. Nazarov, Brian De La Franier and Michael Thompson
Biosensors 2025, 15(6), 343; https://doi.org/10.3390/bios15060343 - 29 May 2025
Viewed by 502
Abstract
This study aims to develop a robust and reproducible method for fabricating efficient ultrathin antifouling coatings on gold surfaces by leveraging hydroxylation-based surface modifications. An ultrathin antifouling coating of a monoethylene glycol silane derivative, known to reduce fouling by at least 90% on [...] Read more.
This study aims to develop a robust and reproducible method for fabricating efficient ultrathin antifouling coatings on gold surfaces by leveraging hydroxylation-based surface modifications. An ultrathin antifouling coating of a monoethylene glycol silane derivative, known to reduce fouling by at least 90% on flat hydroxylated surfaces, was successfully replicated on flat gold (reducing fouling by ~75%) by hydroxylating its surface with β-mercaptoethanol. This tandem coating contains the monoethylene glycol silane layer on top of the β-mercaptoethanol on the gold. Characterization was performed using contact angle goniometry, atomic force microscopy, x-ray photoelectron spectroscopy, and antifouling measurements. The results from these techniques, consistent with the literature, confirmed the successful and reproducible application of the tandem coating. Through heterogeneities, including defects and incomplete coverage, the AFM data revealed distinct visible layers of the tandem coating. The direct application of monoethylene glycol silane onto gold resulted in superior antifouling performance (88% reduction), demonstrating that direct silylation exploits pre-existing oxygen-containing species on the gold surface for a more effective antifouling layer. These findings offer a scalable approach for engineering antifouling coatings on gold substrates, with potential applications in biosensing and implantable device antifouling technologies. Full article
(This article belongs to the Special Issue Mass Sensitive Biosensors for Biomedical Applications)
Show Figures

Figure 1

15 pages, 2858 KiB  
Article
Surface Physicochemical Property Differences Between Gold-Bearing and Gold-Free Pyrite for Efficient and Clean Processing of Refractory Pyritic Gold Ores
by Xujian Chai, Runqing Liu, Wenchao Dong, Wei Sun and Shangyong Lin
Minerals 2025, 15(6), 577; https://doi.org/10.3390/min15060577 - 29 May 2025
Viewed by 392
Abstract
Selective separation of gold-bearing pyrite from gold-free pyrite through flotation to improve the gold-to-sulfur ratio in the feed can significantly enhance the throughput of autoclaves, thus achieving efficient and clean processing of refractory pyritic gold ores. To achieve this expectation, this study examined [...] Read more.
Selective separation of gold-bearing pyrite from gold-free pyrite through flotation to improve the gold-to-sulfur ratio in the feed can significantly enhance the throughput of autoclaves, thus achieving efficient and clean processing of refractory pyritic gold ores. To achieve this expectation, this study examined the surface physicochemical differences between gold-bearing and gold-free pyrite under flotation conditions using cyclic voltammetry, polarization curve testing, electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) simulations. Electrochemical tests showed higher reactivity in gold-bearing pyrite, with reactivity positively correlated to gold content. XPS results indicated more oxidation products on gold-bearing pyrite surfaces under identical conditions. DFT simulations revealed that the presence of gold reduced the oxygen adsorption energy on the pyrite surface while enhancing interactions between oxygen atoms and sulfur and iron atoms. Based on these findings, the selective separation of gold-bearing and gold-free pyrite in the flotation process can be explored through pulp aeration pre-oxidation combined with collectors demonstrating selectivity toward barren pyrite (e.g., dithiocarbamate collectors). This study provides theoretical foundations for the efficient exploitation and utilization of refractory gold-bearing pyrite resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 4875 KiB  
Article
From Conjugation to Detection: Development of Lateral Flow Assay for Zearalenone
by Vinayak Sharma, Bilal Javed, Hugh J. Byrne and Furong Tian
ChemEngineering 2025, 9(3), 54; https://doi.org/10.3390/chemengineering9030054 - 26 May 2025
Viewed by 1429
Abstract
The development of rapid, sensitive and cost-effective lateral flow assays is crucial for the detection of mycotoxins, ideally at the point-of-care level. This study presents the design and optimization of a competitive lateral flow assay based on gold nanoparticles (AuNPs) for the detection [...] Read more.
The development of rapid, sensitive and cost-effective lateral flow assays is crucial for the detection of mycotoxins, ideally at the point-of-care level. This study presents the design and optimization of a competitive lateral flow assay based on gold nanoparticles (AuNPs) for the detection of zearalenone in food samples. Beginning with the synthesis and functionalization of gold nanoparticles, it proceeds to compare the immobilization of antibodies using chemical conjugation and physical adsorption binding strategies, upon optimizing parameters including the pH, antibody concentration and blocking conditions to enhance the stability of the prepared bioconjugates. The bioconjugates are characterized using UV–visible absorption spectroscopy and dynamic light scattering to monitor changes in the spectra and hydrodynamic size of AuNPs upon the addition of antibodies. The assessment of these bioconjugates is based on their ability to bind and manifest a color, developed due to nanoparticle binding with the test zone on the strip with the toxin–protein conjugate. The lateral flow immunochromatographic assay (LFIA) strips are then prepared by dispensing a control line (IgG) and test line (toxin–protein conjugate) on a nitrocellulose membrane using a lateral flow strip dispenser. The sensitivity of the LFIA strips is evaluated after standardizing the conditions by varying the concentration of zearalenone in the spiked samples and optimizing the running buffer solution. The limit of detection and limit of quantification under optimized conditions are determined to be 0.7 ng/mL and 2.37 ng for zearalenone-spiked samples. Furthermore, the mean pixel intensity and RGB values are plotted against the concentration of zearalenone, which can be used in a colorimetric smartphone-based application for the quantification of the amount of mycotoxin in the sample. Full article
Show Figures

Figure 1

12 pages, 4673 KiB  
Article
Ultrasensitive and Real-Time Detection of Kanamycin Residues in Milk Using an Aptasensor Based on Microfluidic Capacitive Strategy
by Weidong Zheng, Jun Chai, Jayne Wu, Jian Zhang and Haochen Qi
Biosensors 2025, 15(5), 322; https://doi.org/10.3390/bios15050322 - 18 May 2025
Viewed by 541
Abstract
Kanamycin (KanR) is a widely used antibiotic in human and veterinary medicine, as well as in food production and livestock breeding. However, its environmental residue and bioaccumulation in the food chain pose a great threat to human health. A real-time and sensitive aptasensor [...] Read more.
Kanamycin (KanR) is a widely used antibiotic in human and veterinary medicine, as well as in food production and livestock breeding. However, its environmental residue and bioaccumulation in the food chain pose a great threat to human health. A real-time and sensitive aptasensor is developed for KanR detection based on a gold interdigitated electrode (IDE). A microfluidic alternating current electrothermal (ACET) effect is employed for rapid directional manipulation and enrichment of KanR molecules. As an ultrasensitive indicator, solid–liquid capacitance is adopted to reflect the tiny change on the IDE surface caused by target adsorption. The overall detection takes only 60 s from sample to result, and a wide linear detection range of 0.1 fM~1 pM, an ultra-low detection limit of 16.56 aM, and a high selectivity of 7752:1 are simultaneously achieved, with 5 times of repeated use and the shelf life of 10 days. Furthermore, the aptasensor shows excellent practicability in milk samples, with the spiked recovery rate ranging from 86.90% to 116.17%. This aptasensor with the detecting strategy provides a rapid, convenient, and cost-effective solution for real-time monitoring of KanR. Full article
(This article belongs to the Special Issue In Honor of Prof. Evgeny Katz: Biosensors: Science and Technology)
Show Figures

Figure 1

16 pages, 3110 KiB  
Article
A Novel SERS Silent-Region Signal Amplification Strategy for Ultrasensitive Detection of Cu2+
by Jiabin Su, Kaixin Chen, Ping Zhou and Nan Li
Molecules 2025, 30(10), 2188; https://doi.org/10.3390/molecules30102188 - 16 May 2025
Viewed by 414
Abstract
Due to its unique molecular fingerprinting capability and multiplex detection advantages, surface-enhanced Raman scattering (SERS) has shown great application potential in the field of biological analysis. However, the weak signal intensity and large background interference significantly limited the application of SERS in biosensing [...] Read more.
Due to its unique molecular fingerprinting capability and multiplex detection advantages, surface-enhanced Raman scattering (SERS) has shown great application potential in the field of biological analysis. However, the weak signal intensity and large background interference significantly limited the application of SERS in biosensing and bioimaging. Loading a large amount of Raman molecules with signal in the silent region on the hotspots of the electromagnetic field of the SERS substrate can effectively avoid severe background noise signals and significantly improve the signal intensity, making the sensitivity and specificity of SERS detection remarkably improved. To achieve this goal, a new SERS signal-amplification strategy is herein reported for background-free detection of Cu2+ by using Raman-silent probes loaded on cabbage-like gold microparticles (AuMPs) with high enhancement capabilities and single-particle detection feasibility. In this work, carboxyl-modified AuMPs were used to enable Cu2+ adsorption via electrostatic interactions, followed by ferricyanide coordination with Cu2+ to introduce cyano groups, therefore generating a stable SERS signal with nearly zero background signals owing to the Raman-silent fingerprint of cyano at 2137 cm−1. Based on the signal intensity of cyano groups correlated with Cu2+ concentration resulting from the specific coordination between Cu2+ and cyanide, a novel SERS method for Cu2+ detection with high sensitivity and selectivity is proposed. It is noted that benefiting from per ferricyanide possessing six cyano groups, the established method with the advantage of signal amplification can significantly enhance the sensing sensitivity beyond conventional approaches. Experimental results demonstrated this SERS sensor possesses significant merits towards the determination of Cu2+ in terms of high selectivity, broad linear range from 1 nM to 1 mM, and low limit of detection (0.1 nM) superior to other reported colorimetric, fluorescence, and electrochemical methods. Moreover, algorithm data processing for optimization of SERS original data was further used to improve the SERS signal reliability. As the proof-of-concept demonstrations, this work paves the way for improving SERS sensing capability through the silent-range fingerprint and signal amplification strategy, and reveals SERS as an effective tool for trace detection in complex biological and environmental matrices. Full article
Show Figures

Figure 1

20 pages, 5073 KiB  
Article
Study on Detection Method of Sulfamethazine Residues in Duck Blood Based on Surface-Enhanced Raman Spectroscopy
by Junshi Huang, Runhua Zhou, Jinlong Lin, Qi Chen, Ping Liu, Shuanggen Huang and Jinhui Zhao
Biosensors 2025, 15(5), 286; https://doi.org/10.3390/bios15050286 - 1 May 2025
Viewed by 471
Abstract
Sulfadimethazine (SM2) is widely used in livestock and poultry farming, but its improper use can pose a serious threat to human health. Therefore, the detection of SM2 residues in livestock and poultry products, including duck blood, is of great significance for food safety. [...] Read more.
Sulfadimethazine (SM2) is widely used in livestock and poultry farming, but its improper use can pose a serious threat to human health. Therefore, the detection of SM2 residues in livestock and poultry products, including duck blood, is of great significance for food safety. A rapid detection method for SM2 residues in duck blood based on surface-enhanced Raman spectroscopy (SERS) was proposed in this paper. Density functional theory (DFT) was employed to optimize the molecular structure of SM2 and perform theoretical Raman vibrational analysis, thereby identifying its characteristic peaks. The enhancement effects of four different substrates were compared. The sample pretreatment method and detection conditions were optimized through single-factor experiments, including the types and amounts of electrolyte aggregators, the amount of gold nanocolloids, and the adsorption time. Under optimal conditions, the SERS spectral data of the samples were preprocessed, and features were extracted to establish an optimal quantitative prediction model. The experimental results found that the adaptive iteratively reweighted penalized least-squares method (air-PLS) was the best preprocessing method, and the competitive adaptive reweighted sampling–multiple linear regression (CARS-MLR) model demonstrated the best prediction performance, with a coefficient of determination for the prediction set (Rp2) of 0.9817, a root mean square error of calibration (RMSEC) of 1.5539 mg/L, a relative prediction deviation (RPD) of 7.1953, and limits of quantification of 0.75 mg/L. The research demonstrated that the combination of SERS technology and chemometric methods was feasible and effective for the detection of SM2 residues in duck blood. Full article
(This article belongs to the Special Issue Optical Biosensors for Environmental Monitoring)
Show Figures

Figure 1

11 pages, 2048 KiB  
Article
Amino-Modified ZIF-90 for Effective Adsorption of Au(III) in Environmental Water
by Na Zhou, Xueli Wu, Shaoxia Wang, Jianfei Qu, Yang Tan, Chuanlei Luan, Xiuli Yin, Xuran Wu and Xuming Zhuang
Molecules 2025, 30(8), 1826; https://doi.org/10.3390/molecules30081826 - 18 Apr 2025
Viewed by 406
Abstract
In this work, amino-modified ZIF-90 (NH2-ZIF-90) was prepared by using butylamine as a modifier, and its effectiveness in adsorbing Au(III) from environmental samples was investigated. The morphology and structure of NH2-ZIF-90 were analyzed via SEM, XRD, FT-IR, and XPS. [...] Read more.
In this work, amino-modified ZIF-90 (NH2-ZIF-90) was prepared by using butylamine as a modifier, and its effectiveness in adsorbing Au(III) from environmental samples was investigated. The morphology and structure of NH2-ZIF-90 were analyzed via SEM, XRD, FT-IR, and XPS. Optimal adsorption occurred after 12 h of shaking in a pH = 5 aqueous solution with 2 mg mL−1 NH2-ZIF-90. The adsorption kinetics conformed to a pseudo-second-order model, and the equilibrium data fit the Freundlich isotherm model well. Finally, NH2-ZIF-90 was successfully used in lake water and tap water samples for Au(III) adsorption, with recovery rates ranging from 81.0% to 93.3%. This study presents a novel approach for addressing Au(III) adsorption challenges. Full article
Show Figures

Figure 1

Back to TopTop