Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = glycidyl azide polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2164 KiB  
Article
Preparation of Inverse-Loaded MWCNTs@Fe2O3 Composites and Their Impact on Glycidyl Azide Polymer-Based Energetic Thermoplastic Elastomer
by Shuo Pang, Yihao Lv, Shuxia Liu, Chao Sang, Bixin Jin and Yunjun Luo
Polymers 2025, 17(15), 2080; https://doi.org/10.3390/polym17152080 - 30 Jul 2025
Viewed by 200
Abstract
As a novel carbon material, multi-walled carbon nanotubes (MWCNTs) have attracted significant research interest in energetic applications due to their high aspect ratio and exceptional physicochemical properties. However, their inherent structural characteristics and poor dispersion severely limit their practical utilization in solid propellant [...] Read more.
As a novel carbon material, multi-walled carbon nanotubes (MWCNTs) have attracted significant research interest in energetic applications due to their high aspect ratio and exceptional physicochemical properties. However, their inherent structural characteristics and poor dispersion severely limit their practical utilization in solid propellant formulations. To address these challenges, this study developed an innovative reverse-engineering strategy that precisely confines MWCNTs within a three-dimensional Fe2O3 gel framework through a controllable sol-gel process followed by low-temperature calcination. This advanced material architecture not only overcomes the traditional limitations of MWCNTs but also creates abundant Fe-C interfacial sites that synergistically catalyze the thermal decomposition of glycidyl azide polymer-based energetic thermoplastic elastomer (GAP-ETPE). Systematic characterization reveals that the MWCNTs@Fe2O3 nanocomposite delivers exceptional catalytic performance for azido group decomposition, achieving a >200% enhancement in decomposition rate compared to physical mixtures while simultaneously improving the mechanical strength of GAP-ETPE-based propellants by 15–20%. More importantly, this work provides fundamental insights into the rational design of advanced carbon-based nanocomposites for next-generation energetic materials, opening new avenues for the application of nanocarbons in propulsion systems. Full article
(This article belongs to the Special Issue Eco-Friendly Polymeric Coatings and Adhesive Technology, 2nd Edition)
Show Figures

Figure 1

28 pages, 3444 KiB  
Review
A Review on Liquid Pulsed Laser Propulsion
by Sai Li, Baosheng Du, Qianqian Cui, Jifei Ye, Haichao Cui, Heyan Gao, Ying Wang, Yongzan Zheng and Jianhui Han
Aerospace 2025, 12(7), 604; https://doi.org/10.3390/aerospace12070604 - 2 Jul 2025
Viewed by 525
Abstract
Laser propulsion is a new conceptual technology that drives spacecraft and possesses advantages such as high specific impulse, large payload ratio, and low launch cost. It has potential applications in diverse areas, such as space debris mitigation and removal, microsatellite attitude control, and [...] Read more.
Laser propulsion is a new conceptual technology that drives spacecraft and possesses advantages such as high specific impulse, large payload ratio, and low launch cost. It has potential applications in diverse areas, such as space debris mitigation and removal, microsatellite attitude control, and orbital maneuvering. Liquid pulse laser propulsion has notable advantages among the various laser propulsion systems. We review the concept and the theory of liquid laser propulsion. Then, we categorize the current state of research based on three types of propellants—non-energetic liquids, energetic liquids, and liquid metals—and provide an analysis of the propulsion characteristics arising from the laser ablation of liquids such as water, glycidyl azide polymer (GAP), hydroxylammonium nitrate (HAN), and ammonium dinitramide (ADN). We also discuss future research directions and challenges of pulsed liquid laser propulsion. Although experiments have yielded encouraging outcomes due to the distinctive properties of liquid propellants, continued investigation is essential to ensure that this technology performs reliably in actual aerospace applications. Consistent results under both spatial and ground conditions remain a key research content for fully realizing its potential. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology (2nd Edition))
Show Figures

Figure 1

14 pages, 4333 KiB  
Article
Effect of Poly (Caprolactone) Introduction Site on the Network Structure and Properties of Glycidyl Azide Polymer Adhesive
by Chengzhao Tu, Zhengyuan Wang, Fengdan Zhu, Dengsheng Yang, Chang Liu, Chaofei Bai, Guoping Li and Yunjun Luo
Polymers 2025, 17(5), 661; https://doi.org/10.3390/polym17050661 - 28 Feb 2025
Cited by 1 | Viewed by 749
Abstract
Copolymers of glycidyl azide polymer (GAP) and poly (caprolactone) (PCL) were obtained by introducing PCL molecular chains at both ends or side groups of GAP molecular chains, respectively. GAP/PCL elastomers were prepared via polyurethane curing reaction and compared with GAP/PCL elastomers prepared by [...] Read more.
Copolymers of glycidyl azide polymer (GAP) and poly (caprolactone) (PCL) were obtained by introducing PCL molecular chains at both ends or side groups of GAP molecular chains, respectively. GAP/PCL elastomers were prepared via polyurethane curing reaction and compared with GAP/PCL elastomers prepared by physical blending, in order to clarify the relationship between microstructure and macroscopic properties. The results showed that no GAP and PCL phase separation was observed in the chemically bonded GAP/PCL elastomers. The elongation at break of the thermosetting GAP/PCL block copolymer elastomer increased significantly from 268% to 300% due to the increase in molecular weight between crosslinking points. The GAP/PCL graft copolymer, with its longer PCL segment length and higher segment mobility, formed microcrystalline domains within the elastomer, resulting in a significant improvement in tensile strength from 0.32 MPa to 1.07 MPa. In addition, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed that the glass transition temperature of the GAP/PCL elastomer was 2.6 °C lower than that of the pure GAP elastomer, and the thermal stability was also enhanced. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

10 pages, 4234 KiB  
Article
Effect of Metastable Intermolecular Composites on the Thermal Decomposition of Glycidyl Azide Polymer Energetic Thermoplastic Elastomer
by Chao Sang and Yunjun Luo
Polymers 2024, 16(15), 2107; https://doi.org/10.3390/polym16152107 - 24 Jul 2024
Cited by 2 | Viewed by 1256
Abstract
Glycidyl azide polymer energetic thermoplastic elastomer (GAP-ETPE) has become a research hotspot due to its excellent comprehensive performance. In this paper, metastable intermolecular energetic nanocomposites (MICs) were prepared by a simple and safe method, and the catalytic performance for decomposition of GAP-ETPE was [...] Read more.
Glycidyl azide polymer energetic thermoplastic elastomer (GAP-ETPE) has become a research hotspot due to its excellent comprehensive performance. In this paper, metastable intermolecular energetic nanocomposites (MICs) were prepared by a simple and safe method, and the catalytic performance for decomposition of GAP-ETPE was studied. An X-ray diffraction (XRD) analysis showed that the MICs exhibited specific crystal formation, which proved that the MICs were successfully prepared. Morphology, surface area, and pore structure analysis showed that the Al/copper ferrite and Al/Fe2O3 MICs had a large specific surface area mesoporous structure. The Al/CuO MICs did not have a mesoporous structure or a large surface area. The structure of MICs led to their different performance for the GAP-ETPE decomposition catalysis. The increase in specific surface area is a benefit of the catalytic performance. Due to the easier formation of complexes, MICs containing Cu have better catalytic performance for GAP-ETPE decomposition than those containing Fe. The conclusions of this study can provide a basis for the adjustment of the catalytic performance of MICs in GAP-ETPE propellants. Full article
(This article belongs to the Special Issue Eco-Friendly Coatings and Adhesive Technology)
Show Figures

Figure 1

15 pages, 3788 KiB  
Article
Influence of the Glycidyl Azide Polymer on the Energy Release of Aluminum Sub-Micron Particles under Ultrafast Heating Rates Stimulated by Electric Explosion and Solid Laser
by Yaru Li, Hui Ren and Shuo Liu
Metals 2024, 14(7), 786; https://doi.org/10.3390/met14070786 - 5 Jul 2024
Viewed by 1084
Abstract
Glycidyl azide polymer (GAP)-coated sub-micron aluminum (sub-mAl@GAP) particles exhibit higher heat release than their uncoated counterparts under low heating rates. However, their application in explosives has been hindered due to a lack of understanding of their energy release characteristics under heating rates of [...] Read more.
Glycidyl azide polymer (GAP)-coated sub-micron aluminum (sub-mAl@GAP) particles exhibit higher heat release than their uncoated counterparts under low heating rates. However, their application in explosives has been hindered due to a lack of understanding of their energy release characteristics under heating rates of detonation levels. To address this problem, the energy release performances of sub-mAl@GAP particles under ultrafast heating rates stimulated by an electric explosion of wire and high-energy laser were studied. The results showed that the reaction of sub-mAl@GAP particles was more violent than that of an uncoated counterpart under an electric explosion stimulus. Additionally, the reaction time of the former was 0.4 ms shorter than that of the latter. In addition, the propagations of shock waves of the sub-mAl@GAP and sub-mAl were analyzed. The propagation distances of shock waves of the sub-mAl@GAP were all longer than those of sub-mAl under laser fluences of 0.5 J/cm2, 1.2 J/cm2, and 2.4 J/cm2. The distance difference gradually increased with the decrease in the laser fluence. Under a laser fluence of 0.5 J/cm2, the velocity and distance differences of the sub-mAl@GAP and sub-mAl were both the largest due to the energy contribution from the GAP. In conclusion, the fast decomposition rate of the GAP and its energy contribution would benefit the energy release of sub-mAl under ultrafast heating rates. Full article
Show Figures

Figure 1

14 pages, 5066 KiB  
Article
Research on the Thermal Aging Performance of a GAP-Based Polyurethane Elastomer
by Chang Liu, Fengdan Zhu, Desheng Yang, Chaofei Bai, Xiaoqing Wang, Guoping Li and Yunjun Luo
Polymers 2024, 16(6), 795; https://doi.org/10.3390/polym16060795 - 13 Mar 2024
Cited by 6 | Viewed by 1882
Abstract
Glycidyl azide polymer (GAP)-based polyurethane is an ideal elastomeric matrix for high-energy, low-smoke, and insensitive solid propellants. As the skeleton structure of GAP propellants, changes in the structure and properties of GAP elastomers during aging lead to the deterioration of propellant performance (especially [...] Read more.
Glycidyl azide polymer (GAP)-based polyurethane is an ideal elastomeric matrix for high-energy, low-smoke, and insensitive solid propellants. As the skeleton structure of GAP propellants, changes in the structure and properties of GAP elastomers during aging lead to the deterioration of propellant performance (especially in relation to mechanical properties), which causes safety risks. A high-temperature-accelerated aging experiment (70 °C) on a GAP elastomer was conducted. The evolution of the microstructure of the GAP elastomer system was analyzed by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR), and variations in the macroscopic properties were analyzed by the hardness test and the uniaxial tensile test. The experimental results showed that thermal aging of the GAP elastomer is a coupled process of multiple chemical reactions. The azide groups, urethane groups, and ether bonds were the weak links in the network structure, breaking during the aging process, and the crosslinking density rose and then decreased. Macroscopic properties also showed segmented changes. The aging process was divided into three stages: post-curing (stage one); when the crosslinked network began to break (stage two), and when the crosslinked network was destroyed (stage three). Changes in the microstructure and macroscopic properties were consistent. This work is of great significance for exploring the aging mechanism of GAP propellants and extending their storage life. Full article
(This article belongs to the Special Issue Utilizing Polymers for the Construction of Lithium-Ion Battery)
Show Figures

Figure 1

12 pages, 5016 KiB  
Article
A Novel Method of Improving the Mechanical Properties of Propellant Using Energetic Thermoplastic Elastomers with Bonding Groups
by Shixiong Sun, Haoyu Liu, Yang Wang, Wenhao Du, Benbo Zhao and Yunjun Luo
Polymers 2024, 16(6), 792; https://doi.org/10.3390/polym16060792 - 13 Mar 2024
Cited by 2 | Viewed by 1710
Abstract
The relatively poor mechanical properties of extruded modified double base (EMDB) propellants limit their range of applications. To overcome these drawbacks, a novel method was proposed to introduce glycidyl azide polymer-based energetic thermoplastic elastomers (GAP-ETPE) with bonding groups into the propellant adhesive. The [...] Read more.
The relatively poor mechanical properties of extruded modified double base (EMDB) propellants limit their range of applications. To overcome these drawbacks, a novel method was proposed to introduce glycidyl azide polymer-based energetic thermoplastic elastomers (GAP-ETPE) with bonding groups into the propellant adhesive. The influence of the molecular structure of three kinds of elastomers on the mechanical properties of the resultant propellant was analyzed. It was found that the mechanical properties of the propellant with 3% CBA-ETPE (a type of GAP-ETPE that features chain extensions using N-(2-Cyanoethyl) diethanolamine and 1,4-butanediol) were improved at both 50 °C and −40 °C compared to a control propellant without GAP-ETPE. The elongation and impact strength of the propellant at −40 °C were 7.49% and 6.58 MPa, respectively, while the impact strength and maximum tensile strength of the propellant at 50 °C reached 21.1 MPa and 1.19 MPa, respectively. In addition, all three types of GAP-ETPE improved the safety of EMDB propellants. The friction sensitivity of the propellant with 3% CBA-ETPE was found to be 0%, and its characteristic drop height H50 was found to be 39.0 cm; 126% higher than the traditional EMDB propellant. These results provide guidance for studies aiming to optimize the performance of EMDB propellants. Full article
(This article belongs to the Special Issue Eco-Friendly Coatings and Adhesive Technology)
Show Figures

Figure 1

13 pages, 5988 KiB  
Article
Development of a Laser Micro-Thruster and On-Orbit Testing
by Jifei Ye, Sibo Wang, Hao Chang, Yanji Hong, Nanlei Li, Weijing Zhou, Baoyu Xing, Bangdeng Du and Chengyin Xie
Aerospace 2024, 11(1), 23; https://doi.org/10.3390/aerospace11010023 - 26 Dec 2023
Cited by 6 | Viewed by 2375
Abstract
Laser micro-thrust technology is a type of propulsion that uses a laser beam to ablate a propellant such as a metal or plastic. The ablated material is expelled out the back of the spacecraft, generating thrust. The technology has the advantages of high [...] Read more.
Laser micro-thrust technology is a type of propulsion that uses a laser beam to ablate a propellant such as a metal or plastic. The ablated material is expelled out the back of the spacecraft, generating thrust. The technology has the advantages of high control precision, high thrust–power ratios, and excellent performances, and it has played an important role in the field of micro-propulsion. In this study, a solid propellant laser micro-thruster was developed and then applied for the attitude control of satellites during on-orbit tests. The micro-thruster had a volume of 0.5 U, a weight of 440 g, and a thrust range of 10 μN–0.6 mN. The propellant, 87% glycidyl azide polymer (GAP) + 10% ammonium perchlorate (AP) + 3% carbon nano-powder, was supplied via a double-layer belt, and the average power was less than 10 W. We present the development of the laser micro-thruster, as well as the results regarding the thruster propulsion performance. The thruster was launched into orbit on 27 February 2022 with the Chuangxin Leishen Satellite developed by Spacety. The on-orbit test of the thruster for satellite attitude control was carried out. The thruster was successfully fired in space and played an obvious role in the attitude control of the satellite. The experimental results show that the thrust is about 315 μN. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology)
Show Figures

Figure 1

19 pages, 6858 KiB  
Article
Non-Isothermal Simulation and Safety Analysis of Twin-Screw Extrusion Process for Synthetizing Glycidyl Azide Polymer-Based Energetic Thermoplastic Elastomer
by Junming Yuan, Yan Liu, Jinying Wang, Yuan Qu, Hu Sun, Yue Qin and Nan Wang
Polymers 2023, 15(18), 3662; https://doi.org/10.3390/polym15183662 - 5 Sep 2023
Cited by 3 | Viewed by 1989
Abstract
In order to study the temperature variation and flow characteristics in the twin-screw reactive extrusion process of synthetizing glycidyl azide polymer-based energetic thermoplastic elastomer (GAP-ETPE), a non-isothermal simulation and a safety analysis were carried out. Firstly, based on the synthesis principle of GAP-ETPE, [...] Read more.
In order to study the temperature variation and flow characteristics in the twin-screw reactive extrusion process of synthetizing glycidyl azide polymer-based energetic thermoplastic elastomer (GAP-ETPE), a non-isothermal simulation and a safety analysis were carried out. Firstly, based on the synthesis principle of GAP-ETPE, a mechanical sensitivity test, viscosity test and differential scanning calorimetry (DSC) of GAP-ETPE were carried out. Secondly, a three-dimensional physical model of the intermeshing co-rotating conveying element was established by Gambit. A three-dimensional non-isothermal numerical simulation of the conveying and kneading elements was carried out using FLUENT 19.0 software. The temperature, pressure and shear stress field of conveying and kneading elements with different staggered angles were analyzed and compared. The results show that the maximum temperature of the kneading element is always slightly higher than that of the conveying element at the same rotational speed, but the average temperature in the flow channel is always slightly higher than that of the kneading element. The inlet and outlet pressure difference of the kneading elements with a 90° offset angle is the smallest and the safety is the highest. The shear stress in the flow channel of the conveying element is higher than that of the kneading element as a whole, but the shear stress near the outlet of the 90° kneading element is higher than that in the flow channel of the conveying element. Among the kneading elements, the 90° kneading element has the strongest dispersing and mixing ability, followed by the 60° and 45° kneading elements. According to the thermal and physical parameters of the material, the ignition response time is approximately 6 s, which provides a theoretical guide for the safety design of the GAP-ETPE twin-screw extruder. Full article
(This article belongs to the Special Issue Eco-Friendly Coatings and Adhesive Technology)
Show Figures

Figure 1

11 pages, 2995 KiB  
Article
Preparation and Properties of a Novel High-Toughness Solid Propellant Adhesive System Based on Glycidyl Azide Polymer–Energetic Thermoplastic Elastomer/Nitrocellulose/Butyl Nitrate Ethyl Nitramine
by Jing Zhang, Zhen Wang, Shixiong Sun and Yunjun Luo
Polymers 2023, 15(18), 3656; https://doi.org/10.3390/polym15183656 - 5 Sep 2023
Cited by 9 | Viewed by 2207
Abstract
Glycidyl azide polymer (GAP)–energetic thermoplastic elastomer (GAP-ETPE) propellants have high development prospects as green solid propellants, but the preparation of GAP-ETPEs with excellent performance is still a challenge. Improving the performance of the adhesive system in a propellant by introducing a plasticizer is [...] Read more.
Glycidyl azide polymer (GAP)–energetic thermoplastic elastomer (GAP-ETPE) propellants have high development prospects as green solid propellants, but the preparation of GAP-ETPEs with excellent performance is still a challenge. Improving the performance of the adhesive system in a propellant by introducing a plasticizer is an effective approach to increasing the energy and toughness of the propellant. Herein, a novel high-strength solid propellant adhesive system was proposed with GAP-ETPEs as the adhesive skeleton, butyl nitrate ethyl nitramine (Bu-NENA) as the energetic plasticizer, and nitrocellulose (NC) as the reinforcing agent. The effects of the structural factors on its properties were studied. The results showed that the binder system would give the propellant better mechanical and safety properties. The results can provide a reference for the structure design, forming process, and parameter selection of high-performance GAP-based green solid propellants. Full article
(This article belongs to the Special Issue Eco-Friendly Coatings and Adhesive Technology)
Show Figures

Graphical abstract

10 pages, 4771 KiB  
Article
Traditional vs. Energetic and Perchlorate vs. “Green”: A Comparative Study of the Choice of Binders and Oxidising Agents
by Kinga Lysien, Sylwia Waśkiewicz, Agnieszka Stolarczyk, Anna Mielańczyk, Roman Zakusylo and Tomasz Jarosz
Molecules 2023, 28(15), 5787; https://doi.org/10.3390/molecules28155787 - 31 Jul 2023
Cited by 4 | Viewed by 1743
Abstract
The aim of this article is to compare rocket propellants containing a traditional binder (hydroxyl-terminated polybutadiene) and an energetic binder (glycidyl azide polymer), as well as a perchlorate oxidising agent and a “green” one, i.e., ammonium perchlorate and phase-stabilised ammonium nitrate. We have [...] Read more.
The aim of this article is to compare rocket propellants containing a traditional binder (hydroxyl-terminated polybutadiene) and an energetic binder (glycidyl azide polymer), as well as a perchlorate oxidising agent and a “green” one, i.e., ammonium perchlorate and phase-stabilised ammonium nitrate. We have outlined the effects of individual substances on the sensitivity parameters and decomposition temperature of the produced solid propellants. The linear combustion velocity was determined using electrical methods. Heats of combustion for the propellant samples and the thermal decomposition features of the utilised binders were investigated via differential scanning calorimetry (DSC). Activation energy values for the energetic decomposition of the propellants were determined via the Kissinger method, based on DSC measurements at varied heating rates. Full article
Show Figures

Graphical abstract

10 pages, 4066 KiB  
Article
Study on GAP Adhesive-Based Polymer Films, Energetic Polymer Composites and Application
by Siyuan Wu, Xiaomeng Li, Zhen Ge and Yunjun Luo
Polymers 2023, 15(6), 1538; https://doi.org/10.3390/polym15061538 - 20 Mar 2023
Cited by 7 | Viewed by 2209
Abstract
To lay the foundation for environmentally friendly energetic polymer composites, GAP (glycidyl azide polymer) adhesive-based polymer films with different curing parameter R (mol ratio of hydroxyl/isocyanate) and energetic polymer composites with different RDX contents were studied. GAP/TDI (toluene diisocyanate)/GLY(glycerol) was selected as the [...] Read more.
To lay the foundation for environmentally friendly energetic polymer composites, GAP (glycidyl azide polymer) adhesive-based polymer films with different curing parameter R (mol ratio of hydroxyl/isocyanate) and energetic polymer composites with different RDX contents were studied. GAP/TDI (toluene diisocyanate)/GLY(glycerol) was selected as the adhesive system. The tensile strength and elongation at the break of the polymer film with R = 2.2, was 14.34 MPa and 176.86%, respectively, as observed by an AGS-J electronic universal testing machine. A relatively complete cross-linking network and high hydrogen bonding interaction were observed by LF-NMR (low-field nuclear magnetic resonance, where the cross-linking density was 11.06 × 10−4 mol/cm3) and FT-IR (fourier transform infrared spectroscopy, where the carbonyl bonding ratio was 64.84%). Forty percent RDX(hexogen) was added into the adhesive system. The tensile strength was 4.65 MPa, and the elongation at the break was 78.49%; meanwhile, the heat of the explosive was 2.87 MJ/kg, and the residue carbon rate was only 2.47%. The tensile cross-sections of energetic polymer composites were observed by SEM (Scanning electron microscopy). Full article
(This article belongs to the Special Issue Eco-Friendly Coatings and Adhesive Technology)
Show Figures

Figure 1

10 pages, 3859 KiB  
Article
Experiment and Molecular Dynamic Simulation on Performance of 3,4-Bis(3-nitrofurazan-4-yl)furoxan (DNTF) Crystals Coated with Energetic Binder GAP
by Yue Qin, Junming Yuan, Hu Sun, Yan Liu, Hanpeng Zhou, Ruiqiang Wu, Jinfang Chen and Xiaoxiao Li
Crystals 2023, 13(2), 327; https://doi.org/10.3390/cryst13020327 - 15 Feb 2023
Cited by 3 | Viewed by 1748
Abstract
To investigate the crystallization of DNTF in modified double-base propellants, glycidyl azide polymer (GAP) was used as the coating material for the in situ coating of DNTF, and the performance of the coating was investigated to inhibit the crystallization. The results show that [...] Read more.
To investigate the crystallization of DNTF in modified double-base propellants, glycidyl azide polymer (GAP) was used as the coating material for the in situ coating of DNTF, and the performance of the coating was investigated to inhibit the crystallization. The results show that GAP can form a white gel on the surface of DNTF crystals and has a good coating effect which can significantly reduce the impact sensitivity and friction sensitivity of DNTF. Molecular dynamics was used to construct a bilayer interface model of GAP and DNTF with different growth crystal surfaces, and Molecular dynamics calculations of the binding energy and mechanical properties of the composite system were carried out. The results showed that GAP could effectively improve the mechanical properties of DNTF. The values of K/G, γ and ν are higher than those of DNTF crystals, and the values of C12-C44 are positive, indicating that GAP can improve DNTF ductility while also improving toughness. Combining the experimental results with the simulation calculations, energetic binder GAP can be referred to as a better cladding layer for DNTF, which is feasible for inhibiting the DNTF crystallization problem in propellants. Full article
(This article belongs to the Special Issue Advanced Energetic Materials: Testing and Modeling)
Show Figures

Figure 1

15 pages, 5696 KiB  
Article
Influence of Solid Filler on the Rheological Properties of Propellants Based on Energetic Thermoplastic Elastomer
by Jing Zhang, Zhen Wang, Shixiong Sun and Yunjun Luo
Materials 2023, 16(2), 808; https://doi.org/10.3390/ma16020808 - 13 Jan 2023
Cited by 10 | Viewed by 1970
Abstract
Glycidyl azide polymer-energetic thermoplastic elastomer propellant (GAP-ETPE) has high development prospects as a green solid propellant, although the preparation of GAP-ETPE with excellent performance is still a challenge. Focusing on the demand of high-strength solid propellants for free-loading rocket motors, a GAP-ETPE model [...] Read more.
Glycidyl azide polymer-energetic thermoplastic elastomer propellant (GAP-ETPE) has high development prospects as a green solid propellant, although the preparation of GAP-ETPE with excellent performance is still a challenge. Focusing on the demand of high-strength solid propellants for free-loading rocket motors, a GAP-ETPE model propellant with excellent overall performance was prepared in this work, and the influence of adhesive structure characteristics on its fluidity was studied. Furthermore, the influence of filler on the rheological properties of the model propellant was investigated by introducing hexogen (RDX) and Al, and a corresponding two-phase model was established. The results may provide a reference for the structural design, molding process, and parameter selection of high-performance GAP-based green solid propellants. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

13 pages, 3935 KiB  
Article
Poly(glycidyl azide) as Photo-Crosslinker for Polymers
by Xinyan Zhou, Wei Wei, Xiaojian Hou, Gang Tang, Yunjun Luo and Xiaoyu Li
Polymers 2022, 14(24), 5451; https://doi.org/10.3390/polym14245451 - 13 Dec 2022
Cited by 4 | Viewed by 3440
Abstract
Crosslinking polymers to form networks is a universal and routinely applied strategy to improve their stability and endow them with solvent resistance, adhesion properties, etc. However, the chemical crosslinking of common commercial polymers, especially for those without functional groups, cannot be achieved readily. [...] Read more.
Crosslinking polymers to form networks is a universal and routinely applied strategy to improve their stability and endow them with solvent resistance, adhesion properties, etc. However, the chemical crosslinking of common commercial polymers, especially for those without functional groups, cannot be achieved readily. In this study, we utilized low-molecular weight poly(glycidyl azide) (GAP) as polymeric crosslinkers to crosslink various commercial polymers via simple ultraviolet light irradiation. The azide groups were shown to decompose upon photo-irradiation and be converted to highly reactive nitrene species, which are able to insert into carbon-hydrogen bonds and thus crosslink the polymeric matrices. This strategy was demonstrated successfully in several commercial polymers. In particular, it was found that the crosslinking is highly localized, which could endow the polymeric matrices with a decent degree of crosslinking without significantly influencing other properties, suggesting a novel and robust method to crosslink polymeric materials. Full article
(This article belongs to the Special Issue Photoactive Polymer Materials)
Show Figures

Figure 1

Back to TopTop