Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = glycated CD59

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3248 KiB  
Article
Electrochemical Nanostructured Aptasensor for Direct Detection of Glycated Hemoglobin
by Luminita Fritea, Cosmin-Mihai Cotrut, Iulian Antoniac, Simona Daniela Cavalu, Luciana Dobjanschi, Angela Antonescu, Liviu Moldovan, Maria Domuta and Florin Banica
Int. J. Mol. Sci. 2025, 26(15), 7140; https://doi.org/10.3390/ijms26157140 - 24 Jul 2025
Viewed by 260
Abstract
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and [...] Read more.
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and combined with gold nanoparticles (AuNPs) electrochemically deposited onto a screen-printed carbon electrode. The nanomaterials significantly improved the analytical performance of the sensor due to their increased surface area and high electrical conductivity. This nanoplatform was employed as a substrate for the covalent attachment of thiolated ferrocene-labeled HbA1c specific aptamer through Au-S binding. The electrochemical signal of ferrocene was covered by a stronger oxidation peak of Fe2+ from the HbA1c structure, leading to the elaboration of a nanostructured aptasensor capable of the direct detection of HbA1c. The electrochemical aptasensor presented a very wide linear range (0.688–11.5%), an acceptable limit of detection (0.098%), and good selectivity and stability, being successfully applied on real samples. This miniaturized, simple, easy-to-use, and fast-responding aptasensor, requiring only a small sample volume, can be considered as a promising candidate for the efficient on-site determination of HbA1c. Full article
Show Figures

Figure 1

18 pages, 1504 KiB  
Article
The Relationship of the Plasma Glycated CD59 Level with Microvascular Complications in Diabetic Patients and Its Evaluation as a Predictive Marker
by Ozgur Yilmaz, Osman Erinc, Ayca Gul Gungordu, Mehmet Erdogan, Murvet Algemi and Murat Akarsu
J. Clin. Med. 2025, 14(13), 4588; https://doi.org/10.3390/jcm14134588 - 28 Jun 2025
Viewed by 466
Abstract
Background/Objectives: Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease characterized by chronic hyperglycemia and progressive microvascular complications, including retinopathy, nephropathy, and neuropathy. While traditional markers like HbA1c capture average glycemic control, they often fail to predict microvascular damage risk. Glycated CD59 [...] Read more.
Background/Objectives: Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease characterized by chronic hyperglycemia and progressive microvascular complications, including retinopathy, nephropathy, and neuropathy. While traditional markers like HbA1c capture average glycemic control, they often fail to predict microvascular damage risk. Glycated CD59 (GCD59), a complement regulatory protein modified under hyperglycemic conditions, has emerged as a promising biomarker reflecting complement dysregulation and endothelial injury. This study aimed to examine the relationship between plasma GCD59 levels and the presence of microvascular complications in patients with type 2 diabetes mellitus and to evaluate whether GCD59 shows potential for future use as a predictive biomarker, pending prospective validation. Methods: In this single-center, prospective case–control study, 246 participants were enrolled: 82 healthy controls, 82 T2DM patients without microvascular complications (DM − MC), and 82 T2DM patients with microvascular complications (DM + MC). Microvascular complications were defined based on standardized criteria for retinopathy, nephropathy, and neuropathy. Plasma GCD59 levels were measured using validated ELISA methods. Receiver operating characteristic (ROC) analyses, forest plots, and odds ratio calculations were employed to assess the discriminatory performance of GCD59. Statistical significance was set at p < 0.05. Results: Plasma GCD59 levels were significantly elevated across all diabetic groups compared to healthy controls (p < 0.001), with the highest levels in the DM + MC group (median 4.5 ng/mL) versus DM − MC (median 1.9 ng/mL) and controls (median 1.2 ng/mL). ROC analysis demonstrated excellent diagnostic performance for distinguishing DM + MC from healthy controls (AUC = 0.946, sensitivity 89%, specificity 97.6%) and good performance for distinguishing DM + MC from DM − MC (AUC = 0.849, sensitivity 72%, specificity 87.8%). Forest plot analyses confirmed significantly elevated odds ratios for GCD59 across all microvascular subgroups. Importantly, GCD59 levels correlated positively with inflammatory markers (CRP, ESR, leukocyte count), suggesting a combined role of complement dysregulation and chronic inflammation in diabetic microangiopathy. Conclusions: Plasma GCD59 may be a promising biomarker for identifying T2DM patients who may be at increased risk for microvascular complications, independent of conventional glycemic markers. Given the cross-sectional design of this study, causal inference is not possible; prospective validation is required. The observed strong discriminatory performance highlights potential future clinical utility, pending further validation of diagnostic thresholds, assay standardization, and feasibility in routine care settings. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

23 pages, 3351 KiB  
Article
Targeting DAMPs by Aspirin Inhibits Head and Neck Cancer Stem Cells and Stimulates Radio-Sensitization to Proton Therapy
by Tea Vasiljevic, Emilija Zapletal, Marko Tarle, Iva Bozicevic Mihalic, Sabrina Gouasmia, Georgios Provatas, Kristina Vukovic Djerfi, Danko Müller, Koraljka Hat, Ivica Luksic and Tanja Matijevic Glavan
Cancers 2025, 17(13), 2157; https://doi.org/10.3390/cancers17132157 - 26 Jun 2025
Viewed by 420
Abstract
Background: Cancer stem cells (CSCs) are a subpopulation of cancer cells known for their self-renewal capacity, tumorigenicity, and resistance to treatment. Toll-like receptor 3 (TLR3) plays a complex role in cancer, exhibiting both pro-apoptotic and pro-tumorigenic effects. This study investigates the pro-tumorigenic role [...] Read more.
Background: Cancer stem cells (CSCs) are a subpopulation of cancer cells known for their self-renewal capacity, tumorigenicity, and resistance to treatment. Toll-like receptor 3 (TLR3) plays a complex role in cancer, exhibiting both pro-apoptotic and pro-tumorigenic effects. This study investigates the pro-tumorigenic role of TLR3, specifically its impact on CSCs in head and neck cancer. Methods: We have investigated Detroit 562, FaDu and SQ20B cell lines, the latter being stably transfected with a plasmid containing inducible shRNA for TLR3, by cultivating them to form tumor spheres in order to study CSCs. Results: Our findings demonstrate that TLR3 activation promotes stemness in head and neck cancer cell lines. This is evidenced by increased tumor sphere formation, promotion of epithelial-to-mesenchymal transition (EMT), upregulated stemness gene expression, and elevated aldehyde dehydrogenase (ALDH) activity. Conditional TLR3 knockdown abolished tumor sphere formation, confirming its important role. Furthermore, TLR3 activation triggers the secretion of damage-associated molecular patterns (DAMPs) into the tumor microenvironment, leading to increased cancer cell migration. This was inhibited by DAMP inhibitors. In patient tissue samples, we observed co-localization of TLR3 with stemness markers CD133 and ALDH1, as well as with heat shock protein 70 (HSP70) and receptor for advanced glycation end products (RAGE). We then explored potential CSC-targeted therapies, initially combining the apoptosis inducer poly (I:C) with DAMP inhibitors and γ-irradiation. While this combination proved effective in adherent cells, it failed to eliminate tumor spheres. Nevertheless, we discovered that proton radiotherapy, particularly when combined with aspirin (HMGB1 inhibitor) and poly (I:C), effectively eliminates CSCs. Conclusions: This novel combination holds promise for the development of new therapeutic strategies for head and neck cancers, particularly given the promising results of proton therapy in treating this disease. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

14 pages, 679 KiB  
Article
Real-World Experience with Pasireotide-LAR in Cushing’s Disease: Single-Center 12-Month Observational Study
by Lukasz Dzialach, Wioleta Respondek and Przemyslaw Witek
J. Clin. Med. 2025, 14(8), 2794; https://doi.org/10.3390/jcm14082794 - 18 Apr 2025
Cited by 1 | Viewed by 749
Abstract
Background/Objectives: Pasireotide-LAR represents a novel therapeutic option for patients with Cushing’s disease (CD). Its efficacy and safety were assessed in clinical trials; however, the real-world evidence is still scarce. Methods: The study aimed to evaluate the impact of 12-month pasireotide-LAR therapy [...] Read more.
Background/Objectives: Pasireotide-LAR represents a novel therapeutic option for patients with Cushing’s disease (CD). Its efficacy and safety were assessed in clinical trials; however, the real-world evidence is still scarce. Methods: The study aimed to evaluate the impact of 12-month pasireotide-LAR therapy on disease control, glucose metabolism, lipid profiles, and adverse effects in a real-life setting. We retrospectively studied prospectively collected data of patients with persistent or recurrent CD administered with pasireotide-LAR in a single pituitary center. Results: Mean urinary free cortisol (mUFC) showed a sustained decrease from baseline, with the most pronounced decrease in the first 3 months of therapy (p = 0.007). The analysis of mean late-night salivary cortisol showed fluctuations over time, with the largest mean reduction in mLNSC at 3 months. During the therapy, an improvement in blood pressure control was observed, with a significant decrease in systolic blood pressure during the first 6 months of treatment (p = 0.005). Hyperglycemia was the most common adverse effect. Fasting plasma glucose and glycated hemoglobin (HbA1c) showed a gradual increase during pasireotide-LAR treatment, with the HbA1c significantly increasing at the last follow-up (p = 0.04). Conclusions: Pasireotide-LAR is an effective alternative treatment in selected patients with CD. Pasireotide-LAR is overall safe and well tolerated, with hyperglycemia being the most common but manageable adverse event. Full article
Show Figures

Figure 1

16 pages, 7247 KiB  
Article
A Comparison of the Structural Changes and IgG Immunobinding Activity of Parvalbumin in Salangid Icefish (Neosalanx taihuensis) After Glycation and Ultra-High Pressure Treatment
by Ying Huang, Yang Hu, Jiawei Liu and Haiying Liu
Foods 2025, 14(5), 856; https://doi.org/10.3390/foods14050856 - 2 Mar 2025
Viewed by 954
Abstract
The aim of this study was to compare the effects of glycation and ultra-high pressure (UHP) treatment on the structure and IgG immunobinding activity of Salangidae icefish PV. The Circular Dichroism (CD) and Fluorescence Spectroscopy (FS) findings indicated that the glycation significantly affected [...] Read more.
The aim of this study was to compare the effects of glycation and ultra-high pressure (UHP) treatment on the structure and IgG immunobinding activity of Salangidae icefish PV. The Circular Dichroism (CD) and Fluorescence Spectroscopy (FS) findings indicated that the glycation significantly affected both the secondary and tertiary structures of PV. However, the impact of UHP processing on the structure of PV was found to be less significant compared to the glycation. Western Blot analysis also revealed that the glycation markedly reduced the antigen specificity of PV. Conversely, UHP treatments at 300 MPa and 400 MPa slightly decreased the antigen specificity, whereas lower or excessively high pressures did not have a substantial impact. This research contributes valuable insights into strategies for reducing the allergenic potential of Salangid icefish. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

30 pages, 6408 KiB  
Article
Metabolomic Insights into Smoking-Induced Metabolic Dysfunctions: A Comprehensive Analysis of Lipid and Amino Acid Metabolomes
by Muhammad Amtiaz Aslam, Hajra Iqbal, Kainat Ilyas, Kanwal Rehman, Amjad Hussain, Muhammad Sajid Hamid Akash, Mudassar Shahid and Shuqing Chen
Metabolites 2025, 15(2), 96; https://doi.org/10.3390/metabo15020096 - 4 Feb 2025
Cited by 1 | Viewed by 1367
Abstract
Background: Cigarette smoking is a leading cause of preventable mortality, largely due to the absence of effective, non-invasive biomarkers for early disease detection. Profiling serum metabolomics to identify metabolic changes holds the potential to accelerate the detection process and identify individuals at risk [...] Read more.
Background: Cigarette smoking is a leading cause of preventable mortality, largely due to the absence of effective, non-invasive biomarkers for early disease detection. Profiling serum metabolomics to identify metabolic changes holds the potential to accelerate the detection process and identify individuals at risk of developing smoking-related diseases. Objectives: This study investigated the biochemical and metabolomic changes induced by nicotine exposure, with a focus on disruptions in amino acid, lipid, and carbohydrate metabolism. Methods: Liquid chromatography–tandem mass spectrometry (LC-MS/MS) was employed to observe significant disruptions in lipid and amino acid metabolism, along with alterations in key metabolic pathways. A total of 400 smokers and 100 non-smokers were included to evaluate the biomarkers related to insulin resistance, blood lipid profile, inflammation, and kidney and liver function. Results: The results demonstrated significantly elevated (p < 0.05) levels of glycemic markers in smokers, including fasting blood glucose; glycated hemoglobin (HbA1c); and inflammatory markers such as interleukin-6 (IL-6) and C-reactive protein (CRP). Smokers also exhibited dyslipidemia, with increased total cholesterol (154.888 ± 35.565) and LDL levels (117.545 ± 24.138). Impaired liver and kidney function was evident, with significantly higher levels (p < 0.05) of AST, ALP, ALT, blood urea nitrogen, and creatinine in smokers. A total of 930 metabolites were identified, of which 343 exhibited significant alterations (p < 0.05) in smokers compared to non-smokers. Among these, 116 metabolites were upregulated, and 127 were downregulated. Metabolomic pathway analysis revealed eight significant pathways. The study also identified three lipid metabolites specific to smokers and seven unique to non-smokers. Through LC-MS/MS, fragments of phenylalanine, tryptophan, valine, histidine, carnitine, and sphinganine were detected. Several lipidomic changes associated with insulin resistance and cardiovascular complications were observed. Cadmium (Cd) levels were higher in smokers than non-smokers (1.264 ppb vs. 0.624 ppb) and showed a strong negative correlation (R2 = 0.8061, p-value = 0.015) with serum zinc (Zn), likely due to Cd displacing Zn in proteins and causing nephrotoxicity through accumulation. Conclusions: This study highlights the distinct metabolic disruptions caused by smoking that could serve as potential biomarkers for the early detection of metabolic diseases. It emphasizes the importance of metabolomics in identifying systemic indicators of smoking-related health issues, providing new opportunities for preventive and therapeutic interventions. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

16 pages, 2789 KiB  
Article
The RAGE Inhibitor TTP488 (Azeliragon) Demonstrates Anti-Tumor Activity and Enhances the Efficacy of Radiation Therapy in Pancreatic Cancer Cell Lines
by Kumari Alka, Jacob F. Oyeniyi, Ghulam Mohammad, Yi Zhao, Stephen Marcus and Prakash Chinnaiyan
Cancers 2025, 17(1), 17; https://doi.org/10.3390/cancers17010017 - 24 Dec 2024
Cited by 1 | Viewed by 1477
Abstract
Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, [...] Read more.
Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer. Human (Panc1) and murine (Pan02) pancreatic cancer cell lines exhibited elevated levels of RAGE and its ligands compared to normal pancreatic tissue. In vitro, Azeliragon inhibited RAGE-mediated NF-κB activation and ligand-mediated cell proliferation in pancreatic cancer cell lines. Target engagement of Azeliragon was confirmed in vivo, as determined by decreased NF-κB activation. Azeliragon demonstrated significant growth delay in mouse models of pancreatic cancer and additive effects when combined with RT. Additionally, Azeliragon modulated the immune suppressive tumor microenvironment in pancreatic cancer by reducing immunosuppressive cells, including M2 macrophages, regulatory T cells, and myeloid-derived suppressor cells, while enhancing CD8+ T cell infiltration. These findings suggest that Azeliragon, by inhibiting RAGE-mediated signaling and modulating immune response, may serve as an effective anti-cancer agent in pancreatic cancer. Full article
(This article belongs to the Special Issue Management of Pancreatic Cancer)
Show Figures

Figure 1

20 pages, 18147 KiB  
Article
CD38 Inhibitor 78c Attenuates Pro-Inflammatory Cytokine Expression and Osteoclastogenesis in Macrophages
by William Lory, Nityananda Chowdhury, Bridgette Wellslager, Subramanya Pandruvada, Yan Huang, Özlem Yilmaz and Hong Yu
Cells 2024, 13(23), 1971; https://doi.org/10.3390/cells13231971 - 28 Nov 2024
Cited by 2 | Viewed by 1815
Abstract
CD38, a nicotinamide adenine dinucleotide (NAD+) glycohydrolase, increases during infection or inflammation. Therefore, we aimed to evaluate the effects of a CD38 inhibitor (78c) on NAD+ levels, IL-1β, IL-6, TNF-α cytokine expressions, and osteoclastogenesis. The results show that treatment with [...] Read more.
CD38, a nicotinamide adenine dinucleotide (NAD+) glycohydrolase, increases during infection or inflammation. Therefore, we aimed to evaluate the effects of a CD38 inhibitor (78c) on NAD+ levels, IL-1β, IL-6, TNF-α cytokine expressions, and osteoclastogenesis. The results show that treatment with 78c on murine BMMs dose-dependently reduced CD38, reversed the decline of NAD+, and inhibited IL-1β, IL-6, and TNF-α pro-inflammatory cytokine levels induced by oral pathogen Porphyromonas gingivalis (Pg) or Aggregatibacter actinomycetemcomitans (Aa) or by advanced glycation end products (AGEs). Additionally, treatment with 78c dose-dependently suppressed osteoclastogenesis and bone resorption induced by RANKL. Treatment with 78c suppressed CD38, nuclear factor kappa-B (NF-κB), phosphoinositide 3-kinase (PI3K), and mitogen-activated protein kinases (MAPKs) induced by Pg, Aa, or AGEs, and suppressed podosome components (PI3K, Pyk2, Src, F-actin, integrins, paxillin, and talin) induced by RANKL. These results from our studies support the finding that the inhibition of CD38 by 78c is a promising therapeutic strategy to treat inflammatory bone loss diseases. However, treatment with a CD38 shRNA only significantly reduced IL-1β, IL-6, and TNF-α pro-inflammatory cytokine levels induced by AGEs. Compared with controls, it had limited effects on cytokine levels induced by Pg or Aa. Treatment with the CD38 shRNA enhanced RANKL-induced osteoclastogenesis, suggesting that 78c has some off-target effects. Full article
Show Figures

Figure 1

20 pages, 14922 KiB  
Article
Morphological and Redox/Glycative Alterations in the PCOS Oviducts: Modulating Effects of Carnitines in PCOS Mice
by Mariacarla De Rubeis, Ilaria Antenisca Mascitti, Domenica Cocciolone, Martina Placidi, Teresa Vergara, Giovanna Di Emidio, Guido Macchiarelli, Carla Tatone, Stefania Annarita Nottola and Maria Grazia Palmerini
Biology 2024, 13(12), 964; https://doi.org/10.3390/biology13120964 - 23 Nov 2024
Cited by 2 | Viewed by 1361
Abstract
Polycystic ovarian syndrome (PCOS) is a heterogeneous condition characterized by hyperandrogenism (HA), polycystic ovaries, and dysfunctional ovulation, and it is associated with metabolic problems such as insulin resistance (IR) and obesity. After having investigated the morphological and antioxidant/antiglycative alterations on mouse ovaries and [...] Read more.
Polycystic ovarian syndrome (PCOS) is a heterogeneous condition characterized by hyperandrogenism (HA), polycystic ovaries, and dysfunctional ovulation, and it is associated with metabolic problems such as insulin resistance (IR) and obesity. After having investigated the morphological and antioxidant/antiglycative alterations on mouse ovaries and uteri, we here focus on PCOS oviducts, a tract of the reproductive system essential for the nourishment and transport of gametes and embryos. The modulating effects of L-carnitine (LC) and acetyl-L-carnitine (ALC) were also assessed. CD1 mice were administered or not with dehydroepiandrosterone (DHEA, 6 mg/100 g body weight) for 20 days, alone or with 0.40 mg of L-carnitine (LC) and 0.20 mg of acetyl-L-carnitine (ALC). Oviducts were then subjected to histology and immunohistochemistry to evaluate their morphology and collagen deposition, and steroidogenesis. Oxidative, mitochondrial, and methylglyoxal (MG)-dependent damage was also investigated. Transmission electron microscopy was used to detect ultrastructural alterations. The PCOS oviducts were affected by hyperfibrosis, hyperplasia, hypertrophy, and altered steroidogenesis, with oxidative alterations associated with MethylGlyoxal-Advanced Glycation End product (MG-AGE) accumulation. A reduced ciliary coverage and numerous dilated intercellular spaces were found in the epithelium. LC-ALC administration mitigated PCOS oviductal alterations. These results provide evidence for the detrimental action of oxidative and glycative stress in PCOS oviducts, confirming a protective role of carnitines on the PCOS phenotype. Full article
Show Figures

Figure 1

19 pages, 4864 KiB  
Article
Müller Glia Co-Regulate Barrier Permeability with Endothelial Cells in an Vitro Model of Hyperglycemia
by Juan S. Peña, François Berthiaume and Maribel Vazquez
Int. J. Mol. Sci. 2024, 25(22), 12271; https://doi.org/10.3390/ijms252212271 - 15 Nov 2024
Cited by 4 | Viewed by 3436
Abstract
Diabetic retinopathy is a complex, microvascular disease that impacts millions of working adults each year. High blood glucose levels from Diabetes Mellitus lead to the accumulation of advanced glycation end-products (AGEs), which promote inflammation and the breakdown of the inner blood retinal barrier [...] Read more.
Diabetic retinopathy is a complex, microvascular disease that impacts millions of working adults each year. High blood glucose levels from Diabetes Mellitus lead to the accumulation of advanced glycation end-products (AGEs), which promote inflammation and the breakdown of the inner blood retinal barrier (iBRB), resulting in vision loss. This study used an in vitro model of hyperglycemia to examine how endothelial cells (ECs) and Müller glia (MG) collectively regulate molecular transport. Changes in cell morphology, the expression of junctional proteins, and the reactive oxygen species (ROS) of ECs and MG were examined when exposed to a hyperglycemic medium containing AGEs. Trans-endothelial resistance (TEER) assays were used to measure the changes in cell barrier resistance in response to hyperglycemic and inflammatory conditions, with and without an anti-VEGF compound. Both of the cell types responded to hyperglycemic conditions with significant changes in the cell area and morphology, the ROS, and the expression of the junctional proteins ZO-1, CX-43, and CD40, as well as the receptor for AGEs. The resistivities of the individual and dual ECs and MG barriers decreased within the hyperglycemia model but were restored to that of basal, normoglycemic levels when treated with anti-VEGF. This study illustrated significant phenotypic responses to an in vitro model of hyperglycemia, as well as significant changes in the expression of the key proteins used for cell–cell communication. The results highlight important, synergistic relationships between the ECs and MG and how they contribute to changes in barrier function in combination with conventional treatments. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

28 pages, 6425 KiB  
Article
Pharmacological Activities of Zingiber officinale Roscoe: Inhibition of HSA Protein Glycation, Structure Stability and Function Restoration
by Mohd Wajid Ali Khan, Subuhi Sherwani, Muna H. E. Alshammari, Abdulmohsen K. D. Alsukaibi, Wahid Ali Khan, Ashanul Haque, Khalaf M. Alenezi and Uzma Shahab
Pharmaceuticals 2024, 17(11), 1469; https://doi.org/10.3390/ph17111469 - 1 Nov 2024
Cited by 1 | Viewed by 1689
Abstract
Background: Controlled non-enzymatic glycation reactions are common under normal physiological conditions. However, during elevated blood glucose conditions, the glycation reactions are accelerated, leading to the formation of toxic compounds such as advanced glycation end products (AGEs). Several natural products are now being investigated [...] Read more.
Background: Controlled non-enzymatic glycation reactions are common under normal physiological conditions. However, during elevated blood glucose conditions, the glycation reactions are accelerated, leading to the formation of toxic compounds such as advanced glycation end products (AGEs). Several natural products are now being investigated as protective agents against glycation to preserve blood protein structure and functions. Methods: Human serum albumin (HSA) was glycated with 0.05 M α-D-glucose alone or in the presence of Zingiber officinale Roscoe (ginger) extract (0.781–100 μg/mL) for 10 weeks, and biochemical, biophysical, and computational analyses were carried out. Results: HSA glycated for 10 weeks (G-HSA-10W) resulted in significant production of ketoamines, carbonyl compounds, and AGE pentosidine. Notable structural alterations were observed in G-HSA-10W, ascertained by ultraviolet (UV), fluorescence, and circular dichroism (CD) studies. Antioxidant, anti-glycating, AGEs inhibitory, and antibacterial effects of ginger extracts were observed and attributed to the presence of various phytochemicals. Molecular docking studies suggested that the compounds 8-shagaol and gingerol exhibited strong and multiple interactions with HSA. Molecular simulation analysis suggests HSA attains a high degree of conformational stability with the compounds gingerol and 8-shogaol. Conclusions: These findings showed that ginger extract has an antioxidant function and can prevent glycation-induced biochemical and biophysical alterations in HSA. Thus, aqueous ginger extract can be utilized to combat glycation and AGE-related health issues, especially diabetes, neurological disorders, inflammatory diseases, etc. Full article
Show Figures

Figure 1

13 pages, 2682 KiB  
Article
Glucose-Dependent Insulinotropic Polypeptide Inhibits AGE-Induced NADPH Oxidase-Derived Oxidative Stress Generation and Foam Cell Formation in Macrophages Partly via AMPK Activation
by Michishige Terasaki, Hironori Yashima, Yusaku Mori, Tomomi Saito, Naoto Inoue, Takanori Matsui, Naoya Osaka, Tomoki Fujikawa, Makoto Ohara and Sho-ichi Yamagishi
Int. J. Mol. Sci. 2024, 25(17), 9724; https://doi.org/10.3390/ijms25179724 - 8 Sep 2024
Cited by 3 | Viewed by 1848
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) of the incretin group has been shown to exert pleiotropic actions. There is growing evidence that advanced glycation end products (AGEs), senescent macromolecules formed at an accelerated rate under chronic hyperglycemic conditions, play a role in the pathogenesis of [...] Read more.
Glucose-dependent insulinotropic polypeptide (GIP) of the incretin group has been shown to exert pleiotropic actions. There is growing evidence that advanced glycation end products (AGEs), senescent macromolecules formed at an accelerated rate under chronic hyperglycemic conditions, play a role in the pathogenesis of atherosclerotic cardiovascular disease in diabetes. However, whether and how GIP could inhibit the AGE-induced foam cell formation of macrophages, an initial step of atherosclerosis remains to be elucidated. In this study, we address these issues. We found that AGEs increased oxidized low-density-lipoprotein uptake into reactive oxygen species (ROS) generation and Cdk5 and CD36 gene expressions in human U937 macrophages, all of which were significantly blocked by [D-Ala2]GIP(1–42) or an inhibitor of NADPH oxidase activity. An inhibitor of AMP-activated protein kinase (AMPK) attenuated all of the beneficial effects of [D-Ala2]GIP(1–42) on AGE-exposed U937 macrophages, whereas an activator of AMPK mimicked the effects of [D-Ala2]GIP(1–42) on foam cell formation, ROS generation, and Cdk5 and CD36 gene expressions in macrophages. The present study suggests that [D-Ala2]GIP(1–42) could inhibit the AGE-RAGE-induced, NADPH oxidase-derived oxidative stress generation in U937 macrophages via AMPK activation and subsequently suppress macrophage foam cell formation by reducing the Cdk5-CD36 pathway. Full article
Show Figures

Figure 1

25 pages, 3939 KiB  
Article
In Vitro Spectroscopic Investigation of Losartan and Glipizide Competitive Binding to Glycated Albumin: A Comparative Study
by Agnieszka Szkudlarek
Int. J. Mol. Sci. 2024, 25(17), 9698; https://doi.org/10.3390/ijms25179698 - 7 Sep 2024
Cited by 1 | Viewed by 1284
Abstract
Understanding the interaction between pharmaceuticals and serum proteins is crucial for optimizing therapeutic strategies, especially in patients with coexisting chronic diseases. The primary goal of this study was to assess the potential changes in binding affinity and competition between glipizide (GLP, a second-generation [...] Read more.
Understanding the interaction between pharmaceuticals and serum proteins is crucial for optimizing therapeutic strategies, especially in patients with coexisting chronic diseases. The primary goal of this study was to assess the potential changes in binding affinity and competition between glipizide (GLP, a second-generation sulfonylurea hypoglycemic drug) and losartan (LOS, a medication commonly prescribed for hypertension, particularly for patients with concurrent diabetes) with non-glycated (HSA) and glycated (gHSAGLC, gHSAFRC) human serum albumin using multiple spectroscopic techniques (fluorescence, UV-visible absorption, and circular dichroism spectroscopy). The results indicated that FRC is a more effective glycation agent for HSA than GLC, significantly altering the albumin structure and affecting the microenvironment around critical amino acid residues, Trp-214 and Tyr. These modifications reduce the binding affinity of LOS and GLP to gHSAGLC and gHSAFRC, compared to HSA, resulting in less stable drug–protein complexes. The study revealed that LOS and GLP interact nonspecifically with the hydrophobic regions of the albumin surface in both binary (ligand–albumin) and ternary systems (ligand–albumin–ligandconst) and specifically saturate the binding sites within the protein molecule. Furthermore, the presence of an additional drug (GLP in the LOS–albumin complex or LOS in the GLP–albumin complex) complicates the interactions, likely leading to competitive binding or displacement of the initially bound drug in both non-glycated and glycated albumins. Analysis of the CD spectra suggests mutual interactions between GLP and LOS, underscoring the importance of closely monitoring patients co-administered these drugs, to ensure optimal therapeutic efficacy and safety. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 8775 KiB  
Article
Human Periodontal Ligament Stem Cells (hPDLSCs) Spontaneously Differentiate into Myofibroblasts to Repair Diabetic Wounds
by Yuxiao Li, Qi Su, Zhaoyu Tao, Xiang Cai, Yueping Zhao, Zhiying Zhou, Yadong Huang and Qi Xiang
Bioengineering 2024, 11(6), 602; https://doi.org/10.3390/bioengineering11060602 - 12 Jun 2024
Cited by 2 | Viewed by 2293
Abstract
Advanced glycation end product (AGE) accumulation due to diabetes causes vascular and neurological lesions, delaying healing. The use of stem cells could overcome these problems. Although many studies have shown the potential beneficial effects of stem cell therapies in the treatment of chronic [...] Read more.
Advanced glycation end product (AGE) accumulation due to diabetes causes vascular and neurological lesions, delaying healing. The use of stem cells could overcome these problems. Although many studies have shown the potential beneficial effects of stem cell therapies in the treatment of chronic and refractory skin ulcers, their delivery methods are still under investigation. Human periodontal ligament stem cells (hPDLSCs) can spontaneously differentiate into myofibroblasts in specific cultures; therefore, they have the potential to effectively treat diabetic wounds and may also have applications in the field of medical cosmetics. The myofibroblastic differentiation ability of hPDLSCs in the presence of AGEs was evaluated by the expression of α-SMA and COL1A1 using RT-qPCR and WB technology. Wound healing in diabetic mice, induced by streptozotocin (STZ) and assessed using H&E staining, Masson staining, and immunohistochemical (IHC) and immunofluorescence (IF) staining, was used to validate the effects of hPDLSCs. In the wound tissues, the expression of α-SMA, COL1A1, CD31, CD206, iNOS, and vimentin was detected. The findings indicated that in H-DMEM, the expression of COL1A1 exhibited a significant decrease, while α-SMA demonstrated an increase in P7 cells, ignoring the damage from AGEs (p < 0.05). In an STZ-induced diabetic C57BL/6J mice whole-skin defect model, the healing rate of the hPDLSCs treatment group was significantly higher than that in the models (on the 7th day, the rate was 65.247% vs. 48.938%, p < 0.05). hPDLSCs have been shown to spontaneously differentiate into myofibroblasts in H-DMEM and resist damage from AGEs in both in vivo and in vitro models, suggesting their potential in the field of cosmetic dermatology. Full article
Show Figures

Graphical abstract

13 pages, 4831 KiB  
Article
Advanced Glycation End Products Upregulate CD40 in Human Retinal Endothelial and Müller Cells: Relevance to Diabetic Retinopathy
by Jose-Andres C. Portillo, Amelia Pfaff, Sarah Vos, Matthew Weng, Ram H. Nagaraj and Carlos S. Subauste
Cells 2024, 13(5), 429; https://doi.org/10.3390/cells13050429 - 29 Feb 2024
Cited by 15 | Viewed by 2226
Abstract
CD40 induces pro-inflammatory responses in endothelial and Müller cells and is required for the development of diabetic retinopathy (DR). CD40 is upregulated in these cells in patients with DR. CD40 upregulation is a central feature of CD40-driven inflammatory disorders. What drives CD40 upregulation [...] Read more.
CD40 induces pro-inflammatory responses in endothelial and Müller cells and is required for the development of diabetic retinopathy (DR). CD40 is upregulated in these cells in patients with DR. CD40 upregulation is a central feature of CD40-driven inflammatory disorders. What drives CD40 upregulation in the diabetic retina remains unknown. We examined the role of advanced glycation end products (AGEs) in CD40 upregulation in endothelial cells and Müller cells. Human endothelial cells and Müller cells were incubated with unmodified or methylglyoxal (MGO)-modified fibronectin. CD40 expression was assessed by flow cytometry. The expression of ICAM-1 and CCL2 was examined by flow cytometry or ELISA after stimulation with CD154 (CD40 ligand). The expression of carboxymethyl lysine (CML), fibronectin, and laminin as well as CD40 in endothelial and Müller cells from patients with DR was examined by confocal microscopy. Fibronectin modified by MGO upregulated CD40 in endothelial and Müller cells. CD40 upregulation was functionally relevant. MGO-modified fibronectin enhanced CD154-driven upregulation of ICAM-1 and CCL2 in endothelial and Müller cells. Increased CD40 expression in endothelial and Müller cells from patients with DR was associated with increased CML expression in fibronectin and laminin. These findings identify AGEs as inducers of CD40 upregulation in endothelial and Müller cells and enhancers of CD40-dependent pro-inflammatory responses. CD40 upregulation in these cells is associated with higher CML expression in fibronectin and laminin in patients with DR. This study revealed that CD40 and AGEs, two important drivers of DR, are interconnected. Full article
Show Figures

Graphical abstract

Back to TopTop