Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,664)

Search Parameters:
Keywords = global position system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 5777 KiB  
Article
ACNet: An Attention–Convolution Collaborative Semantic Segmentation Network on Sensor-Derived Datasets for Autonomous Driving
by Qiliang Zhang, Kaiwen Hua, Zi Zhang, Yiwei Zhao and Pengpeng Chen
Sensors 2025, 25(15), 4776; https://doi.org/10.3390/s25154776 (registering DOI) - 3 Aug 2025
Abstract
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in [...] Read more.
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in balancing global and local features leads to blurred object boundaries and misclassification; second, conventional convolutions have limited ability to perceive irregular objects, causing information loss and affecting segmentation accuracy. To address these issues, this paper proposes a global–local collaborative attention module and a spider web convolution module. The former enhances feature representation through bidirectional feature interaction and dynamic weight allocation, reducing false positives and missed detections. The latter introduces an asymmetric sampling topology and six-directional receptive field paths to effectively improve the recognition of irregular objects. Experiments on the Cityscapes, CamVid, and BDD100K datasets, collected using vehicle-mounted cameras, demonstrate that the proposed method performs excellently across multiple evaluation metrics, including mIoU, mRecall, mPrecision, and mAccuracy. Comparative experiments with classical segmentation networks, attention mechanisms, and convolution modules validate the effectiveness of the proposed approach. The proposed method demonstrates outstanding performance in sensor-based semantic segmentation tasks and is well-suited for environmental perception systems in autonomous driving. Full article
(This article belongs to the Special Issue AI-Driving for Autonomous Vehicles)
Show Figures

Figure 1

24 pages, 1593 KiB  
Article
Robust Adaptive Multiple Backtracking VBKF for In-Motion Alignment of Low-Cost SINS/GNSS
by Weiwei Lyu, Yingli Wang, Shuanggen Jin, Haocai Huang, Xiaojuan Tian and Jinling Wang
Remote Sens. 2025, 17(15), 2680; https://doi.org/10.3390/rs17152680 (registering DOI) - 2 Aug 2025
Abstract
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To [...] Read more.
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To address the issue that low-cost SINS/GNSS cannot effectively achieve rapid and high-accuracy alignment in complex environments that contain noise and external interference, an adaptive multiple backtracking robust alignment method is proposed. The sliding window that constructs observation and reference vectors is established, which effectively avoids the accumulation of sensor errors during the full integration process. A new observation vector based on the magnitude matching is then constructed to effectively reduce the effect of outliers on the alignment process. An adaptive multiple backtracking method is designed in which the window size can be dynamically adjusted based on the innovation gradient; thus, the alignment time can be significantly shortened. Furthermore, the modified variational Bayesian Kalman filter (VBKF) that accurately adjusts the measurement noise covariance matrix is proposed, and the Expectation–Maximization (EM) algorithm is employed to refine the prior parameter of the predicted error covariance matrix. Simulation and experimental results demonstrate that the proposed method significantly reduces alignment time and improves alignment accuracy. Taking heading error as the critical evaluation indicator, the proposed method achieves rapid alignment within 120 s and maintains a stable error below 1.2° after 80 s, yielding an improvement of over 63% compared to the backtracking-based Kalman filter (BKF) method and over 57% compared to the fuzzy adaptive KF (FAKF) method. Full article
(This article belongs to the Section Urban Remote Sensing)
26 pages, 1567 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 (registering DOI) - 1 Aug 2025
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
27 pages, 5743 KiB  
Article
In-Field Load Acquisitions on a Variable Chamber Round Baler Using Instrumented Hub Carriers and a Dynamometric Towing Pin
by Filippo Coppola, Andrea Ruffin and Giovanni Meneghetti
Appl. Sci. 2025, 15(15), 8579; https://doi.org/10.3390/app15158579 (registering DOI) - 1 Aug 2025
Abstract
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately [...] Read more.
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately calibrated strain gauge bridges. Similarly, the baler was equipped with a dynamometric towing pin, instrumented with strain gauge sensors and calibrated in the laboratory, which replaced the original pin connecting the baler and the tractor during the in-field load acquisitions. In both cases, the calibration tests returned the relationship between applied forces and output signals of the strain gauge bridges. Multiple in-field load acquisitions were carried out under typical maneuvers and operating conditions. The synchronous acquisition of a video via an onboard camera and Global Positioning System (GPS) signal allowed to observe the behaviour of the baler in correspondence of particular trends of the vertical and horizontal loads and to point out the most demanding maneuver in view of the fatigue resistance of the baler. Finally, through the application of a rainflow cycle counting algorithm according to ASTM E1049-85, the load spectrum for each maneuver was derived. Full article
(This article belongs to the Section Mechanical Engineering)
34 pages, 1441 KiB  
Article
Empowering the Intelligent Transformation of the Manufacturing Sector Through New Quality Productive Forces: Value Implications, Theoretical Analysis, and Empirical Examination
by Yinyan Hu and Xinran Jia
Sustainability 2025, 17(15), 7006; https://doi.org/10.3390/su17157006 (registering DOI) - 1 Aug 2025
Viewed by 41
Abstract
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality [...] Read more.
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality development. Concurrently, the intelligent transformation of the manufacturing sector serves as a critical direction for China’s economic restructuring and upgrading. This paper places “new quality productive forces” and “intelligent transformation of manufacturing” within the same analytical framework. Starting from the logical chain of “new quality productive forces—three major mechanisms—intelligent transformation of manufacturing,” it concretizes the value implications of new quality productive forces into a systematic conceptual framework driven by the synergistic interaction of three major mechanisms: the mechanism of revolutionary technological breakthroughs, the mechanism of innovative allocation of production factors, and the mechanism of deep industrial transformation and upgrading. This study constructs a “3322” evaluation index system for NQPFs, based on three formative processes, three driving forces, two supporting systems, and two-dimensional characteristics. Simultaneously, it builds an evaluation index system for the intelligent transformation of manufacturing, encompassing intelligent technology, intelligent applications, and intelligent benefits. Using national time-series data from 2012 to 2023, this study assesses the development levels of both NQPFs and the intelligent transformation of manufacturing during this period. The study further analyzes the impact of NQPFs on the intelligent transformation of the manufacturing sector. The research results indicate the following: (1) NQPFs drive the intelligent transformation of the manufacturing industry through the three mechanisms of innovative allocation of production factors, revolutionary breakthroughs in technology, and deep transformation and upgrading of industries. (2) The development of NQPFs exhibits a slow upward trend; however, the outbreak of the pandemic and Sino-US trade frictions have caused significant disruptions to the development of new-type productive forces. (3) The level of intelligent manufacturing continues to improve; however, from 2020 to 2023, due to the impact of the COVID-19 pandemic and Sino-US trade conflicts, the level of intelligent benefits has slightly declined. (4) NQPFs exert a powerful driving force on the intelligent transformation of manufacturing, exerting a significant positive impact on intelligent technology, intelligent applications, and intelligent efficiency levels. Full article
18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 (registering DOI) - 1 Aug 2025
Viewed by 42
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

24 pages, 2751 KiB  
Article
Double Wishbone Suspension: A Computational Framework for Parametric 3D Kinematic Modeling and Simulation Using Mathematica
by Muhammad Waqas Arshad, Stefano Lodi and David Q. Liu
Technologies 2025, 13(8), 332; https://doi.org/10.3390/technologies13080332 (registering DOI) - 1 Aug 2025
Viewed by 99
Abstract
The double wishbone suspension (DWS) system is widely used in automotive engineering because of its favorable kinematic properties, which affect vehicle dynamics, handling, and ride comfort; hence, it is important to have an accurate 3D model, simulation, and analysis of the system in [...] Read more.
The double wishbone suspension (DWS) system is widely used in automotive engineering because of its favorable kinematic properties, which affect vehicle dynamics, handling, and ride comfort; hence, it is important to have an accurate 3D model, simulation, and analysis of the system in order to optimize its design. This requires efficient computational tools for parametric study. The development of effective computational tools that support parametric exploration stands as an essential requirement. Our research demonstrates a complete Wolfram Mathematica system that creates parametric 3D kinematic models and conducts simulations, performs analyses, and generates interactive visualizations of DWS systems. The system uses homogeneous transformation matrices to establish the spatial relationships between components relative to a global coordinate system. The symbolic geometric parameters allow designers to perform flexible design exploration and the kinematic constraints create an algebraic equation system. The numerical solution function NSolve computes linkage positions from input data, which enables fast evaluation of different design parameters. The integrated 3D visualization module based on Mathematica’s manipulate function enables users to see immediate results of geometric configurations and parameter effects while calculating exact 3D coordinates. The resulting robust, systematic, and flexible computational environment integrates parametric 3D design, kinematic simulation, analysis, and dynamic visualization for DWS, serving as a valuable and efficient tool for engineers during the design, development, assessment, and optimization phases of these complex automotive systems. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

23 pages, 1178 KiB  
Article
A Qualitative Analysis and Discussion of a New Model for Optimizing Obesity and Associated Comorbidities
by Mohamed I. Youssef, Robert M. Maina, Duncan K. Gathungu and Amr Radwan
Symmetry 2025, 17(8), 1216; https://doi.org/10.3390/sym17081216 - 1 Aug 2025
Viewed by 152
Abstract
This paper addresses the problem of optimizing obesity, which has been a challenging issue in the last decade based on recent data revealed in 2024 by the World Health Organization (WHO). The current work introduces a new mathematical model of the dynamics of [...] Read more.
This paper addresses the problem of optimizing obesity, which has been a challenging issue in the last decade based on recent data revealed in 2024 by the World Health Organization (WHO). The current work introduces a new mathematical model of the dynamics of weight over time with embedded control parameters to optimize the number of obese, overweight, and comorbidity populations. The mathematical formulation of the model is developed under certain sufficient conditions that guarantee the positivity and boundedness of solutions over time. The model structure exhibits inherent symmetry in population group transitions, particularly around the equilibrium state, which allows the application of analytical tools such as the Routh–Hurwitz and Metzler criteria. Then, the analysis of local and global stability of the obesity-free equilibrium state is discussed based on these criteria. Based on the Pontryagin maximum principle (PMP), the deviation from the obesity-free equilibrium state is controlled. The model’s effectiveness is demonstrated through simulation using the Forward–Backward Sweeping algorithm with parameters derived from recent research in human health. Incorporating symmetry considerations in the model enhances the understanding of system behavior and supports balanced intervention strategies. Results suggest that the model can effectively inform strategies to mitigate obesity prevalence and associated health risks. Full article
(This article belongs to the Special Issue Mathematical Modeling of the Infectious Diseases and Their Controls)
Show Figures

Figure 1

13 pages, 1189 KiB  
Article
Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period
by Irena Bertoncelj, Anže Rovanšek and Robert Leskovšek
Agriculture 2025, 15(15), 1658; https://doi.org/10.3390/agriculture15151658 - 1 Aug 2025
Viewed by 128
Abstract
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when [...] Read more.
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when applied consistently over extended periods. However, understanding of the earthworm population dynamics in the period following the implementation of changes in tillage practices remains limited. This three-year field study (2021–2023) investigates earthworm populations during the early transition phase (4–6 years) following the conversion from conventional ploughing to conservation (<8 cm depth, with residue retention) and no-tillage systems in a temperate arable system in central Slovenia. Earthworms were sampled annually in early October from three adjacent fields, each following the same three-year crop rotation (maize—winter cereal + cover crop—soybeans), using a combination of hand-sorting and allyl isothiocyanate (AITC) extraction. Results showed that reduced tillage practices significantly increased both earthworm biomass and abundance compared to conventional ploughing. However, a significant interaction between tillage and year was observed, with a sharp decline in earthworm abundance and mass in 2022, likely driven by a combination of 2022 summer tillage prior to cover crop sowing and extreme drought conditions. Juvenile earthworms were especially affected, with their proportion decreasing from 62% to 34% in ploughed plots and from 63% to 26% in conservation tillage plots. Despite interannual fluctuations, no-till showed the lowest variability in earthworm population. Long-term monitoring is essential to disentangle management and environmental effects and to inform resilient soil management strategies. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

27 pages, 4190 KiB  
Article
Dairy’s Development and Socio-Economic Transformation: A Cross-Country Analysis
by Ana Felis, Ugo Pica-Ciamarra and Ernesto Reyes
World 2025, 6(3), 105; https://doi.org/10.3390/world6030105 - 1 Aug 2025
Viewed by 64
Abstract
Global policy narratives on livestock development increasingly emphasize environmental concerns, often overlooking the social dimensions of the sector. In the case of dairy, the world’s most valuable agricultural commodity, its role in social and economic development remains poorly quantified. Our study contributes to [...] Read more.
Global policy narratives on livestock development increasingly emphasize environmental concerns, often overlooking the social dimensions of the sector. In the case of dairy, the world’s most valuable agricultural commodity, its role in social and economic development remains poorly quantified. Our study contributes to a more balanced vision of the UN SDGs thanks to the inclusion of a socio-economic dimension. Here we present a novel empirical approach to assess the socio-economic impacts of dairy development using a new global dataset and non-parametric modelling techniques (local polynomial regressions), with yield as a proxy for sectoral performance. We find that as dairy systems intensify, the number of farm households engaged in production declines, yet household incomes rise. On-farm labour productivity also increases, accompanied by a reduction in employment but higher wages. In dairy processing, employment initially grows, peaks, and then contracts, again with rising wages. The most substantial impact is observed among consumers: an increased milk supply leads to lower prices and improved affordability, expanding the access to dairy products. Additionally, dairy development is associated with greater agricultural value added, an expanding tax base, and the increased formalization of the economy. These findings suggest that dairy development, beyond its environmental footprint, plays a significant and largely positive role in social transformation, yet is having to adapt sustainably while tackling labour force relocation, and that dairy development’s social impacts mimic the general agricultural sector. These results might be of interest for the assessment of policies regarding dairy development. Full article
Show Figures

Graphical abstract

24 pages, 5046 KiB  
Article
Cauchy Operator Boosted Artificial Rabbits Optimization for Solving Power System Problems
by Haval Tariq Sadeeq
Eng 2025, 6(8), 174; https://doi.org/10.3390/eng6080174 - 1 Aug 2025
Viewed by 161
Abstract
The majority of the challenges faced in power system engineering are presented as constrained optimization functions, which are frequently characterized by their complicated architectures. Metaheuristics are mathematical techniques used to solve complicated optimization problems. One such technique, Artificial Rabbits Optimization (ARO), has been [...] Read more.
The majority of the challenges faced in power system engineering are presented as constrained optimization functions, which are frequently characterized by their complicated architectures. Metaheuristics are mathematical techniques used to solve complicated optimization problems. One such technique, Artificial Rabbits Optimization (ARO), has been designed to address global optimization challenges. However, ARO has limitations in terms of search functionality, restricting its efficiency in dealing with constrained optimization environments. To improve ARO’s compatibility with a variety of challenging problems, this work proposes implementing the Cauchy mutation operator into the position-updating procedure during the exploration stage. Furthermore, a novel multi-mode control parameter is developed to facilitate a smooth transition between exploration and exploitation phases. The enhancements may boost the performance and serve as an effective optimization tool for tackling complex engineering tasks. The improved version is known as Cauchy Artificial Rabbits Optimization (CARO). The proposed CARO’s performance is evaluated using eleven power system challenges as part of the CEC2020 competition’s test set of real-world constrained problems. The experimental results demonstrate the practical applicability of the proposed CARO in engineering applications and provide areas for future investigation. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

25 pages, 7131 KiB  
Article
Spatiotemporal Patterns of Non-Communicable Disease Mortality in the Metropolitan Area of the Valley of Mexico, 2000–2019
by Constantino González-Salazar, Kathia Gasca-Gómez and Omar Cordero-Saldierna
Diseases 2025, 13(8), 241; https://doi.org/10.3390/diseases13080241 - 1 Aug 2025
Viewed by 140
Abstract
Background: Non-communicable diseases (NCDs) are a leading cause of mortality globally, contributing significantly to the burden on healthcare systems. Understanding the spatiotemporal patterns of NCD mortality is crucial for identifying vulnerable populations and regions at high risk. Objectives: Here, we evaluated the spatiotemporal [...] Read more.
Background: Non-communicable diseases (NCDs) are a leading cause of mortality globally, contributing significantly to the burden on healthcare systems. Understanding the spatiotemporal patterns of NCD mortality is crucial for identifying vulnerable populations and regions at high risk. Objectives: Here, we evaluated the spatiotemporal patterns of NCD mortality in the Metropolitan Area of the Valley of Mexico (MAVM) from 2000 to 2019 for five International Classification of Diseases chapters (4, 5, 6, 9, and 10) at two spatial scales: the municipal level and metropolitan region. Methods: Mortality rates were calculated for the total population and stratified by sex and age groups at both spatial scales. In addition, the relative risk (RR) of mortality was estimated to identify vulnerable population groups and regions with a high risk of mortality, using women and the 25–34 age group as reference categories for population-level analysis, and the overall MAVM mortality rate as the reference for municipal-level analysis. Results: Mortality trends showed that circulatory-system diseases (Chapter 9) are emerging as a concerning health issue, with 45 municipalities showing increasing mortality trends, especially among older adults. Respiratory-system diseases (Chapter 10), mental and behavioral disorders (Chapter 5) and nervous-system diseases (Chapter 6) predominantly did not exhibit a consistent general mortality trend. However, upon disaggregating by sex and age groups, specific negative or positive trends emerged at the municipal level for some of these chapters or subgroups. Endocrine, nutritional, and metabolic diseases (Chapter 4) showed a complex pattern, with some age groups presenting increasing mortality trends, and 52 municipalities showing increasing trends overall. The RR showed men and older age groups (≥35 years) exhibiting higher mortality risks. The temporal trend of RR allowed us to identify spatial mortality hotspots mainly in chapters related to circulatory, endocrine, and respiratory diseases, forming four geographical clusters in Mexico City that show persistent high risk of mortality. Conclusions: The spatiotemporal analysis highlights municipalities and vulnerable populations with a consistently elevated mortality risk. These findings emphasize the need for monitoring NCD mortality patterns at both the municipal and metropolitan levels to address disparities and guide the implementation of health policies aimed at reducing mortality risk in vulnerable populations. Full article
Show Figures

Figure 1

23 pages, 849 KiB  
Article
Assessment of the Impact of Solar Power Integration and AI Technologies on Sustainable Local Development: A Case Study from Serbia
by Aco Benović, Miroslav Miškić, Vladan Pantović, Slađana Vujičić, Dejan Vidojević, Mladen Opačić and Filip Jovanović
Sustainability 2025, 17(15), 6977; https://doi.org/10.3390/su17156977 (registering DOI) - 31 Jul 2025
Viewed by 91
Abstract
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, [...] Read more.
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, reduce emissions, and support community-level sustainability goals. Using a mixed-method approach combining spatial analysis, predictive modeling, and stakeholder interviews, this research study evaluates the performance and institutional readiness of local governments in terms of implementing intelligent solar infrastructure. Key AI applications included solar potential mapping, demand-side management, and predictive maintenance of photovoltaic (PV) systems. Quantitative results show an improvement >60% in forecasting accuracy, a 64% reduction in system downtime, and a 9.7% increase in energy cost savings. These technical gains were accompanied by positive trends in SDG-aligned indicators, such as improved electricity access and local job creation in the green economy. Despite challenges related to data infrastructure, regulatory gaps, and limited AI literacy, this study finds that institutional coordination and leadership commitment are decisive for successful implementation. The proposed AI–Solar Integration for Local Sustainability (AISILS) framework offers a replicable model for emerging economies. Policy recommendations include investing in foundational digital infrastructure, promoting low-code AI platforms, and aligning AI–solar projects with SDG targets to attract EU and national funding. This study contributes new empirical evidence on the digital–renewable energy nexus in Southeast Europe and underscores the strategic role of AI in accelerating inclusive, data-driven energy transitions at the municipal level. Full article
19 pages, 12094 KiB  
Article
Intelligent Active Suspension Control Method Based on Hierarchical Multi-Sensor Perception Fusion
by Chen Huang, Yang Liu, Xiaoqiang Sun and Yiqi Wang
Sensors 2025, 25(15), 4723; https://doi.org/10.3390/s25154723 (registering DOI) - 31 Jul 2025
Viewed by 155
Abstract
Sensor fusion in intelligent suspension systems constitutes a fundamental technology for optimizing vehicle dynamic stability, ride comfort, and occupant safety. By integrating data from multiple sensor modalities, this study proposes a hierarchical multi-sensor fusion framework for active suspension control, aiming to enhance control [...] Read more.
Sensor fusion in intelligent suspension systems constitutes a fundamental technology for optimizing vehicle dynamic stability, ride comfort, and occupant safety. By integrating data from multiple sensor modalities, this study proposes a hierarchical multi-sensor fusion framework for active suspension control, aiming to enhance control precision. Initially, a binocular vision system is employed for target detection, enabling the identification of lane curvature initiation points and speed bumps, with real-time distance measurements. Subsequently, the integration of Global Positioning System (GPS) and inertial measurement unit (IMU) data facilitates the extraction of road elevation profiles ahead of the vehicle. A BP-PID control strategy is implemented to formulate mode-switching rules for the active suspension under three distinct road conditions: flat road, curved road, and obstacle road. Additionally, an ant colony optimization algorithm is utilized to fine-tune four suspension parameters. Utilizing the hardware-in-the-loop (HIL) simulation platform, the observed reductions in vertical, pitch, and roll accelerations were 5.37%, 9.63%, and 11.58%, respectively, thereby substantiating the efficacy and robustness of this approach. Full article
Show Figures

Figure 1

37 pages, 406 KiB  
Review
Self-Medication as a Global Health Concern: Overview of Practices and Associated Factors—A Narrative Review
by Vedrana Aljinović-Vučić
Healthcare 2025, 13(15), 1872; https://doi.org/10.3390/healthcare13151872 - 31 Jul 2025
Viewed by 192
Abstract
Self-medication is a subject of global importance. If practiced responsibly, self-medication represents a part of self-care or positive care of an individual or a community in promoting their own health. However, today’s practices of self-medication are often inappropriate and irresponsible, and as such [...] Read more.
Self-medication is a subject of global importance. If practiced responsibly, self-medication represents a part of self-care or positive care of an individual or a community in promoting their own health. However, today’s practices of self-medication are often inappropriate and irresponsible, and as such appear all over the world. Inappropriate self-medication can be connected with possible serious health risks and consequences. Therefore, it represents a global health issue. It can even generate additional health problems, which will eventually become a burden to healthcare systems and can induce significant costs, which also raises socioeconomic concerns. Hence, self-medication attracts the attention of researchers and practitioners globally in efforts to clarify the current status and define feasible measures that should be implemented to address this issue. This narrative review aims to give an overview of the situation in the field of self-medication globally, including current practices and attitudes, as well as implications for actions needed to improve this problem. A PubMed/MEDLINE search was conducted for articles published in the period from 1995 up to March 2025 using keywords “self-medication” or “selfmedication” alone or in combinations with terms related to specific subthemes related to self-medication, such as COVID-19, antimicrobials, healthcare professionals, and storing habits of medicines at home. Studies were included if self-medication was their main focus. Publications that only mentioned self-medication in different contexts, but not as their main focus, were excluded. Considering the outcomes of research on self-medication in various contexts, increasing awareness of responsible self-medication through education and informing, together with surveillance of particular medicines and populations, could lead to more appropriate and beneficial self-medication in the future. Full article
Back to TopTop