Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = global ionospheric derivation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7965 KiB  
Article
A COSMIC-2-Based Global Mean TEC Model and Its Application to Calibrating IRI-2020 Global Ionospheric Maps
by Yuxiao Lei, Weitang Wang, Yibin Yao and Liang Zhang
Remote Sens. 2025, 17(13), 2322; https://doi.org/10.3390/rs17132322 - 7 Jul 2025
Viewed by 276
Abstract
While space weather indices (e.g., F10.7, Dst index) are commonly employed to characterize ionospheric activity levels, the Global Mean Electron Content (GMEC) provides a more direct and comprehensive indicator of the global ionospheric state. This metric demonstrates greater potential than space weather indices [...] Read more.
While space weather indices (e.g., F10.7, Dst index) are commonly employed to characterize ionospheric activity levels, the Global Mean Electron Content (GMEC) provides a more direct and comprehensive indicator of the global ionospheric state. This metric demonstrates greater potential than space weather indices for calibrating empirical ionospheric models such as IRI-2020. The COSMIC-2 constellation enables continuous, all-weather global ionospheric monitoring via radio occultation, unimpeded by land–sea distribution constraints, with over 8000 daily occultation events suitable for GMEC modeling. This study developed two lightweight GMEC models using COSMIC-2 data: (1) a POD GMEC model based on slant TEC (STEC) extracted from Level 1b podTc2 products and (2) a PROF GMEC model derived from vertical TEC (VTEC) calculated from electron density profiles (EDPs) in Level 2 ionPrf products. Both backpropagation neural network (BPNN)-based models generate hourly GMEC outputs as global spatial averages. Critically, GMEC serves as an essential intermediate step that addresses the challenges of utilizing spatially irregular occultation data by compressing COSMIC-2’s ionospheric information into an integrated metric. Building on this compressed representation, we implemented a convolutional neural network (CNN) that incorporates GMEC as an auxiliary feature to calibrate IRI-2020’s global ionospheric maps. This approach enables computationally efficient correction of systemic IRI TEC errors. Experimental results demonstrate (i) 48.5% higher accuracy in POD/PROF GMEC relative to IRI-2020 GMEC estimates, and (ii) the calibrated global IRI TEC model (designated GCIRI TEC) reduces errors by 50.15% during geomagnetically quiet periods and 28.5% during geomagnetic storms compared to the original IRI model. Full article
Show Figures

Figure 1

20 pages, 4039 KiB  
Article
Ionospheric TEC and ROT Analysis with Signal Combinations of QZSS Satellites in the Korean Peninsula
by Byung-Kyu Choi, Dong-Hyo Sohn, Junseok Hong, Jong-Kyun Chung, Kwan-Dong Park, Hyung Keun Lee, Jeongrae Kim and Heon Ho Choi
Remote Sens. 2025, 17(11), 1945; https://doi.org/10.3390/rs17111945 - 4 Jun 2025
Viewed by 508
Abstract
This study investigates the performance of three different signal combinations (L1-L2, L1-L5, and L2-L5) for estimating ionospheric total electron content (TEC) and the rate of TEC (ROT) using Quasi-Zenith Satellite System (QZSS) observations over the Korean Peninsula. GNSS data collected from nine stations [...] Read more.
This study investigates the performance of three different signal combinations (L1-L2, L1-L5, and L2-L5) for estimating ionospheric total electron content (TEC) and the rate of TEC (ROT) using Quasi-Zenith Satellite System (QZSS) observations over the Korean Peninsula. GNSS data collected from nine stations across the Korean Peninsula were analyzed for the period from Day of Year (DOY) 1 to 182 in 2024. Differential Code Bias (DCB) was estimated for QZSS satellites, showing high temporal stability with daily variations within ±0.3 ns. The TEC values derived from three different signal combinations were compared with the CODE Global Ionospheric Map (GIM). Compared to other combinations, the L1-L5 pair shows the closest agreement with the CODE GIM, yielding a mean bias of +0.25 TEC units (TECU) with a root mean square (RMS) of 3.59 TECU. In addition, the ROT analysis over the consecutive six days revealed that the L1-L5 combination consistently exhibited the lowest RMS values of about 0.027 TECU compared to other signal pairs. As a result, we suggest that the L1-L5 combination can provide better performance for QZSS-based ionospheric monitoring and TEC studies. Full article
(This article belongs to the Special Issue Advances in GNSS Remote Sensing for Ionosphere Observation)
Show Figures

Figure 1

35 pages, 4918 KiB  
Article
Global Response of Vertical Total Electron Content to Mother’s Day G5 Geomagnetic Storm of May 2024: Insights from IGS and GIM Observations
by Sanjoy Kumar Pal, Soumen Sarkar, Kousik Nanda, Aritra Sanyal, Bhuvnesh Brawar, Abhirup Datta, Stelios M. Potirakis, Ajeet K. Maurya, Arnab Bhattacharya, Pradipta Panchadhyayee, Saibal Ray and Sudipta Sasmal
Atmosphere 2025, 16(5), 529; https://doi.org/10.3390/atmos16050529 - 30 Apr 2025
Viewed by 697
Abstract
The G5 geomagnetic storm of May 2024 provided a significant opportunity to investigate global ionospheric disturbances using vertical total electron content (VTEC) data derived from 422 GNSS-IGS stations and GIM. This study presents a comprehensive spatio-temporal analysis of VTEC modulation before, during, and [...] Read more.
The G5 geomagnetic storm of May 2024 provided a significant opportunity to investigate global ionospheric disturbances using vertical total electron content (VTEC) data derived from 422 GNSS-IGS stations and GIM. This study presents a comprehensive spatio-temporal analysis of VTEC modulation before, during, and after the storm, focusing on hemispheric asymmetries and longitudinal variations. The primary objective of this study is to analyze the spatial and temporal modulation of VTEC under extreme geomagnetic conditions, assess the hemispheric asymmetry and longitudinal disruptions, and evaluate the influence of geomagnetic indices on storm-time ionospheric variability. The indices examined reveal intense geomagnetic activity, with the dst index plunging to −412 nT, the Kp index reaching 9, and significant fluctuations in the auroral electrojet indices (AE, AL, AU), all indicative of severe space weather conditions. The results highlight storm-induced hemispheric asymmetries, with positive storm effects (VTEC enhancement) in the Northern Hemisphere and negative storm effects (VTEC depletion) in the Southern Hemisphere. These anomalies are primarily attributed to penetration electric fields, neutral wind effects, and composition changes in the ionosphere. The storm’s peak impact on DoY 132 exhibited maximum disturbances at ±90° and ±180° longitudes, emphasizing the role of geomagnetic forces in plasma redistribution. Longitudinal gradients were strongly amplified, disrupting the usual equatorial ionization anomaly structure. Post-storm recovery on DoY 136 demonstrated a gradual return to equilibrium, although lingering effects persisted at mid- and high latitudes. These findings are crucial for understanding space weather-induced ionospheric perturbations, directly impacting GNSS-based navigation, communication systems, and space weather forecasting. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

24 pages, 18730 KiB  
Article
Comparison of Surface Current Measurement Between Compact and Square-Array Ocean Radar
by Yu-Hsuan Huang and Chia-Yan Cheng
J. Mar. Sci. Eng. 2025, 13(4), 778; https://doi.org/10.3390/jmse13040778 - 14 Apr 2025
Viewed by 511
Abstract
High-frequency (HF) ocean radars have become essential tools for monitoring surface currents, offering real-time, wide-area coverage with cost-effectiveness. This study compares the compact CODAR system (MABT, 13 MHz) and the square-array phased-array radar (KNTN, 8 MHz) deployed at Cape Maobitou, Taiwan. Radial velocity [...] Read more.
High-frequency (HF) ocean radars have become essential tools for monitoring surface currents, offering real-time, wide-area coverage with cost-effectiveness. This study compares the compact CODAR system (MABT, 13 MHz) and the square-array phased-array radar (KNTN, 8 MHz) deployed at Cape Maobitou, Taiwan. Radial velocity measurements were evaluated against data from the Global Drifter Program (GDP), and a quality control (QC) mechanism was applied to improve the data’s reliability. The results indicated that KNTN provides broader spatial coverage, whereas MABT demonstrates higher precision in radial velocity measurements. Baseline velocity comparisons between MABT and KNTN revealed a correlation coefficient of 0.77 and a root-mean-square deviation (RMSD) of 0.23 m/s, which are consistent with typical values reported in previous radar performance evaluations. Drifter-based velocity comparisons showed an initial correlation of 0.49, with an RMSD of 0.43 m/s. In more stable oceanic regions, the correlation improved to 0.81, with the RMSD decreasing to 0.24 m/s. To clarify, this study does not include multiple environmental scenarios but focuses on cases where both radar systems operated simultaneously and where surface drifter data were available within the overlapping area. Comparisons are thus limited by these spatiotemporal conditions. Radar data may still be affected by environmental or human factors, such as ionospheric variations, interference from radio frequency management issues, or inappropriate parameter settings, which could reduce the accuracy and consistency of the observations. International ocean observing programs have developed quality management procedures to enhance data reliability. In Taiwan, the Taiwan Ocean Research Institute (TORI) has established a data quality management mechanism based on international standards for data filtering, noise reduction, and outlier detection, improving the accuracy and stability of radar-derived velocity measurements.To eliminate the effects caused by different center frequencies between MABT and KNTN, this study used the same algorithms and parameter settings as much as possible in all steps, from Doppler spectra processing to radial velocity calculation, ensuring the comparability of the data. This study highlights the strengths and limitations of compact and phased-array HF radar systems based on co-observed cases under consistent operational conditions. Future research should explore multi-frequency radar integration to enhance spatial coverage and measurement precision, improving real-time coastal current monitoring and operational forecasting. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

20 pages, 12169 KiB  
Article
Exploring the Advantages of Multi-GNSS Ionosphere-Weighted Single-Frequency Precise Point Positioning in Regional Ionospheric VTEC Modeling
by Ahao Wang, Yize Zhang, Junping Chen, Hu Wang, Xuexi Liu, Yihang Xu, Jing Li and Yuyan Yan
Remote Sens. 2025, 17(6), 1104; https://doi.org/10.3390/rs17061104 - 20 Mar 2025
Cited by 1 | Viewed by 448
Abstract
Although the traditional Carrier-to-Code Leveling (CCL) method can provide ideal slant total electron content (STEC) observables for establishing ionospheric models, it must rely on dual-frequency (DF) receivers, which results in high hardware costs. In this study, an ionosphere-weight (IW) single-frequency (SF) precise point [...] Read more.
Although the traditional Carrier-to-Code Leveling (CCL) method can provide ideal slant total electron content (STEC) observables for establishing ionospheric models, it must rely on dual-frequency (DF) receivers, which results in high hardware costs. In this study, an ionosphere-weight (IW) single-frequency (SF) precise point positioning (PPP) method for extracting STEC observables is proposed, and multi-global navigation satellite system (GNSS)-integrated processing is adopted to improve the spatial resolution of the ionospheric model. To investigate the advantages of this novel method, 41 European stations are used to establish the regional ionospheric model, and both low- and high-solar-activity conditions are considered. The results show that the IW SFPPP-derived regional ionospheric model has a significantly better quality of vertical total electron content (VTEC) than the CCL method when using the final global ionospheric map (GIM) as a reference, especially in areas with sparse monitoring stations. Compared with the CCL method, the RMS VTEC accuracy of the IW SFPPP method can be improved by 17.4% and 12.7% to 1.09 and 2.83 total electron content unit (TECU) in low- and high-solar-activity periods, respectively. Regarding GNSS carrier-phase-derived STEC variation (dSTEC) as the reference, the dSTEC accuracy of the IW SFPPP method is comparable to that of the CCL method, and its RMS values are about 1.5 and 2.8 TECU in low- and high-solar-activity conditions, respectively. This indicates that the proposed method using SF-only observations can achieve the same external accord accuracy as the CCL method in regional ionospheric modeling. Full article
(This article belongs to the Special Issue Advanced Multi-GNSS Positioning and Its Applications in Geoscience)
Show Figures

Figure 1

19 pages, 1743 KiB  
Review
Some Recent Key Aspects of the DC Global Electric Circuit
by Michael J. Rycroft
Atmosphere 2025, 16(3), 348; https://doi.org/10.3390/atmos16030348 - 20 Mar 2025
Viewed by 1287
Abstract
The DC global electric circuit, GEC, was conceived by C.T.R. Wilson more than a century ago. Powered by thunderstorms and electrified shower clouds, an electric current I ~1 kA flows up into the ionosphere, maintaining the ionospheric potential V ~250 kV with respect [...] Read more.
The DC global electric circuit, GEC, was conceived by C.T.R. Wilson more than a century ago. Powered by thunderstorms and electrified shower clouds, an electric current I ~1 kA flows up into the ionosphere, maintaining the ionospheric potential V ~250 kV with respect to the Earth’s surface. The circuit is formed by the current I, flowing through the ionosphere all around the world, down through the atmosphere remote from the current sources (J ~2 pA/m2 through a resistance R ~250 Ω), through the land and sea surface, and up to the thunderstorms as point discharge currents. This maintains a downward electric field E of magnitude ~130 V/m at the Earth’s surface away from thunderstorms and a charge Q ~−6.105 C on the Earth’s surface. The theoretical modelling of ionospheric currents and the miniscule geomagnetic field perturbations (ΔB ~0.1 nT) which they cause, as derived by Denisenko and colleagues in recent years, are reviewed. The time constant of the GEC, τ = RC, where C is the capacitance of the global circuit capacitor, is estimated via three different methods to be ~7 to 12 min. The influence of stratus clouds in determining the value of τ is shown to be significant. Sudden excitations of the GEC by volcanic lightning in Iceland in 2011 and near the Tonga eruption in 2022 enable τ to be determined, from experimental observations, as ~10 min and 8 min, respectively. It has been suggested that seismic activity, or earthquake precursors, could produce large enough electric fields in the ionosphere to cause detectable effects, either by enhanced radon emission or by enhanced thermal emission from the earthquake region; a review of the quantitative estimates of these mechanisms shows that they are unlikely to produce sufficiently large effects to be detectable. Finally, some possible links between the topics discussed and human health are considered briefly. Full article
(This article belongs to the Special Issue Atmospheric Electricity (2nd Edition))
Show Figures

Figure 1

23 pages, 14513 KiB  
Article
Scintillations in Southern Europe During the Geomagnetic Storm of June 2015
by Anna Morozova, Luca Spogli, Teresa Barata, Rayan Imam, Emanuele Pica, Juan Andrés Cahuasquí, Mohammed Mainul Hoque, Norbert Jakowski and Daniela Estaço
Remote Sens. 2025, 17(3), 535; https://doi.org/10.3390/rs17030535 - 5 Feb 2025
Viewed by 991
Abstract
The sensitivity of Global Navigation Satellite System (GNSS) receivers to ionospheric disturbances and their constant growth are nowadays resulting in an increased concern of GNSS users about the impacts of ionospheric disturbances at mid-latitudes. The geomagnetic storm of June 2015 is an example [...] Read more.
The sensitivity of Global Navigation Satellite System (GNSS) receivers to ionospheric disturbances and their constant growth are nowadays resulting in an increased concern of GNSS users about the impacts of ionospheric disturbances at mid-latitudes. The geomagnetic storm of June 2015 is an example of a rare phenomenon of a spill-over of equatorial plasma bubbles well north from their habitual. We study the occurrence of small- and medium-scale irregularities in the North Atlantic Eastern Mediterranean mid- and low-latitudinal zone by analysing the amplitude of the scintillation index S4 and rate of total electron content index (ROTI) measurements during this storm. In addition, large-scale perturbations of the ionospheric electron density were studied using ground and space-borne instruments, thus characterising a complex perturbation behaviour over the region mentioned above. The involvement of large-scale structures is emphasised by the usage of innovative approaches such as the ground-based gradient ionosphere index (GIX) and electron density and total electron content gradients derived from Swarm satellite data. The multi-source data allow us to characterise the impact of irregularities of different scales to better understand the ionospheric dynamics and stress the importance of proper monitoring of the ionosphere in the studied region. Full article
Show Figures

Figure 1

56 pages, 48151 KiB  
Article
Excitation of ULF, ELF, and VLF Resonator and Waveguide Oscillations in the Earth–Atmosphere–Ionosphere System by Lightning Current Sources Connected with Hunga Tonga Volcano Eruption
by Yuriy G. Rapoport, Volodymyr V. Grimalsky, Andrzej Krankowski, Asen Grytsai, Sergei S. Petrishchevskii, Leszek Błaszkiewicz and Chieh-Hung Chen
Atmosphere 2025, 16(1), 97; https://doi.org/10.3390/atmos16010097 - 16 Jan 2025
Viewed by 1096
Abstract
The simulations presented here are based on the observational data of lightning electric currents associated with the eruption of the Hunga Tonga volcano in January 2022. The response of the lithosphere (Earth)–atmosphere–ionosphere–magnetosphere system to unprecedented lightning currents is theoretically investigated at low frequencies, [...] Read more.
The simulations presented here are based on the observational data of lightning electric currents associated with the eruption of the Hunga Tonga volcano in January 2022. The response of the lithosphere (Earth)–atmosphere–ionosphere–magnetosphere system to unprecedented lightning currents is theoretically investigated at low frequencies, including ultra low frequency (ULF), extremely low frequency (ELF), and very low frequency (VLF) ranges. The electric current source due to lightning near the location of the Hunga Tonga volcano eruption has a wide-band frequency spectrum determined in this paper based on a data-driven approach. The spectrum is monotonous in the VLF range but has many significant details at the lower frequencies (ULF, ELF). The decreasing amplitude tendency is maintained at frequencies exceeding 0.1 Hz. The density of effective lightning current in the ULF range reaches the value of the order of 10−7 A/m2. A combined dynamic/quasi-stationary method has been developed to simulate ULF penetration through the lithosphere (Earth)–atmosphere–ionosphere–magnetosphere system. This method is suitable for the ULF range down to 10−4 Hz. The electromagnetic field is determined from the dynamics in the ionosphere and from a quasi-stationary approach in the atmosphere, considering not only the electric component but also the magnetic one. An analytical/numerical method has been developed to investigate the excitation of the global Schumann resonator and the eigenmodes of the coupled Schumann and ionospheric Alfvén resonators in the ELF range and the eigenmodes of the Earth–ionosphere waveguide in the VLF range. A complex dispersion equation for the corresponding disturbances is derived. It is shown that oscillations at the first resonance frequency in the Schumann resonator can simultaneously cause noticeable excitation of the local ionospheric Alfvén resonator, whose parameters depend on the angle between the geomagnetic field and the vertical direction. VLF propagation is possible over distances of 3000–10,000 km in the waveguide Earth–ionosphere. The results of simulations are compared with the published experimental data. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

29 pages, 5473 KiB  
Article
Sensitivity of Band-Pass Filtered In Situ Low-Earth Orbit and Ground-Based Ionosphere Observations to Lithosphere–Atmosphere–Ionosphere Coupling Over the Aegean Sea: Spectral Analysis of Two-Year Ionospheric Data Series
by Wojciech Jarmołowski, Anna Belehaki and Paweł Wielgosz
Sensors 2024, 24(23), 7795; https://doi.org/10.3390/s24237795 - 5 Dec 2024
Cited by 1 | Viewed by 1066
Abstract
This study demonstrates a rich complexity of the time–frequency ionospheric signal spectrum, dependent on the measurement type and platform. Different phenomena contributing to satellite-derived and ground-derived geophysical data that only selected signal bands can be potentially sensitive to seismicity over time, and they [...] Read more.
This study demonstrates a rich complexity of the time–frequency ionospheric signal spectrum, dependent on the measurement type and platform. Different phenomena contributing to satellite-derived and ground-derived geophysical data that only selected signal bands can be potentially sensitive to seismicity over time, and they are applicable in lithosphere–atmosphere–ionosphere coupling (LAIC) studies. In this study, satellite-derived and ground-derived ionospheric observations are filtered by a Fourier-based band-pass filter, and an experimental selection of potentially sensitive frequency bands has been carried out. This work focuses on band-pass filtered ionospheric observations and seismic activity in the region of the Aegean Sea over a two-year time period (2020–2021), with particular focus on the entire system of tectonic plate junctions, which are suspected to be a potential source of ionospheric disturbances distributed over hundreds of kilometers. The temporal evolution of seismicity power in the Aegean region is represented by the record of earthquakes characterized by M ≥ 4.5, used for the estimation of cumulative seismic energy. The ionospheric response to LAIC is explored in three data types: short inspections of in situ electron density (Ne) over a tectonic plate boundary by Swarm satellites, stationary determination of three Ne density profile parameters by the Athens Digisonde station AT138 (maximum frequency of the F2 layer: foF2; maximum frequency of the sporadic E layer: foEs; and frequency spread: ff), and stationary measure of vertical total electron content (VTEC) interpolated from a UPC-IonSAT Quarter-of-an-hour time resolution Rapid Global ionospheric map (UQRG) near Athens. The spectrograms are made with the use of short-term Fourier transform (STFT). These frequency bands in the spectrograms, which show a notable coincidence with seismicity, are filtered out and compared to cumulative seismic energy in the Aegean Sea, to the geomagnetic Dst index, to sunspot number (SN), and to the solar radio flux (F10.7). In the case of Swarm, STFT allows for precise removal of long-wavelength Ne signals related to specific latitudes. The application of STFT to time series of ionospheric parameters from the Digisonde station and GIM VTEC is crucial in the removal of seasonal signals and strong diurnal and semi-diurnal signal components. The time series formed from experimentally selected wavebands of different ionospheric observations reveal a moderate but notable correlation with the seismic activity, higher than with any solar radiation parameter in 8 out of 12 cases. The correlation coefficient must be treated relatively and with caution here, as we have not determined the shift between seismic and ionospheric events, as this process requires more data. However, it can be observed from the spectrograms that some weak signals from selected frequencies are candidates to be related to seismic processes. Full article
(This article belongs to the Special Issue Advanced Pre-Earthquake Sensing and Detection Technologies)
Show Figures

Figure 1

18 pages, 22240 KiB  
Article
Multi-Instrument Observations of the Ionospheric Response Caused by the 8 April 2024 Total Solar Eclipse
by Hui Zhang, Ting Zhang, Xinyu Zhang, Yunbin Yuan, Yifan Wang and Yutang Ma
Remote Sens. 2024, 16(13), 2451; https://doi.org/10.3390/rs16132451 - 3 Jul 2024
Cited by 4 | Viewed by 2408
Abstract
This paper investigates ionospheric response characteristics from multiple perspectives based on globally distributed GNSS data and products, ionosonde data, FORMOSAT-7/COSMIC-2 occultation data, and Swarm satellite observations caused by the total solar eclipse of 8 April 2024 across North and Central America. The results [...] Read more.
This paper investigates ionospheric response characteristics from multiple perspectives based on globally distributed GNSS data and products, ionosonde data, FORMOSAT-7/COSMIC-2 occultation data, and Swarm satellite observations caused by the total solar eclipse of 8 April 2024 across North and Central America. The results show that both GNSS-derived TEC products have detected the ionospheric TEC degradation triggered by the total solar eclipse, with the maximum degradation exceeding 10 TECU. The TEC data from nine GNSS stations in the path of the maximum eclipse reveal that the intensity of ionospheric TEC degradation is related to the spatial location, with the maximum degradation value of the ionospheric TEC being about 14~23 min behind the moment of the maximum eclipse. Additionally, a negative anomaly of foF2 with a maximum of more than 2.7 MHz is detected by ionosonde. In the eclipse region, NmF2 and hmF2 show trends of decrease and increase, with percentages of variation of 40~70% and 4~16%, respectively. The Ne profile of the Swarm-A satellite is significantly lower than the reference value during the eclipse period, with the maximum negative anomaly value reaching 11.2 × 105 el/cm3, and it failed to show the equatorial ionization anomaly. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

25 pages, 4138 KiB  
Article
An EOF-Based Global Plasmaspheric Electron Content Model and Its Potential Role in Vertical-Slant TEC Conversion
by Fengyang Long, Chengfa Gao, Yanfeng Dong and Zhenhao Xu
Remote Sens. 2024, 16(11), 1857; https://doi.org/10.3390/rs16111857 - 23 May 2024
Viewed by 1078
Abstract
Topside total electron content (TEC) data measured by COSMIC/FORMAT-3 during 2008 and 2016 were used to analyze and model the global plasmaspheric electron content (PEC) above 800 km with the help of the empirical orthogonal function (EOF) analysis method, and the potential role [...] Read more.
Topside total electron content (TEC) data measured by COSMIC/FORMAT-3 during 2008 and 2016 were used to analyze and model the global plasmaspheric electron content (PEC) above 800 km with the help of the empirical orthogonal function (EOF) analysis method, and the potential role of the proposed PEC model in helping Global Navigation Satellite System (GNSS) users derive accurate slant TEC (STEC) from existing high-precision vertical TEC (VTEC) products was validated. A uniform gridded PEC dataset was first obtained using the spherical harmonic regression method, and then, it was decomposed into EOF basis modes. The first four major EOF modes contributed more than 99% of the total variance. They captured the pronounced latitudinal gradient, longitudinal differences, hemispherical differences, diurnal and seasonal variations, and the solar activity dependency of global PEC. A second-layer EOF decomposition was conducted for the spatial pattern and amplitude coefficients of the first-layer EOF modes, and an empirical PEC model was constructed by fitting the second-layer basis functions related to latitude, longitude, local time, season, and solar flux. The PEC model was designed to be driven by whether solar proxy or parameters derived from the Klobuchar model meet the real-time requirements. The validation of the results demonstrated that the proposed PEC model could accurately simulate the major spatiotemporal patterns of global PEC, with a root-mean-square (RMS) error of 1.53 and 2.24 TECU, improvements of 40.70% and 51.74% compared with NeQuick2 model in 2009 and 2014, respectively. Finally, the proposed PEC model was applied to conduct a vertical-slant TEC conversion experiment with high-precision Global Ionospheric Maps (GIMs) and dual-frequency carrier phase observables of more than 400 globally distributed GNSS sites. The results of the differential STEC (dSTEC) analysis demonstrated the effectiveness of the proposed PEC model in aiding precise vertical-slant TEC conversion. It improved by 18.52% in dSTEC RMS on a global scale and performed better in 90.20% of the testing days compared with the commonly used single-layer mapping function. Full article
Show Figures

Figure 1

20 pages, 22245 KiB  
Article
A Comparative Study on Multi-Parameter Ionospheric Disturbances Associated with the 2015 Mw 7.5 and 2023 Mw 6.3 Earthquakes in Afghanistan
by Rabia Rasheed, Biyan Chen, Dingyi Wu and Lixin Wu
Remote Sens. 2024, 16(11), 1839; https://doi.org/10.3390/rs16111839 - 22 May 2024
Cited by 3 | Viewed by 1448
Abstract
This paper presents a multi-parameter ionospheric disturbance analysis of the total electron content (TEC), density (Ne), temperature (Te), and critical frequency foF2 variations preceding two significant earthquake events (2015 Mw 7.5 and 2023 Mw 6.3) that occurred in Afghanistan. The analysis from various [...] Read more.
This paper presents a multi-parameter ionospheric disturbance analysis of the total electron content (TEC), density (Ne), temperature (Te), and critical frequency foF2 variations preceding two significant earthquake events (2015 Mw 7.5 and 2023 Mw 6.3) that occurred in Afghanistan. The analysis from various ground stations and low-Earth-orbit satellite measurements involved employing the sliding interquartile method to process TEC data of Global Ionospheric Maps (GIMs), comparing revisit trajectories to identify anomalies in Ne and Te from Swarm satellites, applying machine learning-based envelope estimation for GPS-derived TEC measurements, utilizing the least square method for foF2 data and ionograms obtained from available base stations in the Global Ionosphere Radio Observatory (GIRO). After excluding potential influences caused by solar and geomagnetic activities, the following phenomena were revealed: (1) The GIM-TEC variations displayed positive anomalies one day before the 2015 Mw 7.5 earthquake, while significant positive anomalies occurred on the shock days (7, 11, and 15) of the 2023 Mw 6.3 earthquake; (2) the Swarm satellite observations (Ne and Te) for the two earthquakes followed almost the same appearance rates as GIM-TEC, and a negative correlation between the Ne and Te values was found, with clearer appearance at night; (3) there were prominent positive TEC anomalies 8 days and almost 3 h before the earthquakes at selected GPS stations, which were nearest to the earthquake preparation area. The anomalous variations in TEC height and plasma density were verified by analyzing the foF2, which confirmed the ionospheric perturbations. Unusual ionospheric disturbances indicate imminent pre-seismic events, which provides the potential opportunity to provide aid for earthquake prediction and natural hazard risk management in Afghanistan and nearby regions. Full article
Show Figures

Figure 1

21 pages, 12261 KiB  
Article
Earth Rotation Parameters Derived from BDS-3 New Signals B1C/B2a Dual-Frequency Combination Observations
by Zhenlong Fang, Tianhe Xu, Wenfeng Nie, Yuguo Yang and Min Li
Remote Sens. 2024, 16(8), 1322; https://doi.org/10.3390/rs16081322 - 9 Apr 2024
Viewed by 1553
Abstract
The Earth rotation parameters (ERP) play a crucial role in defining the global reference frame and the Global Navigation Satellite System (GNSS) is one of the important tools used to obtain ERP, including polar motion (PM), its rates, and length of day (LOD). [...] Read more.
The Earth rotation parameters (ERP) play a crucial role in defining the global reference frame and the Global Navigation Satellite System (GNSS) is one of the important tools used to obtain ERP, including polar motion (PM), its rates, and length of day (LOD). The latest IGS Repro3 ERP products, which provided the IGS contribution to the latest ITRF2020, were generated without consideration of the Beidou Navigation Satellite System (BDS) observations. The global BDS, namely the BDS-3 constellation, has been completely constructed from July 2020 and the observing stations are evenly distributed globally now. Two couple dual-frequency combinations, including the B1I/B3I and B1C/B2a combinations, are commonly used for BDS-3 ionosphere-free combination usage. With the goal of identifying the optimal dual-frequency combination for BDS-3 ERP estimates for the future ITRF definition with a consideration of BDS-3, this research evaluated the performance of ERP estimation using B1I/B3I and B1C/B2a combinations. Firstly, we conducted a comparison of the ambiguity resolutions. The mean percentage of successfully resolved ambiguities for the BDS-3 B1C/B2a combination is 86.5%, surpassing that of B1I/B3I. The GNSS satellite orbits and ERP were estimated simultaneously, thus the accuracy of orbits could also reflect the performance of the ERP estimates. Subsequently, we validated the orbits of 22 BDS-3 Medium Earth Orbit (MEO) satellites using Satellite Laser Ranging (SLR), and the root mean square error (RMS) of the SLR residuals for the 3-day arc orbit with B1C/B2a signals was 5.72 cm, indicating superior accuracy compared with the B1I/B3I combination. Finally, we compared the performance of ERP estimation, considering both internal and external accuracy. For the internal accuracy, B1C/B2a-based solutions demonstrated a reduction in mean formal errors of approximately 17% for PM, 22% for LOD, and 21% for PM rates compared with B1I/B3I-based solutions. In terms of external accuracy, we compared BDS-3-derived ERP estimates with the IERS 20C04 products. The B1C/B2a combination exhibited a slightly better standard deviation performance and a significant reduction in mean bias by 56%, 54%, 39%, 64%, and 23% for X, Y polar motion, X, Y polar motion rates, and LOD, respectively, compared with B1I/B3I solutions. In conclusion, the results highlight the excellent signal quality for BDS-3 B1C/B2a and its superiority in ERP estimation when compared with the B1I/B3I combination. Full article
Show Figures

Figure 1

16 pages, 5184 KiB  
Article
A New Determining Method for Ionospheric F2-Region Peak Electron Density Height
by Jian Wang, Qiao Yu, Yafei Shi, Cheng Yang, Shengyun Ji and Yu Zheng
Remote Sens. 2024, 16(3), 531; https://doi.org/10.3390/rs16030531 - 30 Jan 2024
Cited by 1 | Viewed by 2045
Abstract
The height of the F2 peak electron density (hmF2) is an essential parameter in studying ionospheric electrodynamics and high-frequency wireless communication. Based on ionosphere ray propagation theory, the physical relationship between M3000F2 and hmF2 is derived and visualized. Furthermore, based on the above [...] Read more.
The height of the F2 peak electron density (hmF2) is an essential parameter in studying ionospheric electrodynamics and high-frequency wireless communication. Based on ionosphere ray propagation theory, the physical relationship between M3000F2 and hmF2 is derived and visualized. Furthermore, based on the above physical theory and the machine learning method, this paper proposes a new model for determining hmF2 using propagation factor at a distance of 3000 km from the ionospheric F2 layer, time, and season. This proposed model is easy to understand and has the characteristics of clear principles, simple structure, and easy application. Furthermore, we used six stations in east Asia to verify this model and compare it with the other three models of the International Reference Ionosphere (IRI) model. The results show that the proposed model (PRO) has minor error and higher accuracy. Specifically the RMSE of the BSE, AMTB, SHU, and the PRO models were 20.35 km, 31.51 km, 13.59 km, and 5.68 km, respectively, and the RRMSE of the BSE, AMTB, SHU, and PRO models were 8.17%, 11.88%, 4.96%, and 2.12%, respectively. In addition, the experimental results show that the PRO model can better predict the trend of the hmF2 inflection point. This method can be further extended to add data sources and provide new ideas for studying the hmF2 over global regions. Full article
Show Figures

Figure 1

21 pages, 906 KiB  
Article
Ionospheric Error Models for Satellite-Based Navigation—Paving the Road towards LEO-PNT Solutions
by Majed Imad, Antoine Grenier, Xiaolong Zhang, Jari Nurmi and Elena Simona Lohan
Computers 2024, 13(1), 4; https://doi.org/10.3390/computers13010004 - 22 Dec 2023
Cited by 6 | Viewed by 4082
Abstract
Low Earth Orbit (LEO) constellations have recently gained tremendous attention in the navigational field due to their larger constellation size, faster geometry variations, and higher signal power levels than Global Navigation Satellite Systems (GNSS), making them favourable for Position, Navigation, and Timing (PNT) [...] Read more.
Low Earth Orbit (LEO) constellations have recently gained tremendous attention in the navigational field due to their larger constellation size, faster geometry variations, and higher signal power levels than Global Navigation Satellite Systems (GNSS), making them favourable for Position, Navigation, and Timing (PNT) purposes. Satellite signals are heavily attenuated from the atmospheric layers, especially from the ionosphere. Ionospheric delays are, however, expected to be smaller in signals from LEO satellites than GNSS due to their lower orbital altitudes and higher carrier frequency. Nevertheless, unlike for GNSS, there are currently no standardized models for correcting the ionospheric errors in LEO signals. In this paper, we derive a new model called Interpolated and Averaged Memory Model (IAMM) starting from existing International GNSS Service (IGS) data and based on the observation that ionospheric effects repeat every 11 years. Our IAMM model can be used for ionospheric corrections for signals from any satellite constellation, including LEO. This model is constructed based on averaging multiple ionospheric data and reflecting the electron content inside the ionosphere. The IAMM model’s primary advantage is its ability to be used both online and offline without needing real-time input parameters, thus making it easy to store in a device’s memory. We compare this model with two benchmark models, the Klobuchar and International Reference Ionosphere (IRI) models, by utilizing GNSS measurement data from 24 scenarios acquired in several European countries using both professional GNSS receivers and Android smartphones. The model’s behaviour is also evaluated on LEO signals using simulated data (as measurement data based on LEO signals are still not available in the open-access community; we show a significant reduction in ionospheric delays in LEO signals compared to GNSS. Finally, we highlight the remaining open challenges toward viable ionospheric-delay models in an LEO-PNT context. Full article
Show Figures

Figure 1

Back to TopTop