Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,589)

Search Parameters:
Keywords = glasses design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6013 KB  
Article
Sustainable Retaining Structures Made from Decommissioned Wind Turbine Blades and Recycled Infill Materials
by Aleksander Duda and Tomasz Siwowski
Sustainability 2026, 18(2), 966; https://doi.org/10.3390/su18020966 (registering DOI) - 17 Jan 2026
Abstract
In recent years, new methods to reuse, repurpose, recycle, and recover decommissioned wind turbine blades (dWTBs) have actively been developed in the wind industry. In this study, the authors address the scientific challenge of repurposing decommissioned wind turbine blades for earthwork applications, particularly [...] Read more.
In recent years, new methods to reuse, repurpose, recycle, and recover decommissioned wind turbine blades (dWTBs) have actively been developed in the wind industry. In this study, the authors address the scientific challenge of repurposing decommissioned wind turbine blades for earthwork applications, particularly as part of retaining structures. A gravity retaining structure made entirely from recycled materials is introduced, consisting of glass fibre-reinforced polymer (GFRP) composite modular units derived from dWTBs. To improve the structure’s sustainability, a mixture of typical sand and lightweight waste materials is considered for filling and backfilling of the GFRP units. In particular, two waste materials are examined—a polymer foil derived from recycled laminated glass and tyre-derived aggregate (TDA) in the form of rubber powder—which are incorporated into the sand matrix in typical dry mass proportions ranging from 2% to 32% and 5% to 20%, respectively, reflecting practical ranges considered in geotechnical backfill applications. The research involved material testing of all recyclates and their mixtures with standard sand, as well as two-dimensional finite-element (2D FE) analysis of a retaining structure using the determined material properties. To facilitate the real-world implementation of this novel technology, a structure was designed to account for ground conditions at a specific site to protect against an existing landslide. In summary, this study presents the concept of a sustainable retaining structure along with results from material tests and an initial design for implementation, supported by FE analysis of overall stability. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

15 pages, 4459 KB  
Article
Automated Custom Sunglasses Frame Design Using Artificial Intelligence and Computational Design
by Prodromos Minaoglou, Anastasios Tzotzis, Klodian Dhoska and Panagiotis Kyratsis
Machines 2026, 14(1), 109; https://doi.org/10.3390/machines14010109 (registering DOI) - 17 Jan 2026
Abstract
Mass production in product design typically relies on standardized geometries and dimensions to accommodate a broad user population. However, when products are required to interface directly with the human body, such generalized design approaches often result in inadequate fit and reduced user comfort. [...] Read more.
Mass production in product design typically relies on standardized geometries and dimensions to accommodate a broad user population. However, when products are required to interface directly with the human body, such generalized design approaches often result in inadequate fit and reduced user comfort. This limitation highlights the necessity of fully personalized design methodologies based on individual anthropometric characteristics. This paper presents a novel application that automates the design of custom-fit sunglasses through the integration of Artificial Intelligence (AI) and Computational Design. The system is implemented using both textual (Python™ version 3.10.11) and visual (Grasshopper 3D™ version 1.0.0007) programming environments. The proposed workflow consists of the following four main stages: (a) acquisition of user facial images, (b) AI-based detection of facial landmarks, (c) three-dimensional reconstruction of facial features via an optimization process, and (d) generation of a personalized sunglass frame, exported as a three-dimensional model. The application demonstrates a robust performance across a diverse set of test images, consistently generating geometries that conformed closely to each user’s facial morphology. The accurate recognition of facial features enables the successful generation of customized sunglass frame designs. The system is further validated through the fabrication of a physical prototype using additive manufacturing, which confirms both the manufacturability and the fit of the final design. Overall, the results indicate that the combined use of AI-driven feature extraction and parametric Computational Design constitutes a powerful framework for the automated development of personalized wearable products. Full article
Show Figures

Figure 1

25 pages, 1153 KB  
Article
Design and Implementation of a Low-Water-Consumption Robotic System for Cleaning Residential Balcony Glass Walls
by Maria-Alexandra Mielcioiu, Petruţa Petcu, Dumitru Nedelcu, Augustin Semenescu, Narcisa Valter and Ana-Maria Nicolau
Appl. Sci. 2026, 16(2), 945; https://doi.org/10.3390/app16020945 - 16 Jan 2026
Abstract
Manual window cleaning in high-rise urban buildings is labor-intensive, risky, and resource-inefficient. This study addresses these challenges by investigating a resource-aware mechatronic architecture through the design, development, and experimental validation of a modular Automated Window Cleaning System (AWCS). Unlike conventional open-loop solutions, the [...] Read more.
Manual window cleaning in high-rise urban buildings is labor-intensive, risky, and resource-inefficient. This study addresses these challenges by investigating a resource-aware mechatronic architecture through the design, development, and experimental validation of a modular Automated Window Cleaning System (AWCS). Unlike conventional open-loop solutions, the AWCS integrates mechanical scrubbing with a closed-loop fluid management system, featuring precise dispensing and vacuum-assisted recovery. The system is governed by a deterministic finite state machine implemented on an ESP32 microcontroller, enabling low-latency IoT connectivity and autonomous operation. Two implementation variants—integrated and retrofit—were validated to ensure structural adaptability. Experimental results across 30 cycles demonstrate a cleaning efficiency of ~2 min/m2, a water consumption of <150 mL/m2 (representing a >95% reduction compared to manual methods), and an optical cleaning efficacy of 96.9% ± 1.4%. Safety protocols were substantiated through a calculated mechanical safety factor of 6.12 for retrofit applications. This research establishes the AWCS as a sustainable, safe, and scalable solution for autonomous building maintenance, contributing to the advancement of resource-circular domestic robotics and smart home automation. Full article
26 pages, 11251 KB  
Article
Hydrogen Permeation Behavior of Locally Reinforced Type IV Hydrogen Storage Vessels
by Guangming Huo, Yu Zhang, Xia Han, Haonan Liu, Xiaoyu Yan, Gai Huang, Ruiqi Li, Shuxin Li, Kaidong Zheng and Hongda Chen
Polymers 2026, 18(2), 230; https://doi.org/10.3390/polym18020230 - 15 Jan 2026
Abstract
Hydrogen permeation parameters of PA12 were obtained through high-pressure hydrogen permeation experiments conducted under various temperature and pressure conditions. The temperature-dependent mechanism governing the hydrogen permeation behavior of PA12 was further examined using dynamic mechanical analysis (DMA). A multi-field coupled numerical model was [...] Read more.
Hydrogen permeation parameters of PA12 were obtained through high-pressure hydrogen permeation experiments conducted under various temperature and pressure conditions. The temperature-dependent mechanism governing the hydrogen permeation behavior of PA12 was further examined using dynamic mechanical analysis (DMA). A multi-field coupled numerical model was established and validated against the experimental results. Based on the validated numerical approach, the hydrogen permeation behavior of a type IV hydrogen storage vessel with local reinforcement was investigated. The results show that both temperature and pressure have a significant influence on the hydrogen permeation performance of PA12. When the temperature is below the glass transition temperature (Tg) of PA12 (48.34 °C), the diffusion coefficient remains low, whereas temperatures above the Tg led to a marked increase in the diffusion coefficient. In addition, the local reinforcement patch effectively prolongs the time required to reach steady-state permeation, reduces the hydrogen permeation flux before and after steady state, and enhances the overall resistance to hydrogen permeation of the type IV vessel. As the diffusion coefficient of the liner material increases, the hydrogen diffusion rate increases substantially, leading to greater hydrogen accumulation in the dome region and higher permeation levels both before and after steady state. These findings provide theoretical guidance and design references for optimizing the hydrogen-resistant performance of type IV hydrogen storage vessels. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 7158 KB  
Article
Gas–Liquid Coalescing Filter with Wettability-Modified Gradient Pore Structure: Achieving Low Resistance, High Efficiency and Long Service Life
by Ziqi Yang, Jian Li, Shuaiyi Ma and Zhen Wang
Separations 2026, 13(1), 32; https://doi.org/10.3390/separations13010032 - 15 Jan 2026
Viewed by 31
Abstract
Widely used in treating oil mist aerosols generated from metalworking processes, conventional gas–liquid coalescing filters face drawbacks such as increased energy consumption, performance limitations, and shortened service life due to high steady-state pressure drop. To address these issues, this study proposes an innovative [...] Read more.
Widely used in treating oil mist aerosols generated from metalworking processes, conventional gas–liquid coalescing filters face drawbacks such as increased energy consumption, performance limitations, and shortened service life due to high steady-state pressure drop. To address these issues, this study proposes an innovative design for a filter based on wettability-regulated gradient pore structure. Using glass fiber filter media with different pore size parameters as the substrate and incorporating an intermediate mesh layer, a three-layer filtration structure of “large-pore filtration layer—mesh layer—small-pore filtration layer” was constructed. The surface wettability of each layer was regulated by a self-developed surface modifier, producing gradient pore structure filters with different wettability configurations. The variations in key performance parameters, including steady-state pressure drop, filtration efficiency, saturation, and service life, were systematically evaluated for these configurations. Experimental results demonstrated that the configuration with an “oleophobic large-pore filtration layer—mesh layer—oleophilic small-pore filtration layer” yielded the best overall performance. Analysis based on the “jump-channel” model indicated that the gradient pore structure achieves progressive droplet filtration and optimizes droplet coalescence and capture through wettability differences. Consequently, while maintaining exceptional filtration efficiency (>99%), this configuration significantly reduces the steady-state pressure drop by over 34% and effectively extends the service life by more than 66%. This wettability-regulated gradient pore structure provides a novel technical pathway for addressing the challenges of balancing pressure drop and filtration efficiency, as well as extending the service life, in gas–liquid coalescing filters. Full article
Show Figures

Figure 1

18 pages, 2109 KB  
Article
Considering the Effects of Temperature on FRP–Steel Hybrid Sucker-Rod String Design
by Xin Lu, Zhisheng Xing, Xingyuan Liang, Zhuangzhuang Zhang, Guoqing Han, Peidong Mai and Shuping Chang
Processes 2026, 14(2), 305; https://doi.org/10.3390/pr14020305 - 15 Jan 2026
Viewed by 37
Abstract
With the continuous increase in well depth and the gradual depletion of formation energy, the pump-setting depths in rod-pumped wells have increased significantly, leading to higher suspension loads at the pumping unit. The application of glass fiber-reinforced plastic (FRP) sucker rods can effectively [...] Read more.
With the continuous increase in well depth and the gradual depletion of formation energy, the pump-setting depths in rod-pumped wells have increased significantly, leading to higher suspension loads at the pumping unit. The application of glass fiber-reinforced plastic (FRP) sucker rods can effectively reduce suspension loads due to their low density and high tensile strength. However, the mechanical performance of FRP rods is highly sensitive to temperature, which poses challenges for their application in deep and high-temperature wells. In FRP–steel hybrid sucker-rod string design, the influence of temperature—particularly on FRP rods—must therefore be carefully considered to prevent failures such as rod parting or coupling separation. This study systematically investigates the effects of temperature on the mechanical properties of FRP sucker rods, including elastic modulus, flexural shear strength, and tensile strength. Based on the operating characteristics of sucker-rod pumping systems and established design criteria, a temperature-aware design methodology for FRP–steel hybrid rod strings is developed and implemented in dedicated design software. The proposed approach enables rational determination of the FRP–steel partition depth under thermal constraints while satisfying mechanical safety requirements. A field case study is conducted to validate the design results, demonstrating that the software provides reliable and practical guidance for hybrid rod-string design in deep wells. Full article
Show Figures

Figure 1

11 pages, 352 KB  
Article
Enhancing Quality of Life in Ostomized Patients Through Smart-Glasses-Supported Health Education: A Pre-Post Study
by Emilio Rubén Pego Pérez, Tomás Mendoza Caamaño, David Rey-Bretal, Noelia Gerbaudo-González, Nuria Martínez Laranga, Manuel Gandoy Crego and Raquel Rodríguez-González
Healthcare 2026, 14(2), 216; https://doi.org/10.3390/healthcare14020216 - 15 Jan 2026
Viewed by 89
Abstract
Background: Ostomy care consultations are essential for promoting patient autonomy and quality-of-life. The integration of innovative technologies may enhance health education and support effective self-care among ostomized patients. Objective: To evaluate the impact of a nursing-led health education intervention supported by smart-glasses [...] Read more.
Background: Ostomy care consultations are essential for promoting patient autonomy and quality-of-life. The integration of innovative technologies may enhance health education and support effective self-care among ostomized patients. Objective: To evaluate the impact of a nursing-led health education intervention supported by smart-glasses on the quality of life of ostomized patients. Methods: A pre–post quasi-experimental design was employed with 14 patients who had undergone digestive surgery resulting in an ostomy. The intervention consisted of a single 60-min session comprising three phases: (1) assessment of baseline knowledge on ostomy management, (2) personalized feedback, and (3) a hands-on workshop using Vuzix© smart-glasses to demonstrate ostomy care techniques. Quality of life was assessed using the SF-36 questionnaire before and after the intervention. Results: The intervention significantly improved overall SF-36 scores, with notable advancements in emotional role (78.57 ± 36.06 to 97.44 ± 9.25, d = 10.54), mental health (79.14 ± 20.10 to 87.38 ± 13.94, d = 6.27), and vitality (69.29 ± 20.56 to 71.15 ± 16.98, d = 4.19). Social function remained high throughout the study, while bodily pain showed a slight decline. A strong correlation (ρ = 0.923, p = 0.001) was observed between pre- and post-intervention quality of life scores. Conclusions: The findings suggest that integrating smart-glasses into nursing-led health education may enhance the quality of life and self-care capabilities of ostomized patients. However, the small sample size, lack of a control group, and exploratory nature of the study limit the generalizability of the results. Further research is needed to validate these findings in larger, controlled trials. Full article
(This article belongs to the Section Healthcare Quality, Patient Safety, and Self-care Management)
Show Figures

Graphical abstract

39 pages, 7296 KB  
Article
Innovative Smart, Autonomous, and Flexible Solar Photovoltaic Cooking Systems with Energy Storage: Design, Experimental Validation, and Socio-Economic Impact
by Bilal Zoukarh, Mohammed Hmich, Abderrafie El Amrani, Sara Chadli, Rachid Malek, Olivier Deblecker, Khalil Kassmi and Najib Bachiri
Energies 2026, 19(2), 408; https://doi.org/10.3390/en19020408 - 14 Jan 2026
Viewed by 108
Abstract
This work presents the design, modeling, and experimental validation of an innovative, highly autonomous, and economically viable photovoltaic solar cooker, integrating a robust battery storage system. The system combines 1200 Wp photovoltaic panels, a control block with DC/DC power converters and digital control [...] Read more.
This work presents the design, modeling, and experimental validation of an innovative, highly autonomous, and economically viable photovoltaic solar cooker, integrating a robust battery storage system. The system combines 1200 Wp photovoltaic panels, a control block with DC/DC power converters and digital control for intelligent energy management, and a thermally insulated heating plate equipped with two resistors. The objective of the system is to reduce dependence on conventional fuels while overcoming the limitations of existing solar cookers, particularly insufficient cooking temperatures, the need for continuous solar orientation, and significant thermal losses. The optimization of thermal insulation using a ceramic fiber and glass wool configuration significantly reduces heat losses and increases the thermal efficiency to 64%, nearly double that of the non-insulated case (34%). This improvement enables cooking temperatures of 100–122 °C, heating element surface temperatures of 185–464 °C, and fast cooking times ranging from 20 to 58 min, depending on the prepared dish. Thermal modeling takes into account sheet metal, strengths, and food. The experimental results show excellent agreement between simulation and measurements (deviation < 5%), and high converter efficiencies (84–97%). The integration of the batteries guarantees an autonomy of 6 to 12 days and a very low depth of discharge (1–3%), allowing continuous cooking even without direct solar radiation. Crucially, the techno-economic analysis confirmed the system’s strong market competitiveness. Despite an Initial Investment Cost (CAPEX) of USD 1141.2, the high performance and low operational expenditure lead to a highly favorable Return on Investment (ROI) of only 4.31 years. Compared to existing conventional and solar cookers, the developed system offers superior energy efficiency and optimized cooking times, and demonstrates rapid profitability. This makes it a sustainable, reliable, and energy-efficient home solution, representing a major technological leap for domestic cooking in rural areas. Full article
Show Figures

Figure 1

15 pages, 3234 KB  
Article
Optically Transparent Frequency Selective Surfaces for Electromagnetic Shielding in Cybersecurity Applications
by Pierpaolo Usai, Gabriele Sabatini, Danilo Brizi and Agostino Monorchio
Appl. Sci. 2026, 16(2), 821; https://doi.org/10.3390/app16020821 - 13 Jan 2026
Viewed by 220
Abstract
With the widespread diffusion of personal Internet of Things (IoT) devices, Electromagnetic Side-Channel Attacks (EM-SCAs), which exploit electromagnetic emissions to uncover critical data such as cryptographic keys, are becoming extremely common. Existing shielding approaches typically rely on bulky or opaque materials, which limit [...] Read more.
With the widespread diffusion of personal Internet of Things (IoT) devices, Electromagnetic Side-Channel Attacks (EM-SCAs), which exploit electromagnetic emissions to uncover critical data such as cryptographic keys, are becoming extremely common. Existing shielding approaches typically rely on bulky or opaque materials, which limit integration in modern IoT environments; this motivates the need for a transparent, lightweight, and easily integrable solution. Thus, to address this threat, we propose the use of electromagnetic metasurfaces with shielding capabilities, fabricated with an optically transparent conductive film. This film can be easily integrated into glass substrates, offering a novel and discrete shielding solution to traditional methods, which are typically based on opaque dielectric media. The paper presents two proof-of-concept case studies for shielding against EM-SCAs. The first one investigates the design and fabrication of a passive metasurface aimed at shielding emissions from chip processors in IoT devices. The metasurface is conceived to attenuate a specific frequency range, characteristic of the considered IoT processor, with a target attenuation of 30 dB. At the same time, the metasurface ensures that signals from 4G and 5G services are not affected, thus preserving normal wireless communication functioning. Conversely, the second case study introduces an active metasurface for dynamic shielding/transmission behavior, which can be modulated through diodes according to user requirements. This active metasurface is designed to block undesired electromagnetic emissions within the 150–465 MHz frequency range, which is a common band for screen gleaning security threats. The experimental results demonstrate an attenuation of approximately 10 dB across the frequency band when the shielding mode is activated, indicating a substantial reduction in signal transmission. Both the case studies highlight the potential of transparent metasurfaces for secure and dynamic electromagnetic shielding, suggesting their discrete integration in building windows or other environmental structural elements. Full article
(This article belongs to the Special Issue Cybersecurity: Novel Technologies and Applications)
Show Figures

Figure 1

25 pages, 1398 KB  
Article
Circular Economy in Rammed Earth Construction: A Life-Cycle Case Study on Demolition and Reuse Strategies of an Experimental Building in Pasłęk, Poland
by Anna Patrycja Nowak, Michał Pierzchalski and Joanna Klimowicz
Sustainability 2026, 18(2), 790; https://doi.org/10.3390/su18020790 - 13 Jan 2026
Viewed by 128
Abstract
This study aims to evaluate the potential of circular economy principles in earth-based construction using an experimental rammed earth building located in Pasłęk, Poland as a case study. The research focuses on end-of-life scenarios for earth materials, with particular emphasis on rammed earth, [...] Read more.
This study aims to evaluate the potential of circular economy principles in earth-based construction using an experimental rammed earth building located in Pasłęk, Poland as a case study. The research focuses on end-of-life scenarios for earth materials, with particular emphasis on rammed earth, adobe, and compressed earth blocks stabilized with Portland cement. A scenario-based life-cycle assessment (LCA) was conducted to compare alternative demolition and reuse strategies, including manual and mechanical deconstruction, as well as on-site and off-site material reuse. Greenhouse gas emissions associated with demolition (Module C1) and transport (Module C2) were estimated for each scenario. The results indicate that manual deconstruction combined with local, on-site reuse leads to the lowest carbon footprint, whereas off-site reuse involving long-distance transport significantly increases greenhouse gas emissions. In addition, qualitative reuse pathways were identified for wood, glass, ceramics, and insulation materials. The study reveals a lack of standardized technical procedures for the recovery and reuse of stabilized earthen materials after demolition and highlights the importance of integrating end-of-life planning into the early design phase using digital tools such as material passports and BIM. The findings demonstrate that properly designed rammed earth systems can provide a viable low-tech solution for reducing construction waste and supporting circular material flows in the built environment. Full article
Show Figures

Figure 1

16 pages, 9469 KB  
Article
Immersion as Convergence: How Storytelling, Interaction, and Sensory Design Co-Produce Museum Virtual Reality Experiences
by Zhennuo Song and Leighton Evans
Information 2026, 17(1), 75; https://doi.org/10.3390/info17010075 - 12 Jan 2026
Viewed by 221
Abstract
Cultural heritage institutions today are experiencing a digital transformation. Virtual Reality (VR), with the promise of immersive and interactive features, has drawn the attention of artists and curators. Some prior museology research has attempted to investigate digital innovations like virtual museums and VR-based [...] Read more.
Cultural heritage institutions today are experiencing a digital transformation. Virtual Reality (VR), with the promise of immersive and interactive features, has drawn the attention of artists and curators. Some prior museology research has attempted to investigate digital innovations like virtual museums and VR-based exhibits to present the best of museum experiences; however, existing systematic research on the topic of interactive narrative experience with immersive VR technologies is rare. This paper reports on an original research project to understand the emergent issues concerning immersion, interactive and narrative in museum experience design. This research used multiple case studies, Claude Monet: The Water Lily Obsession; We live in the Ocean of Air; Mona Lisa: Beyond the Glass; Curious Alice. In total, 22 semi-structured interviews were conducted with VR experts and museum curators to understand the motivation of the designers and developers. This research hopes to contribute to the digital revolution of museums, providing a foundation for curators and artists who are interested in using VR technologies in exhibitions. Full article
(This article belongs to the Special Issue Intelligent Interaction in Cultural Heritage)
Show Figures

Graphical abstract

12 pages, 2153 KB  
Article
High-Performance Polyimides with Enhanced Solubility and Thermal Stability for Biomimetic Structures in Extreme Environment
by Jichao Chen, Jiping Yang, Zhiyong Ma, Zhijian Wang and Yizhuo Gu
Biomimetics 2026, 11(1), 61; https://doi.org/10.3390/biomimetics11010061 - 12 Jan 2026
Viewed by 132
Abstract
Designing the high-performance polyimides (PIs) for the biomimetic structures, which are used in extreme conditions, remains greatly challenging, due to the conflict between processability and thermal stability. Here, we report a series of silicon–alkyne-functionalized diamine-based polyimides that exhibit remarkable processability and thermal stability. [...] Read more.
Designing the high-performance polyimides (PIs) for the biomimetic structures, which are used in extreme conditions, remains greatly challenging, due to the conflict between processability and thermal stability. Here, we report a series of silicon–alkyne-functionalized diamine-based polyimides that exhibit remarkable processability and thermal stability. The incorporation of bulky siloxy groups disrupts chain packing and increases free volume, enabling excellent solubility in polar solvents, while the rigid fluorene core enhances chain stiffness. DFT calculations confirm twisted molecular geometries (Si bond angle ≈ 103°, dihedral angle ≈ 89°) which weak π–π stacking, while heterogeneous electrostatic potentials enable favorable noncovalent interactions (e.g., C–F···H–C), promoting solvent diffusion. After thermal curing, the obtained product shows a high decomposition temperature (Td5% = 560 °C), char yield of 72.0% at 800 °C, and glass transition temperature (Tg) of 354.6 °C. Meanwhile, locally planar fluorene units retain inherent thermal stabilization benefits through constrained rotational mobility. These results demonstrate a spatially decoupled siloxy–alkyne design that synergistically enhances molecular flexibility, disorder, and electronic stability, offering a molecular strategy for tailoring PI-based matrices to meet the demands of emerging biomimetic architectures and other high-performance composites operating under severe thermal loads. Full article
(This article belongs to the Special Issue Design of Natural and Biomimetic Flexible Biological Structures)
Show Figures

Graphical abstract

27 pages, 13586 KB  
Article
Numerical and Experimental Study of Continuous Beams Made of Self-Compacting Concrete Strengthened by GFRP Materials
by Žarko Petrović, Andrija Zorić, Bojan Milošević, Slobodan Ranković and Predrag Petronijević
Eng 2026, 7(1), 37; https://doi.org/10.3390/eng7010037 - 10 Jan 2026
Viewed by 184
Abstract
This paper presents an experimental and numerical investigation of continuous reinforced concrete (RC) beams made of self-compacting concrete (SCC) strengthened with fiber-reinforced polymer (FRP) bars using the Near-Surface Mounted (NSM) method. While the majority of previous studies have focused on simply supported beams, [...] Read more.
This paper presents an experimental and numerical investigation of continuous reinforced concrete (RC) beams made of self-compacting concrete (SCC) strengthened with fiber-reinforced polymer (FRP) bars using the Near-Surface Mounted (NSM) method. While the majority of previous studies have focused on simply supported beams, this work examines two-span continuous beams, which are more representative of real structural behavior. Four SCC beams were tested under static loading to evaluate the influence of the FRP reinforcement position on flexural capacity and deformational characteristics. The beams were strengthened using glass FRP (GFRP) bars embedded in epoxy adhesive within pre-cut grooves in the concrete cover. Experimental results showed that FRP reinforcement significantly increased the ultimate load capacity, while excessive reinforcement reduced ductility, leading to a more brittle failure mode. A three-dimensional finite element model was developed in Abaqus/Standard using the Concrete Damage Plasticity (CDP) model to simulate the nonlinear behavior of concrete and the bond–slip interaction at the epoxy–concrete interface. The numerical predictions closely matched the experimental load–deflection responses, with a maximum deviation of less than 3%. The validated model provides a reliable tool for parametric analysis and can serve as a reference for optimizing the design of continuous SCC beams strengthened by the NSM FRP method. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

21 pages, 3053 KB  
Systematic Review
A Systematic Review and Meta-Analysis on the Clinical Performance and Longevity of Bioactive Composite Resin Restorations
by Ahmed A. Holiel, Mounir M. Al Nakouzi, Rim Bourgi, Carlos Enrique Cuevas-Suárez, Iván Olivares Acosta, Louis Hardan, Naji Kharouf and Youssef Haikel
J. Compos. Sci. 2026, 10(1), 39; https://doi.org/10.3390/jcs10010039 - 9 Jan 2026
Viewed by 237
Abstract
Background: Bioactive composite resins combine the esthetic and mechanical properties of resin composites with therapeutic functions such as ion release, remineralization, and caries inhibition. While in vitro studies suggest promising bioactivity, their clinical performance in permanent teeth remains uncertain. Objective: This systematic review [...] Read more.
Background: Bioactive composite resins combine the esthetic and mechanical properties of resin composites with therapeutic functions such as ion release, remineralization, and caries inhibition. While in vitro studies suggest promising bioactivity, their clinical performance in permanent teeth remains uncertain. Objective: This systematic review and meta-analysis critically appraised randomized controlled trials and prospective clinical studies to determine whether bioactive composites offer superior clinical performance compared to conventional resin composites and glass ionomer-based materials. Methods: Electronic databases (PubMed/MEDLINE, Scopus, Web of Science, Google Scholar) were searched for eligible studies (2018–2025). Clinical outcomes assessed restoration survival, marginal integrity, secondary caries, postoperative sensitivity, and esthetic outcomes (color match). Data were pooled using a random-effects model, and risk of bias was assessed with Cochrane criteria. Results: Twenty-two trials met the inclusion criteria. No significant differences were found between bioactive and control restorations for survival/retention (RD = 0.01; 95% CI, –0.01 to 0.03), marginal adaptation (RD = 0.02; 95% CI, –0.02 to 0.06), secondary caries (RD = 0.01; 95% CI, –0.01 to 0.03), or postoperative sensitivity (RD = 0.01; 95% CI, –0.02 to 0.04), with negligible heterogeneity (I2 = 0–4%). For color match, glass ionomer restorations showed significantly poorer outcomes (RD = –0.23; 95% CI, –0.31 to –0.14; p < 0.00001; I2 = 98%), while conventional resin composites had a slight but significant advantage over bioactive composites (RD = 0.07; 95% CI, 0.02 to 0.12; p = 0.003; I2 = 76%). Most studies presented moderate risk of bias and short-term follow-up (<36 months). Conclusions: Current evidence indicates that bioactive composites perform comparably, but not superior, to conventional restoratives in permanent teeth. The discrepancy between laboratory bioactivity and clinical effectiveness highlights the need for long-term, well-designed clinical trials with standardized outcome reporting. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

32 pages, 2273 KB  
Review
Fire Performance of FRP-Composites and Strengthened Concrete Structures: A State-of-the-Art Review
by Junhao Zhou, Yingwu Zhou, Menghuan Guo and Sheng Xiang
Polymers 2026, 18(2), 181; https://doi.org/10.3390/polym18020181 - 9 Jan 2026
Viewed by 357
Abstract
The structural application of Fiber-Reinforced Polymers (FRP) is significantly hindered by their inherent thermal sensitivity. This paper presents a comprehensive review of the fire performance of FRP materials and FRP-concrete systems, spanning from material-scale degradation to structural-scale response. Distinct from previous studies, this [...] Read more.
The structural application of Fiber-Reinforced Polymers (FRP) is significantly hindered by their inherent thermal sensitivity. This paper presents a comprehensive review of the fire performance of FRP materials and FRP-concrete systems, spanning from material-scale degradation to structural-scale response. Distinct from previous studies, this review explicitly distinguishes between the fire behavior of internally reinforced FRP-reinforced concrete members and externally applied systems, including Externally Bonded Reinforcement (EBR) and Near-Surface Mounted (NSM) techniques. The thermal and mechanical degradation mechanisms of FRP constituents—specifically reinforcing fibers and polymer matrices—are first analyzed, with a focused discussion on the critical role of the glass transition temperature Tg. A detailed comparative analysis of the pros and cons of organic (epoxy-based) and inorganic (cementitious) binders is provided, elaborating on their respective bonding mechanisms and thermal stability under fire conditions. Furthermore, the effectiveness of various fire-protection strategies, such as external insulation systems, is evaluated. Synthesis of existing research indicates that while insulation thickness remains the dominant factor governing the fire survival time of EBR/NSM systems, the irreversible thermal degradation of polymer matrices poses a primary challenge for the post-fire recovery of FRP-reinforced structures. This review identifies critical research gaps and provides practical insights for the fire-safe design of FRP-concrete composite structures. Full article
Show Figures

Figure 1

Back to TopTop