Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = glacier motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2198 KB  
Article
Characterising Ice Motion Variability at Helheim Glacier Front from Continuous GPS Observations
by Christopher Pearson, James Colinese, Tavi Murray and Stuart Edwards
Glacies 2026, 3(1), 1; https://doi.org/10.3390/glacies3010001 - 7 Jan 2026
Viewed by 260
Abstract
Understanding short-term glacier motion is vital for assessing ice sheet dynamics in a warming climate. This study investigates the tidal and diurnal influences on the flow of Helheim Glacier, one of Greenland’s fastest-flowing marine-terminating glaciers, using data from 18 high-frequency GPS sensors and [...] Read more.
Understanding short-term glacier motion is vital for assessing ice sheet dynamics in a warming climate. This study investigates the tidal and diurnal influences on the flow of Helheim Glacier, one of Greenland’s fastest-flowing marine-terminating glaciers, using data from 18 high-frequency GPS sensors and a regional tide gauge collected during summer 2013. A Kalman filter was applied to separate and quantify glacier velocity, tidal admittance, and diurnal melt-driven acceleration. Results reveal a high level of tidal admittance affecting the horizontal flow speed of the glacier, especially at the centre of the glacier, which is propagated upstream. This admittance corresponds to a 0.38–0.68 m/day reduction from the mean at high spring tide and a comparable increase at low tide. The glacier’s vertical motion showed strong tidal control close to the terminus, of 0.6–1.05 m during high spring tides, but this was significantly reduced more than 1 km from the terminus. Diurnal variations in horizontal speed are less spatially and temporally variable, with most nodes experiencing changes from a mean speed of ±0.1–0.3 m/day. These findings demonstrate that both tidal forcing and meltwater input to the basal system exert a significant, and potentially spatially variable, control on glacier dynamics, highlighting the need to incorporate short-period external forcing into predictive models of marine-terminating glacier behaviour. Full article
Show Figures

Figure 1

16 pages, 9349 KB  
Article
Surface Ice Velocity near the Terminus of Grey Glacier in the Southern Patagonian Icefield, Based on Direct Field Measurements
by Roberto García-Esteban
Geosciences 2025, 15(12), 452; https://doi.org/10.3390/geosciences15120452 - 29 Nov 2025
Viewed by 1247
Abstract
Glacier mass balance and ice flow dynamics, strongly influenced by climatic variability, topography, and geological–structural controls, can be precisely characterized through in situ GPS measurements of surface ice velocity, though such data remain limited due to logistical challenges in field acquisition. This study [...] Read more.
Glacier mass balance and ice flow dynamics, strongly influenced by climatic variability, topography, and geological–structural controls, can be precisely characterized through in situ GPS measurements of surface ice velocity, though such data remain limited due to logistical challenges in field acquisition. This study presents direct measurements of surface ice velocity on Grey Glacier, a major outlet glacier of the Southern Patagonian Icefield (SPI) in Chile. Ice flow was monitored over a one-week period in late 2002 by tracking the displacement of six stakes installed on the glacier surface. The resulting velocity data reveal spatial patterns of surface flow that provide significant information for the comparison and validation of remote sensing observations, which is particularly relevant considering that the ice mass from which the data were collected has since disappeared due to glacier retreat. The combined use of ground-based and remote sensing methods is essential for advancing our understanding of glacier motion and behavior, particularly in the context of climate forcing. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

29 pages, 50015 KB  
Article
Surface Velocity and Dynamics of the Southern Patagonian Icefield Using Feature and Speckle Tracking Methods on Sentinel-1 SAR Images During 2019–2020
by Viviána Jó, Tamás Telbisz, Ádám Ignéczi, Maximillian Van Wyk De Vries, Sebastián Ruiz-Pereira, László Mari and Balázs Nagy
Remote Sens. 2025, 17(22), 3742; https://doi.org/10.3390/rs17223742 - 18 Nov 2025
Viewed by 924
Abstract
With an area of 13,000 km2 and more than 60 outlet glaciers (tidewater or lake-terminating), the Southern Patagonian Icefield (SPI) stores a substantial volume of freshwater, and its accelerating melt contributes to global sea level rise. In addition to monitoring frontal retreat [...] Read more.
With an area of 13,000 km2 and more than 60 outlet glaciers (tidewater or lake-terminating), the Southern Patagonian Icefield (SPI) stores a substantial volume of freshwater, and its accelerating melt contributes to global sea level rise. In addition to monitoring frontal retreat and ice thinning, tracking near-terminus glacier surface velocity can provide key insight into glacier dynamics. Here, we aimed to understand the current state of the SPI and to explore the dynamic restructuring of the glaciers in comparison with previous results. Considering that ice velocity acceleration near termini can be indicative of a drastic ice thinning and calving, during 2019–2020, we investigated the surface velocity of glaciers in the SPI using feature and speckle tracking. We calculated velocity maps (450 in total) from Sentinel-1 SAR images. Velocity ranged from 0 to 6571 myr−1 for the whole study period, taking into account the 846 one square kilometer subsamples. Mean values of the topographic parameters (elevation, slope, aspect) have variable correlation with the mean velocity values, while mean ice thickness does not have a strong correlation with velocity. Nevertheless, mean velocities show association between near-frontal motion acceleration and calving, as observed in tidewater glaciers and four lake-terminating glaciers. Considering along-length changes in the glaciers, it is found that there are glaciers with upward increasing velocities, downward increasing velocities, and with a single velocity peak and multiple velocity peaks. Comparing our measurements with previous studies, we found major dynamic changes in several glaciers. A massive calving event at Pío XI Glacier significantly affected its velocity for months. The slowdown observed at 13–14 km from the terminus of the Jorge Montt Glacier contrasts with all previous studies that showed an acceleration of the glacier in this area. Our observations indicate rapid changes in some of the SPI glaciers, which suggests their unstable state. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

18 pages, 52971 KB  
Article
Frequent Glacial Hazard Deformation Detection Based on POT-SBAS InSAR in the Sedongpu Basin in the Himalayan Region
by Haoliang Li, Yinghui Yang, Xiujun Dong, Qiang Xu, Pengfei Li, Jingjing Zhao, Qiang Chen and Jyr-Ching Hu
Remote Sens. 2025, 17(2), 319; https://doi.org/10.3390/rs17020319 - 17 Jan 2025
Cited by 1 | Viewed by 1763
Abstract
The Sedongpu Basin is characterized by frequent glacial debris movements and glacial hazards. To accurately monitor and research these glacier hazards, Sentinel-1 Synthetic Aperture Radar images observed between 2014 and 2022 were collected to extract surface motion using SBAS-POT technology. The acquired temporal [...] Read more.
The Sedongpu Basin is characterized by frequent glacial debris movements and glacial hazards. To accurately monitor and research these glacier hazards, Sentinel-1 Synthetic Aperture Radar images observed between 2014 and 2022 were collected to extract surface motion using SBAS-POT technology. The acquired temporal surface deformation and multiple optical remote sensing images were then jointly used to analyze the characteristics of the long-term glacier movement in the Sedongpu Basin. Furthermore, historical meteorological and seismic data were collected to analyze the mechanisms of multiple ice avalanche chain hazards. It was found that abnormal deformation signals of glaciers SDP1 and SDP2 could be linked to the historical ice avalanche disaster that occurred around the Sedongpu Basin. The maximum deformation rate of SDP1 was 74 m/a and the slope cumulative deformation exceeded 500 m during the monitoring period from 2014 to 2022, which is still in active motion at present; for SDP2, a cumulative deformation of more than 300 m was also detected over the monitoring period. Glaciers SDP3, SDP4, and SDP5 have been relatively stable until now; however, ice cracks are well developed in SDP4 and SDP5, and ice avalanche events may occur if these ice cracks continue to expand under extreme natural conditions in the future. Therefore, this paper emphasizes the seriousness of the ice avalanche event in Sedongpu Basin and provides data support for local disaster management and disaster prevention and reduction. Full article
Show Figures

Figure 1

17 pages, 7864 KB  
Article
Three-Dimensional Monitoring of Zelongnong Glacier, China, with the PO-MSBAS Technique
by Xinyi Zhai, Chaoying Zhao, Bin Li, Wenpei Wang and Xiaojie Liu
Remote Sens. 2024, 16(23), 4462; https://doi.org/10.3390/rs16234462 - 28 Nov 2024
Viewed by 1374
Abstract
High-precision monitoring of glacier motion provides crucial information for a thorough understanding of the dynamic characteristics and development patterns of glaciers, which serves as a scientific basis for the prevention and management of glacier-related disasters. Zelongnong Glacier, located in Tibet, China, has experienced [...] Read more.
High-precision monitoring of glacier motion provides crucial information for a thorough understanding of the dynamic characteristics and development patterns of glaciers, which serves as a scientific basis for the prevention and management of glacier-related disasters. Zelongnong Glacier, located in Tibet, China, has experienced glacier surges, collapse, and hazard chains four times in the last 70 years. On 10 September 2020, a major glacier hazard chain occurred in this region. To reveal the influencing factors of the glacier motion, we monitor the Zelongnong Glacier motions with 65 scenes of TerraSAR/PAZ images from 2022 to 2023, where the Pixel Offset Multidimensional Small Baseline Subset (PO-MSBAS) method is employed for three-dimensional time series inversion. As the registration window size directly affects the matching success rate, deformation accuracy, and signal-to-noise ratio (SNR) during the offset tracking processing, we adopt a variable window-weighted cross-correlation strategy. The strategy balances the advantages of different window sizes, effectively reducing noise while preserving certain details in the offset results. The standard deviation in stable areas is also significantly lower than that obtained using smaller window sizes in conventional methods. The results reveal that the velocity of the southern glacier tributary was larger than the one in the northern tributary. Specifically, the maximum velocity in the northern tributary reached 45.07 m/year in the horizontal direction and −7.45 m/year in the vertical direction, whereas in the southern tributary, the maximum velocity was 50.15 m/year horizontally and 50.66 m/year vertically. The southern tributary underwent two bends before merging with the mainstream, leading to a more complex motion pattern. Lastly, correlation reveals that the Zelongnong Glacier was affected by the combined influence of temperature and precipitation with a common period of around 90 days. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Graphical abstract

23 pages, 8730 KB  
Article
Three-Dimensional Surface Motion Displacement Estimation of the Muz Taw Glacier, Sawir Mountains
by Yanqiang Wang, Jun Zhao, Zhongqin Li, Yanjie Yang and Jialiang Liu
Remote Sens. 2024, 16(22), 4326; https://doi.org/10.3390/rs16224326 - 20 Nov 2024
Viewed by 1454
Abstract
Research on glacier movement is helpful for comprehensively understanding the laws behind this movement and can also provide a scientific basis for glacier change and analyses of the dynamic mechanisms driving atmospheric circulation and glacier evolution. Sentinel-1 series data were used in this [...] Read more.
Research on glacier movement is helpful for comprehensively understanding the laws behind this movement and can also provide a scientific basis for glacier change and analyses of the dynamic mechanisms driving atmospheric circulation and glacier evolution. Sentinel-1 series data were used in this study to retrieve the three-dimensional (3D) surface motion displacement of the Muz Taw glacier from 22 August 2017, to 17 August 2018. The inversion method of the 3D surface motion displacement of glaciers has been verified by the field measurement data from Urumqi Glacier No. 1. The effects of topographic factors, glacier thickness, and climate factors on the 3D surface displacement of the Muz Taw glacier are discussed in this paper. The results show that, during the study period, the total 3D displacement of the Muz Taw glacier was between 0.52 and 13.19 m, the eastward displacement was 4.27 m, the northward displacement was 4.07 m, and the horizontal displacement was 5.90 m. Areas of high displacement were mainly distributed in the main glacier at altitudes of 3300–3350 and 3450–3600 m. There were significant differences in the total 3D displacement of the Muz Taw glacier in each season. The displacement was larger in summer, followed by spring, and it was similar in autumn and winter. The total 3D displacement during the whole study period and in spring, summer, and autumn fluctuated greatly along the glacier centerline, while the change in winter was relatively gentle. Various factors such as topography, glacier thickness, and climate had different influences on the surface motion displacement of the Muz Taw glacier. Full article
Show Figures

Figure 1

21 pages, 19482 KB  
Article
A Methodology for Identifying Coastal Cultural Heritage Assets Exposed to Future Sea Level Rise Scenarios
by Sevasti Chalkidou, Charalampos Georgiadis, Themistoklis Roustanis and Petros Patias
Appl. Sci. 2024, 14(16), 7210; https://doi.org/10.3390/app14167210 - 16 Aug 2024
Cited by 8 | Viewed by 2493
Abstract
Coastal areas are currently exposed to numerous hazards exacerbated by climate change, including erosion, flooding, storm surges, and other sea level rise phenomena. Mediterranean countries, in particular, are facing a constant shrinking of coastal areas. This region also hosts significant cultural heritage assets, [...] Read more.
Coastal areas are currently exposed to numerous hazards exacerbated by climate change, including erosion, flooding, storm surges, and other sea level rise phenomena. Mediterranean countries, in particular, are facing a constant shrinking of coastal areas. This region also hosts significant cultural heritage assets, including several UNESCO World Heritage Sites. The present research demonstrates a methodological approach to assess the current and future exposure of Mediterranean coastal areas and heritage assets to Sea Level Rise using open access data regarding elevation, vertical ground motion, and Sea Level Change factors (e.g., ice sheets, glaciers, etc.). The future projections regard 2050 and 2100 and are based on RCP scenarios 2.6, 4.5 and 8.5. The datasets used include Copernicus GLO-30 DSM, the European Ground Motion Service’s dataset on Vertical Ground Motion, the Sea Level Change Projections’ Regional Dataset by NASA, and a hybrid coastline dataset created for the present research purposes to assist in delineating the study area. The research results demonstrate that Greece, Italy, and France’s mainland and cultural heritage assets already face SLR-related hazards but are expected to be further exposed in the future, always taking into consideration the high level of uncertainty regarding SLR projections and RCP scenarios’ hypotheses. Full article
(This article belongs to the Special Issue Advanced Technologies in Digitizing Cultural Heritage Volume II)
Show Figures

Figure 1

44 pages, 25578 KB  
Review
Remote Sensing and Modeling of the Cryosphere in High Mountain Asia: A Multidisciplinary Review
by Qinghua Ye, Yuzhe Wang, Lin Liu, Linan Guo, Xueqin Zhang, Liyun Dai, Limin Zhai, Yafan Hu, Nauman Ali, Xinhui Ji, Youhua Ran, Yubao Qiu, Lijuan Shi, Tao Che, Ninglian Wang, Xin Li and Liping Zhu
Remote Sens. 2024, 16(10), 1709; https://doi.org/10.3390/rs16101709 - 11 May 2024
Cited by 14 | Viewed by 7279
Abstract
Over the past decades, the cryosphere has changed significantly in High Mountain Asia (HMA), leading to multiple natural hazards such as rock–ice avalanches, glacier collapse, debris flows, landslides, and glacial lake outburst floods (GLOFs). Monitoring cryosphere change and evaluating its hydrological effects are [...] Read more.
Over the past decades, the cryosphere has changed significantly in High Mountain Asia (HMA), leading to multiple natural hazards such as rock–ice avalanches, glacier collapse, debris flows, landslides, and glacial lake outburst floods (GLOFs). Monitoring cryosphere change and evaluating its hydrological effects are essential for studying climate change, the hydrological cycle, water resource management, and natural disaster mitigation and prevention. However, knowledge gaps, data uncertainties, and other substantial challenges limit comprehensive research in climate–cryosphere–hydrology–hazard systems. To address this, we provide an up-to-date, comprehensive, multidisciplinary review of remote sensing techniques in cryosphere studies, demonstrating primary methodologies for delineating glaciers and measuring geodetic glacier mass balance change, glacier thickness, glacier motion or ice velocity, snow extent and water equivalent, frozen ground or frozen soil, lake ice, and glacier-related hazards. The principal results and data achievements are summarized, including URL links for available products and related data platforms. We then describe the main challenges for cryosphere monitoring using satellite-based datasets. Among these challenges, the most significant limitations in accurate data inversion from remotely sensed data are attributed to the high uncertainties and inconsistent estimations due to rough terrain, the various techniques employed, data variability across the same regions (e.g., glacier mass balance change, snow depth retrieval, and the active layer thickness of frozen ground), and poor-quality optical images due to cloudy weather. The paucity of ground observations and validations with few long-term, continuous datasets also limits the utilization of satellite-based cryosphere studies and large-scale hydrological models. Lastly, we address potential breakthroughs in future studies, i.e., (1) outlining debris-covered glacier margins explicitly involving glacier areas in rough mountain shadows, (2) developing highly accurate snow depth retrieval methods by establishing a microwave emission model of snowpack in mountainous regions, (3) advancing techniques for subsurface complex freeze–thaw process observations from space, (4) filling knowledge gaps on scattering mechanisms varying with surface features (e.g., lake ice thickness and varying snow features on lake ice), and (5) improving and cross-verifying the data retrieval accuracy by combining different remote sensing techniques and physical models using machine learning methods and assimilation of multiple high-temporal-resolution datasets from multiple platforms. This comprehensive, multidisciplinary review highlights cryospheric studies incorporating spaceborne observations and hydrological models from diversified techniques/methodologies (e.g., multi-spectral optical data with thermal bands, SAR, InSAR, passive microwave, and altimetry), providing a valuable reference for what scientists have achieved in cryosphere change research and its hydrological effects on the Third Pole. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

30 pages, 19865 KB  
Article
Characterization of the Fels Landslide (Alaska) Using Combined Terrestrial, Aerial, and Satellite Remote Sensing Data
by Davide Donati, Doug Stead, Bernhard Rabus, Jeanine Engelbrecht, John J. Clague, Stephen D. Newman and Mirko Francioni
Remote Sens. 2024, 16(1), 117; https://doi.org/10.3390/rs16010117 - 27 Dec 2023
Cited by 9 | Viewed by 2371
Abstract
The characterization of landslides located in remote areas poses significant challenges due to the costs of reaching the sites and the lack of reliable subsurface data to constrain geological interpretations. In this paper, the advantages of combining field and remote sensing techniques to [...] Read more.
The characterization of landslides located in remote areas poses significant challenges due to the costs of reaching the sites and the lack of reliable subsurface data to constrain geological interpretations. In this paper, the advantages of combining field and remote sensing techniques to investigate the deformation and stability of rock slopes are demonstrated. The characterization of the Fels landslide, a large, slowly deforming rock slope in central Alaska, is described. Historical aerial imagery is used to highlight the relationship between glacier retreat and developing instability. Airborne laser scanning (ALS) and Structure-from-Motion (SfM) datasets are used to investigate the structural geological setting of the landslide, revealing a good agreement between structural discontinuities at the outcrop and slope scales. The magnitude, plunge, and direction of slope surface displacements and their changes over time are studied using a multi-temporal synthetic aperture radar speckle-tracking (SAR ST) dataset. The analyses show an increase in displacement rates (i.e., an acceleration of the movement) between 2010 and 2020. Significant spatial variations of displacement direction and plunge are noted and correlated with the morphology of the failure surface reconstructed using the vector inclination method (VIM). In particular, steeper displacement vectors were reconstructed in the upper slope, compared to the central part, thus suggesting a change in basal surface morphology, which is largely controlled by rock mass foliation. Through this analytical approach, the Fels landslide is shown to be a slow-moving, compound rockslide, the displacement of which is controlled by structural geological features and promoted by glacier retreat. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

19 pages, 4303 KB  
Article
Surface Motion and Topographic Effects on Ice Thickness Inversion for High Mountain Asia Glaciers: A Comparison Study from Three Numerical Models
by Xiaoguang Pang, Liming Jiang, Rui Guo, Zhida Xu, Xiaoen Li and Xi Lu
Remote Sens. 2023, 15(22), 5378; https://doi.org/10.3390/rs15225378 - 16 Nov 2023
Cited by 4 | Viewed by 2645
Abstract
Several studies have evaluated the accuracy of ice thickness model inversions, but the effects of surface velocity and topographic factors have not been fully studied. Because of the important potential of models for estimating regional and global ice thickness, the influence of the [...] Read more.
Several studies have evaluated the accuracy of ice thickness model inversions, but the effects of surface velocity and topographic factors have not been fully studied. Because of the important potential of models for estimating regional and global ice thickness, the influence of the characteristics of the glaciers themselves on the models is unknown. Therefore, we estimated the thickness of 10 glaciers in HMA based on remote sensing data using the GlabTop2, GV22, and VOLTA models, and we analyzed the factors affecting accuracy. The first two models are representative of the widely used shallow ice approximation and laminar flow theory, and the latter is a new model based on shallow ice approximation. The results show that the RMSEs for GlabTop2, VOLTA, and GV22 are 36.6 m, 56.8 m, and 63.2 m, respectively. The accuracy of the three models differed obviously under the influence of different slopes, aspects, and surface velocities. In contrast to glaciers with higher surface velocities, GV22 is more suitable for glaciers with smaller surface velocities, and the accuracy of the model is significantly reduced when surface velocities are greater than 50 m/yr. Aspect has an effect on the accuracy of the GV22 ice thickness inversion but not on the other models. Ice thicknesses estimated using the three models is more reliable at surface slopes of 16–24°. These three models do not apply to gentle glaciers such as icecaps. Our study provides an important reference for choosing a suitable model to invert the glacier thickness in HMA. Full article
Show Figures

Figure 1

31 pages, 33215 KB  
Article
Photogrammetric Monitoring of Rock Glacier Motion Using High-Resolution Cross-Platform Datasets: Formation Age Estimation and Modern Thinning Rates
by Tyler M. Meng, Roberto Aguilar, Michael S. Christoffersen, Eric I. Petersen, Christopher F. Larsen, Joseph S. Levy and John W. Holt
Remote Sens. 2023, 15(19), 4779; https://doi.org/10.3390/rs15194779 - 30 Sep 2023
Cited by 9 | Viewed by 3235
Abstract
The availability of remote sensing imagery at high spatiotemporal resolutions presents the opportunity to monitor the surface motion of rock glaciers, a key constraint for characterizing the dynamics of their evolution. In this paper, we investigate four North American rock glaciers by automatically [...] Read more.
The availability of remote sensing imagery at high spatiotemporal resolutions presents the opportunity to monitor the surface motion of rock glaciers, a key constraint for characterizing the dynamics of their evolution. In this paper, we investigate four North American rock glaciers by automatically measuring their horizontal surface displacement using photogrammetric data acquired with crewed and uncrewed aircraft along with orbital spacecraft over monitoring periods of up to eight years. We estimate vertical surface changes on these rock glaciers with photogrammetrically generated digital elevation models (DEM) and digitized topographic maps. Uncertainty analysis shows that the imagery with the highest resolution and most precise positioning have the best performance when used with the automated change detection algorithm. This investigation produces gridded velocity fields over the entire surface area of each study site, from which we estimate the age of rock glacier formation using along-flow velocity integration. Though the age estimates vary, the ice within the modern extent of these landforms began flowing between 3000 and 7000 years before present, postdating the last glacial maximum. Surface elevation change maps indicate present-day thinning at the lower latitude/higher elevation sites in Wyoming, while the higher latitude/lower elevation sites in Alaska exhibit relatively stable surface elevations. Full article
(This article belongs to the Special Issue Remote Sensing of Cryosphere and Related Processes)
Show Figures

Figure 1

25 pages, 8458 KB  
Article
The Taconnaz Rockfall (Mont-Blanc Massif, European Alps) of November 2018: A Complex and At-Risk Rockwall-Glacier-Torrent Morphodynamic Continuum
by Ludovic Ravanel, Pierre-Allain Duvillard, Laurent Astrade, Thierry Faug, Philip Deline, Johan Berthet, Maëva Cathala, Florence Magnin, Alexandre Baratier and Xavier Bodin
Appl. Sci. 2023, 13(17), 9716; https://doi.org/10.3390/app13179716 - 28 Aug 2023
Cited by 6 | Viewed by 6810
Abstract
The glacial and torrential basin of Taconnaz (Mont-Blanc massif, France) dominates the Chamonix valley. It is one of the major paths for snow avalanches in the Alps, often triggered by serac falls from the Taconnaz glacier. On 24 November 2018, the basin’s multi-risk [...] Read more.
The glacial and torrential basin of Taconnaz (Mont-Blanc massif, France) dominates the Chamonix valley. It is one of the major paths for snow avalanches in the Alps, often triggered by serac falls from the Taconnaz glacier. On 24 November 2018, the basin’s multi-risk nature was further accentuated by a new type of hazard with a rockfall triggered at c. 2700 m a.s.l. It travelled down over a distance of 1.85 km and stopped 165 m away from the construction site of a micro-hydroelectric power station. We studied the triggering conditions at the permafrost lower limit, the effects of the supra-glacial path on the flow patterns, and the fate of the scar and the deposit on torrential activity. By comparing a pre-event Structure from Motion model with a post-event LiDAR model, we estimated the volume of the scar to be 42,900 m3 (±5%). A numerical model was employed to simulate the rapid runout. It revealed the complexity of the flow, attributed to the sequestration of a part of the deposit in crevasses, the incorporation of a significant volume of ice resulting in a transition from a dry granular flow to a mud-like flow, and the presence of numerous deposit zones. Subsequent monitoring of the area after the event allowed for the documentation of the scar’s evolution, including a landslide, as well as the progressive degradation and evacuation of the deposit by the torrent without producing debris flow. The study of the triggering factors indicated glacial retreat as the probable main cause, assisted by the melting of ice lenses left by the permafrost disappearance. Finally, we present replicable methods for managing risks at the site following the event. This event improves the understanding of cascading processes that increasingly impact Alpine areas in the context of climate change. Full article
Show Figures

Figure 1

17 pages, 26389 KB  
Article
Surface Displacement of Hurd Rock Glacier from 1956 to 2019 from Historical Aerial Frames and Satellite Imagery (Livingston Island, Antarctic Peninsula)
by Gonçalo Prates and Gonçalo Vieira
Remote Sens. 2023, 15(14), 3685; https://doi.org/10.3390/rs15143685 - 24 Jul 2023
Cited by 4 | Viewed by 2417
Abstract
In the second half of the 20th century, the western Antarctic Peninsula recorded the highest mean annual air temperature rise in the Antarctic. The South Shetland Islands are located about 100 km northwest of the Antarctic Peninsula. The mean annual air temperature at [...] Read more.
In the second half of the 20th century, the western Antarctic Peninsula recorded the highest mean annual air temperature rise in the Antarctic. The South Shetland Islands are located about 100 km northwest of the Antarctic Peninsula. The mean annual air temperature at sea level in this Maritime Antarctic region is close to −2 °C and, therefore, very sensitive to permafrost degradation following atmospheric warming. Among geomorphological indicators of permafrost are rock glaciers found below steep slopes as a consequence of permafrost creep, but with surficial movement also generated by solifluction and shallow landslides of rock debris and finer sediments. Rock glacier surface velocity is a new essential climate variable parameter by the Global Climate Observing System, and its historical analysis allows insight into past permafrost behavior. Recovery of 1950s aerial image stereo-pairs and structure-from-motion processing, together with the analysis of QuickBird 2007 and Pleiades 2019 high-resolution satellite imagery, allowed inferring displacements of the Hurd rock glacier using compression ridge-and-furrow morphology analysis over 60 years. Displacements measured on the rock glacier surface from 1956 until 2019 were from 7.5 m to 22.5 m and surface velocity of 12 cm/year to 36 cm/year, measured on orthographic images, with combined deviation root-mean-square of 2.5 m and 2.4 m in easting and northing. The inferred surface velocity also provides a baseline reference to assess today’s displacements. The results show patterns of the Hurd rock glacier displacement velocity, which are analogous to those reported within the last decade, without being possible to assess any displacement acceleration. Full article
(This article belongs to the Special Issue Remote Sensing of Cryosphere and Related Processes)
Show Figures

Graphical abstract

25 pages, 8398 KB  
Article
Outboard Onset of Ross Orogen Magmatism and Subsequent Igneous and Metamorphic Cooling Linked to Slab Rollback during Late-Stage Gondwana Assembly
by Timothy Paulsen, John Encarnación, Anne Grunow, Jeffrey Benowitz, Paul Layer, Chad Deering and Jakub Sliwinski
Geosciences 2023, 13(4), 126; https://doi.org/10.3390/geosciences13040126 - 21 Apr 2023
Cited by 2 | Viewed by 3358
Abstract
Changes in magmatism and sedimentation along the late Neoproterozoic-early Paleozoic Ross orogenic belt in Antarctica have been linked to the cessation of convergence along the Mozambique belt during the assembly of East-West Gondwana. However, these interpretations are non-unique and are based, in part, [...] Read more.
Changes in magmatism and sedimentation along the late Neoproterozoic-early Paleozoic Ross orogenic belt in Antarctica have been linked to the cessation of convergence along the Mozambique belt during the assembly of East-West Gondwana. However, these interpretations are non-unique and are based, in part, on limited thermochronological data sets spread out along large sectors of the East Antarctic margin. We report new 40Ar/39Ar hornblende, muscovite, and biotite age data for plutonic (n = 13) and metasedimentary (n = 3) samples from the Shackleton–Liv Glacier sector of the Queen Maud Mountains in Antarctica. Cumulative 40Ar/39Ar age data show polymodal age peaks (510 Ma, 491 Ma, 475 Ma) that lag peaks in U-Pb igneous crystallization ages, suggesting igneous and metamorphic cooling following magmatism within the region. The 40Ar/39Ar ages are similar to ages in other sectors of the Ross orogen, but younger than detrital mineral 40Ar/39Ar cooling ages indicative of older magmatism and cooling of unexposed inboard areas along the margin. Detrital zircon trace element abundances suggest that the widespread onset of magmatism in outboard localities of the orogen correlates with a ~560–530 Ma decrease in crustal thickness. The timing of crustal thinning recorded by zircon in magmas overlaps with other evidence for the timing of crustal extension, suggesting that the regional onset of magmatism with subsequent igneous and metamorphic cooling probably reflects slab rollback that coincided with possible global plate motion changes induced during the final assembly of Gondwana. Full article
Show Figures

Figure 1

20 pages, 12149 KB  
Article
Sea Tide Influence on Ice Flow of David Drygalski’s Ice Tongue Inferred from Geodetic GNSS Observations and SAR Offset Tracking Analysis
by Luca Vittuari, Antonio Zanutta, Andrea Lugli, Leonardo Martelli and Marco Dubbini
Remote Sens. 2023, 15(8), 2037; https://doi.org/10.3390/rs15082037 - 12 Apr 2023
Cited by 1 | Viewed by 2674
Abstract
David Glacier and Drygalski Ice Tongue are massive glaciers in Victoria Land, Antarctica. The ice from the East Antarctic Ice Sheet is drained through the former, and then discharged into the western Ross Sea through the latter. David Drygalski is the largest outlet [...] Read more.
David Glacier and Drygalski Ice Tongue are massive glaciers in Victoria Land, Antarctica. The ice from the East Antarctic Ice Sheet is drained through the former, and then discharged into the western Ross Sea through the latter. David Drygalski is the largest outlet glacier in Northern Victoria Land, floating kilometers out to sea. The floating and grounded part of the David Glacier are the main focus of this article. During the XXI Italian Antarctic Expedition (2005–2006), within the framework of the National Antarctic Research Programme (PNRA), two GNSS stations were installed at different points: the first close to the grounding line of David Glacier, and the second approximately 40 km downstream of the first one. Simultaneous data logging was performed by both GNSS stations for 24 days. In the latest data processing, the kinematic PPP technique was adopted to evaluate the dominant diurnal components and the very small semi-diurnal variations in ice motion induced by the ocean tide and the mean ice flow rates of both GNSS stations. Comparison of the GNSS time series with predicted ocean tide calculated from harmonic coefficients of the nearest tide gauge stations, installed at Cape Roberts and Mario Zucchelli Station, highlight different local response of the glacier to ocean tide, with a minor amplitude of vertical motion at a point partially anchored at the bedrock close to the grounding line. During low tide, the velocity of the ice flow reaches its daily maximum, in accordance with the direction of seawater outflow from the fjord into the ocean, while the greatest daily tidal excursion generates an increase in the horizontal ice flow velocity. With the aim to extend the analysis in spatial terms, five COSMO-SkyMED Stripmap scenes were processed. The comparison of the co-registered offset tracking rates, obtained from SAR images, with the GNSS estimation shows good agreement. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications)
Show Figures

Graphical abstract

Back to TopTop