Photogrammetric Monitoring of Rock Glacier Motion Using High-Resolution Cross-Platform Datasets: Formation Age Estimation and Modern Thinning Rates
Abstract
:1. Introduction
1.1. Surface Motion of Rock Glaciers
1.2. Study Areas
1.2.1. Absaroka Mountains, Wyoming
1.2.2. Wrangell Mountains, Alaska
2. Materials and Methods
2.1. Photogrammetric Data Acquisition and Processing
2.1.1. Wyoming
2.1.2. Alaska
2.2. Change Detection Analysis
2.3. Surface Elevation Change
3. Results
3.1. Wyoming
3.1.1. Galena Creek
3.1.2. Sulphur Creek
3.2. Alaska
3.2.1. Sourdough
3.2.2. McCarthy Creek
3.3. Surface Elevation Change
4. Discussion
4.1. Validation and Uncertainty Analysis
4.2. Interpreted Flow History
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CIAS | Correlation Image Analysis Software |
GNSS | Global Navigation Satellite System |
GPR | Ground-Penetrating Radar |
GDAL | Geospatial Data Abstraction Library |
UAS | Uncrewed Aerial System |
DEM | Digital Elevation Model |
GCP | Ground Control Point |
CP | Check Point |
RMS | Root Mean Square |
RTK | Real-Time Kinematic |
LIA | Little Ice Age |
LGM | Last Glacial Maximum |
SNOTEL | Snowpack Telemetry |
Appendix A. Thermal Conduction Model
References
- Potter, N. Ice-Cored Rock Glacier, Galena Creek, Northern Absaroka Mountains, Wyoming. Geol. Soc. Am. Bull. 1972, 83, 3025–3057. [Google Scholar] [CrossRef]
- Anderson, R.S.; Anderson, L.S.; Armstrong, W.H.; Rossi, M.W.; Crump, S.E. Glaciation of alpine valleys: The glacier–debris-covered glacier–rock glacier continuum. Geomorphology 2018, 311, 127–142. [Google Scholar] [CrossRef]
- Petersen, E.I.; Levy, J.S.; Holt, J.W.; Stuurman, C.M. New insights into ice accumulation at Galena Creek Rock Glacier from radar imaging of its internal structure. J. Glaciol. 2019, 66, 1–10. [Google Scholar] [CrossRef]
- Wahrhaftig, C.; Cox, A. Rock glaciers in the Alaska Range. Geol. Soc. Am. Bull. 1959, 70, 383–436. [Google Scholar] [CrossRef]
- Haeberli, W.; Hallet, B.; Arenson, L.; Elconin, R.; Humlum, O.; Kääb, A.; Kaufmann, V.; Ladanyi, B.; Matsuoka, N.; Springman, S.; et al. Permafrost creep and rock glacier dynamics. Permafr. Periglac. Process. 2006, 17, 189–214. [Google Scholar] [CrossRef]
- IPA Action Group; Rock Glacier Inventories and Kinematics (RGIK). Towards Standard Guidelines for Inventorying Rock Glaciers: Baseline Concepts (Version 4.2.2). Available online: www.rgik.org (accessed on 20 April 2023).
- Kääb, A.; Vollmer, M. Surface Geometry, Thickness Changes and Flow Fields on Creeping Mountain Permafrost: Automatic Extraction by Digital Image Analysis. Permafr. Periglac. Process. 2000, 11, 315–326. [Google Scholar] [CrossRef]
- Outcalt, S.I.; Benedict, J.B. Photo-Interpretation of two Types of Rock Glacier in the Colorado Front Range, U.S.A. J. Glaciol. 1965, 5, 849–856. [Google Scholar] [CrossRef]
- White, S.E. Rock Glacier Studies in the Colorado Front Range, 1961 to 1968. Arct. Alp. Res. 1971, 3, 43–64. [Google Scholar] [CrossRef]
- Francou, B.; Reynaud, L. 10 year surficial velocities on a rock glacier (Laurichard, French Alps). Permafr. Periglac. Process. 1992, 3, 209–213. [Google Scholar] [CrossRef]
- Berthling, I.; Etzelmüller, B.; Eiken, T.; Sollid, J.L. Rock glaciers on Prins Karls Forland, Svalbard. I: Internal structure, flow velocity and morphology. Permafr. Periglac. Process. 1998, 9, 135–145. [Google Scholar] [CrossRef]
- Konrad, S.K.; Humphrey, N.F.; Steig, E.J.; Clark, D.H.; Potter, N.; Pfeffer, W.T. Rock glacier dynamics and paleoclimatic implications. Geology 1999, 27, 1131–1134. [Google Scholar] [CrossRef]
- Bucki, A.K.; Echelmeyer, K.A. The flow of Fireweed rock glacier, Alaska, U.S.A. J. Glaciol. 2004, 50, 76–86. [Google Scholar] [CrossRef]
- Bertone, A.; Barboux, C.; Bodin, X.; Bolch, T.; Brardinoni, F.; Rafael Caduff, R.; Christiansen, H.H.; Darrow, M.M.; Delaloye, R.; Etzelmüller, B.; et al. Incorporating InSAR kinematics into rock glacier inventories: Insights from 11 regions worldwide. Cryosphere 2022, 16, 2769–2792. [Google Scholar] [CrossRef]
- Brencher, G.; Handwerger, A.L.; Munroe, J.S. InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA. Cryosphere 2021, 15, 4823–4844. [Google Scholar] [CrossRef]
- Liu, L.; Millar, C.I.; Westfall, R.D.; Zebker, H.A. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: Inventory and a case study using InSAR. Cryosphere 2013, 7, 1109–1119. [Google Scholar] [CrossRef]
- Kääb, A. Remote Sensing of Mountain Glaciers and Permafrost Creep. Schriftenreihe Physische Geographie Glaziologie und Geomorphodynamik; Geographisches Institut der Universität Zürich: Zürich, Switzerland, 2005; Volume 48. [Google Scholar]
- Robson, B.A.; MacDonell, S.; Ayala, Á.; Bolch, T.; Nielsen, P.R.; Vivero, S. Glacier and rock glacier changes since the 1950s in the La Laguna catchment, Chile. Cryosphere 2022, 16, 647–665. [Google Scholar] [CrossRef]
- Gärtner-Roer, I.; Brunner, N.; Delaloye, R.; Haeberli, W.; Kääb, A.; Thee, R. Glacier–permafrost relations in a high-mountain environment: 5 decades of kinematic monitoring at the Gruben site, Swiss Alps. Cryosphere 2022, 16, 2083–2101. [Google Scholar] [CrossRef]
- Vivero, S.; Bodin, X.; Farías-Barahona, D.; MacDonell, S.; Schaffer, N.; Robson, B.A.; Lambiel, C. Combination of Aerial, Satellite, and UAV Photogrammetry for Quantifying Rock Glacier Kinematics in the Dry Andes of Chile (30° S) Since the 1950s. Front. Remote Sens. 2021, 2, 784015. [Google Scholar] [CrossRef]
- Lei, Y.; Gardner, A.; Agram, P. Autonomous Repeat Image Feature Tracking (autoRIFT) and Its Application for Tracking Ice Displacement. Remote Sens. 2021, 13, 749. [Google Scholar] [CrossRef]
- Kenner, R.; Phillips, M.; Beutel, J.; Hiller, M.; Limpach, P.; Pointner, E.; Volken, M. Factors Controlling Velocity Variations at Short-Term, Seasonal and Multiyear Time Scales, Ritigraben Rock Glacier, Western Swiss Alps. Permafr. Periglac. Process. 2017, 28, 675–684. [Google Scholar] [CrossRef]
- Heid, T.; Kääb, A. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere 2012, 6, 467–478. [Google Scholar] [CrossRef]
- Delaloye, R.; Lambiel, C.; Gärtner-Roer, I. Overview of rock glacier kinematics research in the Swiss Alps. Geogr. Helv. 2010, 65, 135–145. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Betts, R.A. Mountain rock glaciers contain globally significant water stores. Sci. Rep. 2018, 8, 2834. [Google Scholar] [CrossRef] [PubMed]
- Barsch, D. The problem of the ice-cored rock glacier. In Rock Glaciers; Giardino, J.R., Shroder, J.E., Jr., Vitek, J.D., Eds.; Allen & Unwin: Boston, MA, USA, 1987; pp. 45–53. [Google Scholar]
- Clark, D.H.; Steig, E.J.; Potter, N.; Gillespie, A.R. Genetic variability of rock glaciers. Geogr. Ann. Ser. A Phys. Geogr. 1998, 80, 175–182. [Google Scholar] [CrossRef]
- Ackert, R.P., Jr. A Rock Glacier/Debris-Covered Glacier System at Galena Creek, Absaroka Mountains, Wyoming. Geogr. Ann. Ser. A Phys. Geogr. 1998, 80, 267–276. [Google Scholar] [CrossRef]
- Potter, N.; Steig, E.J.; Clark, D.H.; Speece, M.A.; Clark, G.M.; Updike, A.B. Galena Creek rock glacier revisited—New observations on an old controversy. Geogr. Ann. Ser. A Phys. Geogr. 1998, 80, 251–265. [Google Scholar] [CrossRef]
- Steig, E.J.; Fitzpatrick, J.J.; Potter, N.; Clark, D.H. The geochemical record in rock glaciers. Geogr. Ann. Ser. A Phys. Geogr. 1998, 80, 277–286. [Google Scholar] [CrossRef]
- Meng, T.M.; Petersen, E.I.; Holt, J.W. Rock glacier composition and structure from radio wave speed analysis with dipping reflector correction. J. Glaciol. 2023, 69, 639–657. [Google Scholar] [CrossRef]
- Kunz, J.; Kneisel, C. Glacier–permafrost interaction at a thrust moraine complex in the glacier forefield Muragl, Swiss Alps. Geosciences 2020, 10, 205. [Google Scholar] [CrossRef]
- Bodin, X.; Rojas, F.; Brenning, A. Status and evolution of the cryosphere in the Andes of Santiago (Chile, 33.5°S.). Geomorphology 2010, 118, 453–464. [Google Scholar] [CrossRef]
- Wee, J.; Delaloye, R. Post-glacial dynamics of an alpine Little Ice Age glacitectonized frozen landform (Aget, western Swiss Alps). Permafr. Periglac. Process. 2022, 33, 370–385. [Google Scholar] [CrossRef]
- Potter, N.; (Dickinson College, Carlisle, PA, USA). Personal communication, 2022.
- Östrem, G. Ice Melting under a Thin Layer of Moraine, and the Existence of Ice Cores in Moraine Ridges. Geogr. Ann. 1959, 41, 228–230. [Google Scholar] [CrossRef]
- Petersen, E.I.; Holt, J.W.; Levy, J.S.; Meng, T.M.; Tober, B.S.; Christoffersen, M.; Stuurman, C.M.; Cardenas, B. The transition from Alpine Glacier to Rock Glacier at Sulphur Creek, Wyoming. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 9–13 December 2019. Abstract Number C41E–1506. [Google Scholar]
- Potter, N.L.; Potter, N.; Retelle, M.J. Continued Movement and Ablation Monitoring, Galena Creek Rock Glacier, Absaroka Mountains, WY. In Proceedings of the Geological Society of America Annual Meeting, Denver, CO, USA, 25 September 2016. Abstract Number 81-14. [Google Scholar]
- Nolan, M.; Larsen, C.; Sturm, M. Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry. Cryosphere 2015, 9, 1445–1463. [Google Scholar] [CrossRef]
- Heid, T.; Kääb, A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sens. Environ. 2012, 118, 339–355. [Google Scholar] [CrossRef]
- U.S. Geological Survey. USGS 1/3 Arc Second n45w110: U.S. Geological Survey. 2023. Available online: www.sciencebase.gov/catalog/item/63c78c29d34e06fef14edbd2 (accessed on 13 February 2023).
- Gesch, D.B.; Oimoen, M.J.; Evans, G.A. Accuracy assessment of the U.S. Geological Survey National Elevation Dataset, and comparison with other large-area elevation datasets—SRTM and ASTER. In U.S. Geological Survey Open-File Report 2014–1008; U.S. Geological Survey: Wriston, WV, USA, 2014. [Google Scholar]
- Debella-Gilo, M.; Kääb, A. Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens. Environ. 2011, 115, 130–142. [Google Scholar] [CrossRef]
- Wirz, V.; Gruber, S.; Purves, R.S.; Beutel, J.; Gärtner-Roer, I.; Gubler, S.; Vieli, A. Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions. Earth Surf. Dyn. 2016, 4, 103–123. [Google Scholar] [CrossRef]
- Taylor, J.R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed.; University Science Books: Sausalito, CA, USA, 1997. [Google Scholar]
- Vivero, S.; Hendrickx, H.; Frankl, A.; Delaloye, R.; Lambiel, C. Kinematics and geomorphological changes of a destabilising rock glacier captured from close-range sensing techniques (Tsarmine rock glacier, Western Swiss Alps). Front. Earth Sci. 2022, 10, 1017949. [Google Scholar] [CrossRef]
- Kaufmann, V.; Kellerer-Pirklbauer, A.; Seier, G. Conventional and UAV-Based Aerial Surveys for Long-Term Monitoring (1954–2020) of a Highly Active Rock Glacier in Austria. Front. Remote Sens. 2021, 2, 732744. [Google Scholar] [CrossRef]
- Davis, P. Holocene glacier fluctuations in the American Cordillera. Quat. Sci. Rev. 1988, 7, 129–157. [Google Scholar] [CrossRef]
- Wiles, G.C.; Jacoby, G.C.; Davi, N.K.; McAllister, R.P. Late Holocene glacier fluctuations in the Wrangell Mountains, Alaska. Geol. Soc. Am. Bull. 2002, 114, 896–908. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers, 4th ed.; Elsevier: New York, NY, USA, 2010. [Google Scholar]
- Monnier, S.; Kinnard, C. Reconsidering the glacier to rock glacier transformation problem: New insights from the central Andes of Chile. Geomorphology 2015, 238, 47–55. [Google Scholar] [CrossRef]
- Petersen, E.I.; Hock, R.; Fochesatto, G.J.; Anderson, L.S. The Significance of Convection in Supraglacial Debris Revealed Through Novel Analysis of Thermistor Profiles. JGR Earth Surf. 2022, 127, 47–55. [Google Scholar] [CrossRef]
Region | Site | Date | # of Images | Avg. Camera Error (cm) | Resolution () | # of GCP/CP | GCP/CP RMSE (cm) |
---|---|---|---|---|---|---|---|
Wyoming | GC | 20200823 U | 1076 | 0.3 | 7.9 | 0/0 | n/a |
SC | 20200825 A | 269 | n/a | 10.8 | 10/3 | 0.44/28.3 | |
GC | 20210710 S | 1 | n/a | 40.1 | 0/0 | n/a | |
SC | 20210710 S | 1 | n/a | 41.0 | 0/0 | n/a | |
SC | 20220807 S | 1 | n/a | 41.3 | 0/0 | n/a | |
GC | 20220808 U | 941 | 0.8 | 5.4 | 4/4 | 0.97/7.59 | |
Alaska | SRG, MC | 20140525 A | 433 | 16.2 | 20.0 | 0/0 | n/a |
SRG, MC | 20140823 A | 345 | 17.2 | 19.8 | 0/0 | n/a | |
SRG, MC | 20150523 A | 546 | 15.2 | 20.6 | 0/0 | n/a | |
SRG, MC | 20150829 A | 561 | 18.8 | 19.3 | 0/0 | n/a | |
SRG, MC | 20160601 A | 614 | 14.5 | 25.3 | 0/0 | n/a | |
SRG | 20160817 A | 494 | 21.9 | 24.2 | 0/0 | n/a | |
SRG, MC | 20190905 A | 628 | 65.3 | 12.1 | 0/0 | n/a | |
SRG | 20200517 A | 215 | 9.7 | 12.4 | 0/0 | n/a | |
SRG, MC | 20201018 A | 520 | 80.5 | 12.4 | 0/0 | n/a | |
SRG, MC | 20210622 A | 340 | 11.7 | 14.8 | 0/0 | n/a | |
SRG | 20220708 A | 357 | 26.2 | 18.5 | 0/0 | n/a |
Rock Glacier | Image 1 | Image 2 | x (m E) | y (m N) |
---|---|---|---|---|
Galena Creek | 10 July 2021 S* | 8 August 2022 U | −0.99 | −1.20 |
Sulphur Creek | 10 July 2021 S | 7 August 2022 S* | 0.84 | −1.25 |
Sulphur Creek | 25 August 2020 A | 7 August 2022 S* | 0.81 | 0.68 |
Site | Stable Terrain Area (m2) | # of Points | Image Pair | Mean () | Mean () | Mean () | ||
---|---|---|---|---|---|---|---|---|
Galena Creek | 8400 | 320 | August 20 August 22 | 0.068 | 0.009 | −0.006 | 0.109 | 0.103 |
8400 | 320 | July 21 August 22 | 5.65 | −0.290 | 0.018 | 6.43 | 7.11 | |
Sulphur Creek | 11,550 | 111 | August 20 August 22 | 0.104 | 0.010 | −0.010 | 0.112 | 0.086 |
Sourdough | 13,600 | 141 | May 14 August 14 | 1.11 | 0.948 | −0.011 | 0.877 | 0.519 |
13,600 | 141 | May 14 May 15 | 0.246 | −0.147 | 0.029 | 0.229 | 0.106 | |
13,600 | 141 | May 14 August 15 | 0.288 | 0.163 | 0.017 | 0.336 | 0.349 | |
13,600 | 141 | May 14 June 16 | 0.208 | −0.171 | 0.070 | 0.118 | 0.059 | |
13,600 | 141 | May 14 August 16 | 0.466 | −0.345 | −0.250 | 0.114 | 0.198 | |
13,600 | 141 | May 14 September 19 | 0.057 | 0.014 | 0.003 | 0.063 | 0.134 | |
13,600 | 141 | May 14 May 20 | 0.105 | −0.034 | 0.001 | 0.234 | 0.235 | |
13,600 | 141 | May 14 October 20 | 0.259 | −0.091 | −0.112 | 0.356 | 0.373 | |
13,600 | 141 | May 14 June 21 | 0.042 | −0.004 | −0.038 | 0.014 | 0.019 | |
13,600 | 141 | May 14 July 22 | 0.091 | −0.014 | −0.051 | 0.135 | 0.154 | |
McCarthy Creek | 11,030 | 111 | May 14 August 14 | 6.64 | 2.02 | 0.293 | 8.30 | 6.17 |
11,030 | 111 | August 14 May 15 | 0.470 | 0.006 | 0.018 | 0.612 | 0.721 | |
11,030 | 111 | August 14 August 15 | 0.403 | 0.046 | 0.067 | 0.407 | 0.327 | |
11,030 | 111 | August 14 June 16 | 1.31 | −0.231 | 0.201 | 1.41 | 1.21 | |
11,030 | 111 | August 14 September 19 | 0.086 | 0.033 | 0.004 | 0.235 | 0.155 | |
11,030 | 111 | August 14 October 20 | 1.06 | −0.043 | −0.140 | 0.952 | 0.855 | |
11,030 | 111 | August 14 June 21 | 0.078 | 0−0.021 | −0.018 | 0.086 | 0.146 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, T.M.; Aguilar, R.; Christoffersen, M.S.; Petersen, E.I.; Larsen, C.F.; Levy, J.S.; Holt, J.W. Photogrammetric Monitoring of Rock Glacier Motion Using High-Resolution Cross-Platform Datasets: Formation Age Estimation and Modern Thinning Rates. Remote Sens. 2023, 15, 4779. https://doi.org/10.3390/rs15194779
Meng TM, Aguilar R, Christoffersen MS, Petersen EI, Larsen CF, Levy JS, Holt JW. Photogrammetric Monitoring of Rock Glacier Motion Using High-Resolution Cross-Platform Datasets: Formation Age Estimation and Modern Thinning Rates. Remote Sensing. 2023; 15(19):4779. https://doi.org/10.3390/rs15194779
Chicago/Turabian StyleMeng, Tyler M., Roberto Aguilar, Michael S. Christoffersen, Eric I. Petersen, Christopher F. Larsen, Joseph S. Levy, and John W. Holt. 2023. "Photogrammetric Monitoring of Rock Glacier Motion Using High-Resolution Cross-Platform Datasets: Formation Age Estimation and Modern Thinning Rates" Remote Sensing 15, no. 19: 4779. https://doi.org/10.3390/rs15194779
APA StyleMeng, T. M., Aguilar, R., Christoffersen, M. S., Petersen, E. I., Larsen, C. F., Levy, J. S., & Holt, J. W. (2023). Photogrammetric Monitoring of Rock Glacier Motion Using High-Resolution Cross-Platform Datasets: Formation Age Estimation and Modern Thinning Rates. Remote Sensing, 15(19), 4779. https://doi.org/10.3390/rs15194779