Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (218)

Search Parameters:
Keywords = glacier hydrology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3532 KiB  
Article
Anticipating Future Hydrological Changes in the Northern River Basins of Pakistan: Insights from the Snowmelt Runoff Model and an Improved Snow Cover Data
by Urooj Khan, Romana Jamshed, Adnan Ahmad Tahir, Faizan ur Rehman Qaisar, Kunpeng Wu, Awais Arifeen, Sher Muhammad, Asif Javed and Muhammad Abrar Faiz
Water 2025, 17(14), 2104; https://doi.org/10.3390/w17142104 - 15 Jul 2025
Viewed by 301
Abstract
The water regime in Pakistan’s northern region has experienced significant changes regarding hydrological extremes like floods because of climate change. Coupling hydrological models with remote sensing data can be valuable for flow simulation in data-scarce regions. This study focused on simulating the snow- [...] Read more.
The water regime in Pakistan’s northern region has experienced significant changes regarding hydrological extremes like floods because of climate change. Coupling hydrological models with remote sensing data can be valuable for flow simulation in data-scarce regions. This study focused on simulating the snow- and glacier-melt runoff using the snowmelt runoff model (SRM) in the Gilgit and Kachura River Basins of the upper Indus basin (UIB). The SRM was applied by coupling it with in situ and improved cloud-free MODIS snow and glacier composite satellite data (MOYDGL06) to simulate the flow under current and future climate scenarios. The SRM showed significant results: the Nash–Sutcliffe coefficient (NSE) for the calibration and validation period was between 0.93 and 0.97, and the difference in volume (between the simulated and observed flow) was in the range of −1.5 to 2.8% for both catchments. The flow tends to increase by 0.3–10.8% for both regions (with a higher increase in Gilgit) under mid- and late-21st-century climate scenarios. The Gilgit Basin’s higher hydrological sensitivity to climate change, compared to the Kachura Basin, stems from its lower mean elevation, seasonal snow dominance, and greater temperature-induced melt exposure. This study concludes that the simple temperature-based models, such as the SRM, coupled with improved satellite snow cover data, are reliable in simulating the current and future flows from the data-scarce mountainous catchments of Pakistan. The outcomes are valuable and can be used to anticipate and lessen any threat of flooding to the local community and the environment under the changing climate. This study may support flood assessment and mapping models in future flood risk reduction plans. Full article
Show Figures

Figure 1

22 pages, 1464 KiB  
Review
Climate-Induced Transboundary Water Insecurity in Central Asia: Institutional Challenges, Adaptation Responses, and Future Research Directions
by Yerlan Issakov, Kaster Sarkytkan, Tamara Gajić, Aktlek Akhmetova, Gulmira Berdygulova, Kairat Zhoya, Tokan Razia and Botagoz Matigulla
Water 2025, 17(12), 1795; https://doi.org/10.3390/w17121795 - 15 Jun 2025
Viewed by 585
Abstract
This study conducts a comprehensive and systematic literature review, guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, to investigate the impacts of climate change on closed lake systems in Central Asia, with a specific focus on Lakes Balkhash, [...] Read more.
This study conducts a comprehensive and systematic literature review, guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, to investigate the impacts of climate change on closed lake systems in Central Asia, with a specific focus on Lakes Balkhash, Issyk-Kul, and Urmia. Based on a detailed analysis of 74 peer-reviewed studies published between 2000 and 2025, this review identifies key thematic patterns and bibliometric trends in the literature. Findings reveal that most studies emphasize hydrological stress, glacier retreat, and an increasing drought frequency, while institutional adaptation and transboundary governance mechanisms remain underdeveloped and inconsistently implemented. National-level adaptation strategies vary considerably, with Kazakhstan and Uzbekistan showing a relatively higher engagement, though rarely supported by enforceable cross-border agreements. This review also highlights the limited participation of local research institutions and insufficient empirical validation of policy measures. The bibliometric analysis indicates that most high-impact publications originate outside the region, particularly from China and Germany. This study provides a structured synthesis of existing knowledge and identifies critical avenues for future research and policy development. It calls for more inclusive, transdisciplinary, and regionally embedded approaches to water governance in the context of accelerating climate risks. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

13 pages, 3225 KiB  
Article
Glacier Retreat and Groundwater Recharge in Central Chile: Analysis to Inform Decision-Making for Sustainable Water Resources Management
by Verónica Urbina, Roberto Pizarro, Solange Jara, Paulina López, Alfredo Ibáñez, Claudia Sangüesa, Cristóbal Toledo, Madeleine Guillen, Héctor L. Venegas-Quiñones, Francisco Alejo, John E. McCray and Pablo A. Garcia-Chevesich
Sustainability 2025, 17(11), 4993; https://doi.org/10.3390/su17114993 - 29 May 2025
Viewed by 1225
Abstract
Glaciers worldwide are in retreat, and their meltwater can modulate mountain aquifers. We examined whether mass loss of the Juncal Norte Glacier (central Chile) has affected groundwater storage in the Juncal River basin between 1990 and 2022. Recession-curve modeling of daily streamflow shows [...] Read more.
Glaciers worldwide are in retreat, and their meltwater can modulate mountain aquifers. We examined whether mass loss of the Juncal Norte Glacier (central Chile) has affected groundwater storage in the Juncal River basin between 1990 and 2022. Recession-curve modeling of daily streamflow shows no statistically significant trend in basin-scale groundwater reserves (τ = 0.06, p > 0.05). In contrast, glacier volume declined significantly (−3.8 hm3/yr, p < 0.05), and precipitation at the nearby Riecillos station fell sharply during the 2008–2017 megadrought (p < 0.05) but exhibited no significant change beforehand. Given the simultaneous decreases in meteoric inputs (rain + snow) and glacier mass, one would expect groundwater storage to decline; its observed stability therefore suggests that enhanced glacier-melt recharge may be temporarily offsetting drier conditions. Isotopic evidence from comparable Andean catchments supports such glacio-groundwater coupling, although time lags of months to years complicate detection with recession models alone. Hence, while our results do not yet demonstrate a direct glacier–groundwater link, they are consistent with the hypothesis that ongoing ice loss is buffering aquifer storage. Longer records and tracer studies are required to verify this mechanism and to inform sustainable water resources planning. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

24 pages, 4948 KiB  
Article
The Evolution of Runoff Processes in the Source Region of the Yangtze River Under Future Climate Change
by Nana Zhang, Peng Jiang, Bin Yang, Changhai Tan, Wence Sun, Qin Ju, Simin Qu, Kunqi Ding, Jingjing Qin and Zhongbo Yu
Atmosphere 2025, 16(6), 640; https://doi.org/10.3390/atmos16060640 - 24 May 2025
Viewed by 384
Abstract
Climate change has intensified the melting of glaciers and permafrost in high-altitude cold regions, leading to more frequent extreme hydrological events. This has caused significant variations in the spatiotemporal distribution of meltwater runoff from the headwater cryosphere, posing a major challenge to regional [...] Read more.
Climate change has intensified the melting of glaciers and permafrost in high-altitude cold regions, leading to more frequent extreme hydrological events. This has caused significant variations in the spatiotemporal distribution of meltwater runoff from the headwater cryosphere, posing a major challenge to regional water security. In this study, the HBV hydrological model was set up and driven by CMIP6 global climate model outputs to investigate the multi-scale temporal variations of runoff under different climate change scenarios in the Tuotuo River Basin (TRB) within the source region of the Yangtze River (SRYR). The results suggest that the TRB will undergo significant warming and wetting in the future, with increasing precipitation primarily occurring from May to October and a notable rise in annual temperature. Both temperature and precipitation trends intensify under more extreme climate scenarios. Under all climate scenarios, annual runoff generally exhibits an upward trend, except under the SSP1-2.6 scenario, where a slight decline in total runoff is projected for the late 21st century (2061–2090). The increase in total runoff is primarily concentrated between May and October, driven by enhanced rainfall and meltwater contributions, while snowmelt runoff also shows an increase, but accounts for a smaller percentage of the total runoff and has a smaller impact on the total runoff. Precipitation is the primary driver of annual runoff depth changes, with temperature effects varying by scenario and period. Under high emissions, intensified warming and glacier melt amplify runoff, while low emissions show stable warming with precipitation dominating runoff changes. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

25 pages, 6878 KiB  
Article
Assessment of Water Resource Sustainability and Glacier Runoff Impact on the Northern and Southern Slopes of the Tianshan Mountains
by Qingshan He, Jianping Yang, Qiudong Zhao, Hongju Chen, Yanxia Wang, Hui Wang and Xin Wang
Sustainability 2025, 17(11), 4812; https://doi.org/10.3390/su17114812 - 23 May 2025
Viewed by 456
Abstract
Water resources are vital for sustainable development in arid regions, where glacial runoff plays a significant role in maintaining water supply. This study quantitatively assesses the sustainability of water resources in the Manas River Basin (MnsRB) and the Muzati River Basin (MztRB), situated [...] Read more.
Water resources are vital for sustainable development in arid regions, where glacial runoff plays a significant role in maintaining water supply. This study quantitatively assesses the sustainability of water resources in the Manas River Basin (MnsRB) and the Muzati River Basin (MztRB), situated on the northern and southern slopes of the Tianshan Mountains, respectively, over the period from 1991 to 2050. Freshwater availability was simulated and projected using the Variable Infiltration Capacity Chinese Academy of Sciences (VIC-CAS) hydrological model. Furthermore, three development modes—traditional development, economic growth, and water-saving—were established to estimate future water consumption. The levels of water stress were also applied to assess water resources sustainability in the MnsRB and MztRB. Results indicate that from 1991 to 2020, the average annual available freshwater resources were 13.94 × 108 m3 in the MnsRB and 14.27 × 108 m3 in the MztRB, with glacial runoff contributing 20.24% and 65.58%, respectively. Under the SSP5-8.5 scenario, available freshwater resources are projected to decline by 10.94% in the MnsRB and 4.37% in the MztRB by 2050. Total water withdrawal has increased significantly over the past 30 years, with agriculture water demand accounting for over 80%. The levels of water stress during this period were 1.14 for the MnsRB and 0.87 for the MztRB. Glacial runoff significantly mitigates water stress in both basins, with average reductions of 21.16% and 69.84% between 1991 and 2050. Consequently, clear policies, regulations, and incentives focused on water conservation are vital for effectively tackling the increasing challenge of water scarcity in glacier-covered arid regions. Full article
(This article belongs to the Special Issue Impacts of Climate Change on the Water–Food–Energy Nexus)
Show Figures

Figure 1

15 pages, 13064 KiB  
Article
Thermal Regime Characteristics of Alpine Springs in the Marginal Periglacial Environment of the Southern Carpathians
by Oana Berzescu, Florina Ardelean, Petru Urdea, Andrei Ioniță and Alexandru Onaca
Sustainability 2025, 17(9), 4182; https://doi.org/10.3390/su17094182 - 6 May 2025
Viewed by 507
Abstract
Mountain watersheds play a crucial role in sustaining freshwater resources, yet they are highly vulnerable to climate change. In this study, we investigated the summer water temperature of 35 alpine springs in the highest part of the Retezat Mountains, Southern Carpathians, between 2020 [...] Read more.
Mountain watersheds play a crucial role in sustaining freshwater resources, yet they are highly vulnerable to climate change. In this study, we investigated the summer water temperature of 35 alpine springs in the highest part of the Retezat Mountains, Southern Carpathians, between 2020 and 2023. During the four-year monitoring period, water temperatures across all springs ranged from 1.2 °C to 10.5 °C. Springs emerging from rock glaciers had the lowest average temperature (2.37 °C), while those on cirque and valley floors were the warmest (6.20 °C), followed closely by springs from meadow-covered slopes (6.20 °C) and those from scree and talus slopes (4.70 °C). However, only four springs recorded summer temperatures below 2 °C, suggesting a direct interaction with ground ice. The majority of springs exhibited temperatures between 2 and 4 °C, exceeding conventional thresholds for permafrost presence. This challenges the applicability of traditional thermal indicators in marginal periglacial environments, where reduced ground ice content within rock glaciers and talus slopes can lead to spring water temperatures ranging from 2 °C to 4 °C during summer. Additionally, cold springs emerging from rock glaciers displayed minimal daily and seasonal temperature fluctuations, highlighting their thermal stability and decoupling from atmospheric conditions. These findings underscore the critical role of rock glaciers in maintaining alpine spring temperatures and acting as refugia for cold-adapted organisms. As climate change accelerates permafrost degradation, these ecosystems face increasing threats, with potential consequences for biodiversity and hydrological stability. This study emphasizes the need for long-term monitoring and expanded investigations into water chemistry and discharge dynamics to improve our understanding of high-altitude hydrological systems. Furthermore, it provides valuable insights for the sustainable management of water resources in Retezat National Park, advocating for conservation strategies to mitigate the impacts of climate change on mountain hydrology and biodiversity. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

22 pages, 9142 KiB  
Article
Downscaling and Gap-Filling GRACE-Based Terrestrial Water Storage Anomalies in the Qinghai–Tibet Plateau Using Deep Learning and Multi-Source Data
by Jun Chen, Linsong Wang, Chao Chen and Zhenran Peng
Remote Sens. 2025, 17(8), 1333; https://doi.org/10.3390/rs17081333 - 8 Apr 2025
Viewed by 884
Abstract
The Qinghai–Tibet Plateau (QTP), a critical hydrological regulator for Asia through its extensive glacier systems, high-altitude lakes, and intricate network of rivers, exhibits amplified sensitivity to climate-driven alterations in precipitation regimes and ice mass balance. While the Gravity Recovery and Climate Experiment (GRACE) [...] Read more.
The Qinghai–Tibet Plateau (QTP), a critical hydrological regulator for Asia through its extensive glacier systems, high-altitude lakes, and intricate network of rivers, exhibits amplified sensitivity to climate-driven alterations in precipitation regimes and ice mass balance. While the Gravity Recovery and Climate Experiment (GRACE) and its Follow-On (GRACE-FO) missions have revolutionized monitoring of terrestrial water storage anomalies (TWSAs) across this hydrologically sensitive region, spatial resolution limitations (3°, equivalent to ~300 km) constrain process-scale analysis, compounded by mission temporal discontinuity (data gaps). In this study, we present a novel downscaling framework integrating temporal gap compensation and spatial refinement to a 0.25° resolution through Gated Recurrent Unit (GRU) neural networks, an architecture optimized for univariate time series modeling. Through the assimilation of multi-source hydrological parameters (glacier mass flux, cryosphere–precipitation interactions, and land surface processes), the GRU-based result resolves nonlinear storage dynamics while bridging inter-mission observational gaps. Grid-level implementation preserves mass conservation principles across heterogeneous topographies, successfully reconstructing seasonal-to-interannual TWSA variability and also its long-term trends. Comparative validation against GRACE mascon solutions and process-based hydrological models demonstrates enhanced capacity in resolving sub-basin heterogeneity. This GRU-derived high-resolution TWSA is especially valuable for dissecting local variability in areas such as the Brahmaputra Basin, where complex water cycling can affect downstream water security. Our study provides transferable methodologies for mountainous hydrogeodesy analysis under evolving climate regimes. Future enhancements through physics-informed deep learning and next-generation climatology–hydrology–gravimetry synergy (e.g., observations and models) could further constrain uncertainties in extreme elevation zones, advancing the predictive understanding of Asia’s water tower sustainability. Full article
Show Figures

Graphical abstract

26 pages, 11207 KiB  
Article
Glacier, Wetland, and Lagoon Dynamics in the Barroso Mountain Range, Atacama Desert: Past Trends and Future Projections Using CA-Markov
by German Huayna, Edwin Pino-Vargas, Jorge Espinoza-Molina, Carolina Cruz-Rodríguez, Fredy Cabrera-Olivera, Lía Ramos-Fernández, Bertha Vera-Barrios, Karina Acosta-Caipa and Eusebio Ingol-Blanco
Hydrology 2025, 12(3), 64; https://doi.org/10.3390/hydrology12030064 - 20 Mar 2025
Cited by 1 | Viewed by 1042
Abstract
Glacial retreat is a major global challenge, particularly in arid and semi-arid regions where glaciers serve as critical water sources. This research focuses on glacial retreat and its impact on land cover and land use changes (LULC) in the Barroso Mountain range, Tacna, [...] Read more.
Glacial retreat is a major global challenge, particularly in arid and semi-arid regions where glaciers serve as critical water sources. This research focuses on glacial retreat and its impact on land cover and land use changes (LULC) in the Barroso Mountain range, Tacna, Peru, which is a critical area for water resources in the hyperarid Atacama Desert. Employing advanced remote sensing techniques through the Google Earth Engine (GEE) cloud computing platform, we analyzed historical trends (1985–2022) using Landsat satellite imagery. A normalized index classification was carried out to generate LULC maps for the years 1986, 2001, 2012, and 2022. Future projections until 2042 were developed using Cellular Automata–Markov (CA–Markov) modeling in QGIS, incorporating six predictive environmental variables. The resulting maps presented an overall accuracy (OA) greater than 83%. Historical analysis revealed a dramatic glacier reduction from 44.7 km2 in 1986 to 7.4 km2 in 2022. In contrast, wetlands expanded substantially from 5.70 km2 to 12.14 km2, indicating ecosystem shifts potentially driven by glacier meltwater availability. CA–Markov chain modeling projected further glacier loss to 3.07 km2 by 2042, while wetlands are expected to expand to 18.8 km2 and bodies of water will reach 4.63 km2. These future projections (with accuracies above 84%) underline urgent implications for water management, environmental sustainability, and climate adaptation strategies, particularly with regard to downstream hydrological risks and ecosystem resilience. Full article
Show Figures

Figure 1

21 pages, 6757 KiB  
Article
Research on the Method of Extracting Water Body Information in Central Asia Based on Google Earth Engine
by Kai Chang, Wendie Yue, Hongzhi Wang, Kaijun Tan, Xinyu Liu, Xiaoyi Cao and Wenqian Chen
Water 2025, 17(6), 804; https://doi.org/10.3390/w17060804 - 11 Mar 2025
Viewed by 731
Abstract
This study evaluates water body changes in Central Asia (2000–2019) using Landsat 7 data on Google Earth Engine, comparing the Modified Normalized Difference Water Index (MNDWI), OTSU algorithm, and random forest (RF). The random forest algorithm demonstrated the best overall performance in water [...] Read more.
This study evaluates water body changes in Central Asia (2000–2019) using Landsat 7 data on Google Earth Engine, comparing the Modified Normalized Difference Water Index (MNDWI), OTSU algorithm, and random forest (RF). The random forest algorithm demonstrated the best overall performance in water body extraction and was selected as the analysis tool. The results reveal a significant 11.25% decline in Central Asia’s total water area over two decades, with the Aral Sea shrinking by 72.13% (2000–2019) and southern Kyrgyzstan’s glaciers decreasing by 39.23%. Pearson correlations indicate strong links between water loss and rising temperatures (−0.5583) and declining precipitation (0.6872). Seasonal fluctuations and permanent degradation (e.g., dry riverbeds) highlight climate-driven vulnerabilities, exacerbated by anthropogenic impacts. These trends threaten regional water security and ecological stability, underscoring the urgent need for adaptive resource management. The RF-GEE framework proves effective for large-scale, long-term hydrological monitoring in arid regions, offering critical insights for climate resilience strategies. Full article
Show Figures

Figure 1

19 pages, 10618 KiB  
Article
Increasing Selin Co Lake Area in the Tibet Plateau with Its Moisture Cycle
by Gang Wang, Anlan Feng, Lei Xu, Qiang Zhang, Wenlong Song, Vijay P. Singh, Wenhuan Wu, Kaiwen Zhang and Shuai Sun
Sustainability 2025, 17(5), 2024; https://doi.org/10.3390/su17052024 - 26 Feb 2025
Cited by 1 | Viewed by 826
Abstract
Lake areas across the Tibet Plateau have been taken as the major indicator of water resources changes. However, drivers behind spatiotemporal variations of lake areas over the Tibet Plateau have remained obscure. Selin Co Lake is the largest lake in the Qinghai–Tibet Plateau. [...] Read more.
Lake areas across the Tibet Plateau have been taken as the major indicator of water resources changes. However, drivers behind spatiotemporal variations of lake areas over the Tibet Plateau have remained obscure. Selin Co Lake is the largest lake in the Qinghai–Tibet Plateau. Here, we delineate the Selin Co Lake area changes during the period of 1988–2023 based on Landsat remote sensing data. We also delved into causes behind the Selin Co Lake area changes from perspectives of glacier changes and tracing water vapor sources. We identified the persistently increasing lake area of Selin Co Lake. The Selin Co Lake area reached 2462.59 km2 in 2023. We delineated the basin of Selin Co Lake and found a generally decreasing tendency of the main glaciers within the Selin Co basin. Specifically, the loss in the Geladandong Glacier area is 17.39 km2 in total and the loss in the Jiagang Glacier area is 76.42 km2. We found that the melting glaciers and precipitation within the Selin Co basin are the prime drivers behind the increasing the Selin Co Lake area. In the Selin Co basin, approximately 89.12% of the evaporation source of precipitation is propagated external to the Selin Co basin by the westerlies and the Indian monsoon. The internal hydrological circulation rate is 10.88%, while 30.61% of the moisture transportation is sourced from the ocean, and 69.39% is from the continental land. The moisture transportation from the ocean evaporation shows a significant increasing trend, which may contribute to the continued expansion of the Selin Co Lake area. Full article
Show Figures

Figure 1

23 pages, 7106 KiB  
Article
Spatiotemporal Variations and Influencing Factors of Arid Inland Runoff in the Shule River Basin, Northwest China
by Wenrui Zhang, Dongyuan Sun, Zuirong Niu, Yike Wang, Heping Shu, Xingfan Wang and Yanqiang Cui
Water 2025, 17(3), 457; https://doi.org/10.3390/w17030457 - 6 Feb 2025
Cited by 1 | Viewed by 871
Abstract
Considering the possibility of increasing water supply in China in the short term and the long-term threat posed by shrinking glaciers, this paper studied the spatiotemporal evolution of runoff in typical arid areas and the influence of hydrometeorological elements on runoff, aiming to [...] Read more.
Considering the possibility of increasing water supply in China in the short term and the long-term threat posed by shrinking glaciers, this paper studied the spatiotemporal evolution of runoff in typical arid areas and the influence of hydrometeorological elements on runoff, aiming to clarify the hydrological cycle law and provide a basis for adjusting water resource management strategies to cope with future uncertain changes. Based on hydrological data from 1956 to 2020, the spatial and temporal variation in runoff were discussed by means of wavelet analysis, MK test, RS analysis, and spatial interpolation. The influencing factors of runoff evolution in the Shule River Basin were determined. The results showed that the runoff in the Shule River Basin showed an increasing trend in the past 60 years. Five hydrological stations (Changmabao Station, Panjiazhuang Station, Shuangtabao Reservoir, Dangchengwan Reservoir, and Danghe Reservoir) were selected as the research objects. Among them, the runoff of Changmabao Station increased the most, which was 1.202 × 108 m3/10 a. Future projections suggest a continued rise in runoff, particularly at Shuangtabao Reservoir. The runoff exhibited positive persistence and varying degrees of mutation, with most mutations occurring in the early 21st century. The runoff in the basin has a periodicity of multiple time scales (there are 2–3 main cycles), and the main cycle of annual runoff is concentrated in 58 years. This comprehensive analysis provides valuable insights for the sustainable management of water resources in inland river basins amidst changing environmental conditions. The spatial variation in runoff in summer and autumn and the whole year showed a significant southeast to northwest decreasing pattern. During the study period, accelerated glacier melting caused by rising temperatures had the most significant impact on runoff change (p < 0.01), and the upstream of the study area also complied with this rule (temperature contribution rate [25.96%] > precipitation contribution rate [23.91%]). The contribution of temperature and precipitation changes caused by human activities in the middle stream to runoff was relatively large, which showed that the contribution rate of temperature in Guazhou Station to runoff was 34.23% and the contribution rate of precipitation in Dangchengwan to runoff was 60.27%. The research results provide a scientific basis for the rational and efficient utilization of water resources in the arid area of Northwest China. Full article
Show Figures

Figure 1

44 pages, 7018 KiB  
Review
Rethinking the Lake History of Taylor Valley, Antarctica During the Ross Sea I Glaciation
by Michael S. Stone, Peter T. Doran and Krista F. Myers
Geosciences 2025, 15(1), 9; https://doi.org/10.3390/geosciences15010009 - 4 Jan 2025
Cited by 2 | Viewed by 1394
Abstract
The Ross Sea I glaciation, marked by the northward advance of the Ross Ice Sheet (RIS) in the Ross Sea, east Antarctica, corresponds with the last major expansion of the West Antarctic Ice Sheet during the last glacial period. During its advance, the [...] Read more.
The Ross Sea I glaciation, marked by the northward advance of the Ross Ice Sheet (RIS) in the Ross Sea, east Antarctica, corresponds with the last major expansion of the West Antarctic Ice Sheet during the last glacial period. During its advance, the RIS was grounded along the southern Victoria Land coast, completely blocking the mouths of several of the McMurdo Dry Valleys (MDVs). Several authors have proposed that very large paleolakes, proglacial to the RIS, existed in many of the MDVs. Studies of these large paleolakes have been key in the interpretation of the regional landscape, climate, hydrology, and glacier and ice sheet movements. By far the most studied of these large paleolakes is Glacial Lake Washburn (GLW) in Taylor Valley. Here, we present a comprehensive review of literature related to GLW, focusing on the waters supplying the paleolake, signatures of the paleolake itself, and signatures of past glacial movements that controlled the spatial extent of GLW. We find that while a valley-wide proglacial lake likely did exist in Taylor Valley during the early stages of the Ross Sea I glaciation, during later stages two isolated lakes occupied the eastern and western sections of the valley, confined by an expansion of local alpine glaciers. Lake levels above ~140 m asl were confined to western Taylor Valley, and major lake level changes were likely driven by RIS movements, with climate variables playing a more minor role. These results may have major implications for our understanding of the MDVs and the RIS during the Ross Sea I glaciation. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

17 pages, 1427 KiB  
Article
Tropical Glaciation and Glacio-Epochs: Their Tectonic Origin in Paleogeography
by Hsien-Wang Ou
Climate 2025, 13(1), 9; https://doi.org/10.3390/cli13010009 - 2 Jan 2025
Cited by 1 | Viewed by 962
Abstract
Precambrian tropical glaciation is an enigma of Earth’s climate. Overlooking fundamental difference of land/sea icelines, it was equated with a global frozen ocean, which is at odds with the sedimentary evidence of an active hydrological cycle, and its genesis via the runaway ice–albedo [...] Read more.
Precambrian tropical glaciation is an enigma of Earth’s climate. Overlooking fundamental difference of land/sea icelines, it was equated with a global frozen ocean, which is at odds with the sedimentary evidence of an active hydrological cycle, and its genesis via the runaway ice–albedo feedback conflicts with the mostly ice-free Proterozoic when its trigger threshold was well exceeded by the dimmer sun. In view of these shortfalls, I put forth two key hypotheses of the tropical glaciation: first, if seeded by mountain glaciers, the land ice would advance on sea level to be halted by above-freezing summer temperature, which thus abuts an open cozonal ocean; second, a tropical supercontinent would block the brighter tropical sun to cause the required cooling. To test these hypotheses, I formulate a minimal tropical/polar box model to examine the temperature response to a varying tropical land area and show that tropical glaciation is indeed plausible when the landmass is concentrated in the tropics despite uncertain model parameters. In addition, given the chronology of paleogeography, the model may explain the observed deep time climate to provide a unified account of the faint young Sun paradox, Precambrian tropical glaciations, and Phanerozoic glacio-epochs, reinforcing, therefore, the uniformitarian principle. Full article
Show Figures

Figure 1

18 pages, 10675 KiB  
Article
Combining Physical Hydrological Model with Explainable Machine Learning Methods to Enhance Water Balance Assessment in Glacial River Basins
by Ruibiao Yang, Jinglu Wu, Guojing Gan, Ru Guo and Hongliang Zhang
Water 2024, 16(24), 3699; https://doi.org/10.3390/w16243699 - 22 Dec 2024
Cited by 1 | Viewed by 2144
Abstract
The implementation of accurate water balance assessment in glacier basins is essential for the management and sustainable development of water resources in the basins. In this study, a hybrid modeling framework was constructed to enhance runoff prediction and water balance assessment in glacier [...] Read more.
The implementation of accurate water balance assessment in glacier basins is essential for the management and sustainable development of water resources in the basins. In this study, a hybrid modeling framework was constructed to enhance runoff prediction and water balance assessment in glacier basins. An improved physical hydrological model (SEGSWAT+) was combined with a machine learning model (ML) to capture the relationship between runoff residuals and water balance components through the Shapley additive explanations (SHAP) method. Based on the enhancement of the runoff fitting results of the existing model, the runoff residuals are decomposed and used to correct the hydrological process component values, thus improving the accuracy of the water balance results. We evaluated the performance and correction results of the method using various ML methods. We analyzed the results for two consecutive periods from 1959 to 2022 for the glacial sub-basins of three tributaries of the Upper Ili River Basin in central Asia. The results show that the hybrid framework based on extreme gradient boosting (XGBoost) with an average NSE value of 0.93 has the best performance, and the bias based on the evapotranspiration component and soil water content change component is reduced by 3.2–5%, proving the effectiveness of the water balance correction. This study advances the interpretation of ML models for hydrologic assessment of areas with complex hydrodynamic characteristics. Full article
Show Figures

Figure 1

22 pages, 7136 KiB  
Article
Runoff Characteristics and Their Response to Meteorological Condition in the Yarlung Zangbo River Basin: Spatial Heterogeneity Due to the Glacier Coverage Difference
by Lei Zhu, Yun Deng, Ganggang Bai, Yi Tan, Youcai Tuo, Ruidong An, Xingmin Wang and Min Chen
Remote Sens. 2024, 16(24), 4646; https://doi.org/10.3390/rs16244646 - 11 Dec 2024
Viewed by 1093
Abstract
The Yarlung Zangbo River (YZR) is a sizeable highland river on the Tibetan Plateau, and its runoff process is crucial for understanding regional water resource features and related ecological patterns. However, the runoff characteristics of the YZR Basin (YZRB) remain unclear, especially how [...] Read more.
The Yarlung Zangbo River (YZR) is a sizeable highland river on the Tibetan Plateau, and its runoff process is crucial for understanding regional water resource features and related ecological patterns. However, the runoff characteristics of the YZR Basin (YZRB) remain unclear, especially how it would react to climate change. This study comprehensively analyzed the runoff characteristics of the entire YZRB based on a validated distributed hydrological model (SWAT) coupled with a glacier module (SWAT-glac), identified the runoff components, and explored the climate–discharge relationship, with a particular focus on the relationships between glacier runoff and changes in precipitation and air temperature. The results indicate that the SWAT-glac model, with localized glacier parameters, accurately simulates the runoff processes due to regional differences in meteorological conditions and uneven glacier distribution. Summer runoff dominates the basin, contributing 46.2% to 57.9% of the total, while spring runoff is notably higher in the downstream sections than in other areas. Runoff components vary significantly across river sections; precipitation is the primary contributor to basin-wide runoff (23.4–59.5%), while glacier runoff contribution can reach up to 54.8% in downstream areas. The study found that underlying surface conditions, particularly glacier coverage, significantly influence runoff responses to meteorological changes. The correlation between runoff and precipitation is stronger at stations where rainfall predominates, whereas runoff shows greater sensitivity to air temperature in glacier-covered areas. These findings enhance the understanding of runoff processes in the YZRB and offer valuable insights for the sustainable management of water resources in similar basins under climate change. Full article
Show Figures

Graphical abstract

Back to TopTop