Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (539)

Search Parameters:
Keywords = germination capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1436 KiB  
Article
Secoisolariciresinol Diglucoside with Antioxidant Capacity from Flaxseed: A Study on Microwave-Assisted Germination Optimization
by Jinling Hu, Qingyi Zhang, Yaning Li, Qiqi Zhang, Caihua Jia, Fenghong Huang, Qianchun Deng and Cuie Tang
Foods 2025, 14(15), 2716; https://doi.org/10.3390/foods14152716 (registering DOI) - 1 Aug 2025
Abstract
Germination and physical field treatments are processing techniques that have been successfully used to change the amount of active ingredients in flaxseed. However, it is unknown if they work synergistically. This study investigated the effect of microwave-assisted germination on the lignan concentration and [...] Read more.
Germination and physical field treatments are processing techniques that have been successfully used to change the amount of active ingredients in flaxseed. However, it is unknown if they work synergistically. This study investigated the effect of microwave-assisted germination on the lignan concentration and antioxidant activity of several flaxseed tissue components. Lignans were primarily dispersed in the flaxseed seed coat. Microwave treatment and germination significantly affected the levels of lignans in various flaxseed sections. Flaxseed hulls’ lignan content and antioxidant activity could be increased by microwave treatment (130 W for 14 s) after germination of 0, 48, or 96 h. Flaxseed kernels lignan content and antioxidant activity could be increased by microwave treatment (130 W for 10 s) before germination. Whole flaxseeds could be improved by microwave treatment (130 W for 10 s) after germination for 72 h. The findings provided a theoretical basis for reducing the loss of lignan resources in flaxseed, enhancing its use as a functional food ingredient, and clarifying the targeted utilization of various lignan sources. Full article
(This article belongs to the Special Issue Oils and Fats: Structure and Stability)
Show Figures

Figure 1

15 pages, 1899 KiB  
Article
Heterologous Watermelon HSP17.4 Expression Confers Improved Heat Tolerance to Arabidopsis thaliana
by Yajie Hong, Yurui Li, Jing Chen, Nailin Xing, Wona Ding, Lili Chen, Yunping Huang, Qiuping Li and Kaixing Lu
Curr. Issues Mol. Biol. 2025, 47(8), 606; https://doi.org/10.3390/cimb47080606 (registering DOI) - 1 Aug 2025
Abstract
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce [...] Read more.
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce the pCAMBIA1391b-GFP overexpression vector encoding the heat tolerance-related gene ClaHSP17.4 from watermelon into Arabidopsis thaliana, and we obtained ClaHSP17.4-overexpressing Arabidopsis plants. Under normal conditions, the phenotypes of transgenic and wild-type (WT) Arabidopsis plants were largely similar. Following exposure to heat stress, however, the germination rates (96%) of transgenic Arabidopsis plants at the germination stages were significantly higher than those of wild-type idopsis (17%). Specifically, the malondialdehyde (MDA) content of transgenic Arabidopsis was half that of the control group, while the activities of peroxidase (POD) and superoxide dismutase (SOD) were 1.25 times those of the control group after exposure to high temperatures for 12 h at the seedling stages. The proline content in ClaHSP17.4-overexpressing transgenic Arabidopsis increased by 17% compared to WT plants (* p < 0.05), while the soluble sugar content rose by 37% (* p < 0.05). These results suggest that ClaHSP17.4 overexpression indirectly improves the antioxidant capacity and osmotic regulatory capacity of Arabidopsis seedlings, leading to improved survival and greater heat tolerance. Meanwhile, the results of this study provide a reference for further research on the function of the ClHSP17.4 gene and lay a foundation for breeding heat-tolerant watermelon varieties and advancing our understanding of plant adaptation to environmental stress. Full article
Show Figures

Figure 1

21 pages, 4076 KiB  
Article
Tissue Paper-Based Hydrogels for Soil Water Maintenance and Nitrogen Release
by Ana Carla Kuneski, Hima Haridevan, Elena Ninkovic, Ena McLeary, Darren Martin and Gunnar Kirchhof
Gels 2025, 11(8), 599; https://doi.org/10.3390/gels11080599 (registering DOI) - 1 Aug 2025
Abstract
Hydrogels are widely known for their ability to increase soil water retention and for their potential slow nutrient release mechanism. They have been constantly improved to meet the growing demand for sustainability in agriculture. Research focused on the development of biodegradable hydrogels, produced [...] Read more.
Hydrogels are widely known for their ability to increase soil water retention and for their potential slow nutrient release mechanism. They have been constantly improved to meet the growing demand for sustainability in agriculture. Research focused on the development of biodegradable hydrogels, produced from industrial cellulose waste, are an ecological and efficient alternative soil ameliorant for the improvement of agricultural land. The objective of this study was to evaluate the impacts of two types of hydrogel (processed in a glass reactor versus a twin-screw extruder) on soils with different textures (clay and sandy loam), testing their water retention capacity, nitrogen leaching, and effects on seed germination. The methodology included the evaluation of water retention capacity at different pressures with different hydrogel addition rates in the soil, leaching tests in columns filled with soil and hydrogel layers, and germination tests of sorghum and corn. The results indicated that the addition of hydrogel significantly improved water retention, especially in sandy loam soils. The hydrogels also reduced nitrogen leaching, acting as nitrification inhibitors and limiting the conversion of ammonium to nitrate, with greater effectiveness in clayey soils. In the tested formulations, it was observed that the hydrogel doses applied to the columns favored nitrogen retention in the region close to the roots, directly influencing the initial stages of germination. This behavior highlights the potential of hydrogels as tools for directing nutrients in the soil profile, indicating that adjustments to the C:N ratio, nutrient release rate, and applied doses can optimize their application for different crops. Full article
Show Figures

Figure 1

18 pages, 4185 KiB  
Article
Morphology-Based Evaluation of Pollen Fertility and Storage Characteristics in Male Actinidia arguta Germplasm
by Hongyan Qin, Shutian Fan, Ying Zhao, Peilei Xu, Xiuling Chen, Jiaqi Li, Yiming Yang, Yanli Wang, Yue Wang, Changyu Li, Yingxue Liu, Baoxiang Zhang and Wenpeng Lu
Plants 2025, 14(15), 2366; https://doi.org/10.3390/plants14152366 - 1 Aug 2025
Abstract
Actinidia arguta is a dioecious plant, and the selection of superior male germplasm is crucial for ensuring effective pollination of female cultivars, maximizing their economic traits, and achieving high-quality yields. This study evaluated 30 male germplasms for pollen quantity, germination capacity, storage characteristics, [...] Read more.
Actinidia arguta is a dioecious plant, and the selection of superior male germplasm is crucial for ensuring effective pollination of female cultivars, maximizing their economic traits, and achieving high-quality yields. This study evaluated 30 male germplasms for pollen quantity, germination capacity, storage characteristics, and ultrastructural features. Results revealed significant variation in pollen germination rates (1.56–96.57%) among germplasms, with ‘Lvwang’, ‘TL20083’, and ‘TG06023’ performing best (all >90% germination). The storage characteristics study demonstrated that −80 °C is the optimal temperature for long-term pollen storage in A. arguta. Significant variations were observed in storage tolerance among different germplasms. Among them, Lvwang exhibited the best performance, maintaining a germination rate of 97.40% after 12 months of storage at −80 °C with no significant difference from the initial value, followed by TT07063. Pollen morphology was closely correlated with fertility. High-fertility pollen grains typically exhibited standard prolate or ultra-prolate shapes, featuring a tri-lobed polar view and an elliptical equatorial view, with neat germination furrows and clean surfaces. In contrast, low-fertility pollen grains frequently appeared shrunken and deformed, with widened germination furrows and visible exudates. Based on these findings, the following recommendations are proposed: ① Prioritize the use of germplasms with pollen germination rates >80% as pollinizers; ② Establish a rapid screening system based on pollen morphological characteristics. This study provides important scientific basis for both male germplasm selection and efficient cultivation practices in A. arguta (kiwiberry). Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

14 pages, 991 KiB  
Article
Zinc Sulfate Stress Enhances Flavonoid Content and Antioxidant Capacity from Finger Millet Sprouts for High-Quality Production
by Xin Tian, Jing Zhang, Zhangqin Ye, Weiming Fang, Xiangli Ding and Yongqi Yin
Foods 2025, 14(15), 2563; https://doi.org/10.3390/foods14152563 - 22 Jul 2025
Viewed by 241
Abstract
The enhancement of flavonoid content and antioxidant capacity in plants remains a significant area of focus in the investigation of plant-derived functional foods. This study systematically investigated the impact of exogenous zinc sulfate (5 mM ZnSO4) stress on flavonoid content and [...] Read more.
The enhancement of flavonoid content and antioxidant capacity in plants remains a significant area of focus in the investigation of plant-derived functional foods. This study systematically investigated the impact of exogenous zinc sulfate (5 mM ZnSO4) stress on flavonoid content and antioxidant capacity in finger millet (Eleusine coracana L.) sprouts, along with its underlying molecular mechanisms. The results demonstrated that treatment with 5 mM ZnSO4 significantly increased the flavonoid content in sprouts, reaching a maximum value of 5.59 μg/sprout on the 6th day of germination. ZnSO4 stress significantly enhanced the activities of PAL, 4CL, and C4H, while also considerably upregulating the expression levels of flavonoid-biosynthesis-related genes. Physiological indicators revealed that ZnSO4 stress increased the contents of malondialdehyde, hydrogen peroxide, and superoxide anion in the sprouts, while inhibiting sprout growth. As a stress response, ZnSO4 stress enhances the antioxidant system by increasing antioxidant capacity (ABTS, DPPH, and FRAP), antioxidant enzyme activity (POD and SOD), and related gene expression (POD, CAT, and APX) in sprouts. This study provides experimental evidence for ZnSO4 stress to improve flavonoid accumulation and antioxidant capacity in finger millet sprouts and provides important theoretical and practical guidance for the development of high-quality functional foods. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

25 pages, 2029 KiB  
Article
Germination Enhances Phytochemical Profiles of Perilla Seeds and Promotes Hair Growth via 5α-Reductase Inhibition and Growth Factor Pathways
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pichchapa Linsaenkart, Pipat Tangjaidee, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Sarana Rose Sommano, Korawit Chaisu, Apinya Satsook and Juan Manuel Castagnini
Biology 2025, 14(7), 889; https://doi.org/10.3390/biology14070889 - 20 Jul 2025
Viewed by 446
Abstract
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated [...] Read more.
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated (NG-PS) and germinated in distilled water (0 ppm selenium; G0-PS), and germinated with 80 ppm selenium (G80-PS)—obtained from supercritical fluid extraction (SFE) and screw compression (SC). SFE extracts exhibited significantly higher levels of polyphenols, tocopherols, and fatty acids compared to SC extracts. Among the germinated groups, G0-PS showed the highest bioactive compound content and antioxidant capacity. Remarkably, treatment with SFE-G0-PS led to a significant increase in the proliferation and migration of hair follicle cells, reaching 147.21 ± 2.11% (p < 0.05), and resulted in complete wound closure. In addition, its antioxidant and anti-inflammatory properties were reflected by a marked scavenging effect on TBARS (59.62 ± 0.66% of control) and suppressed nitrite amounts (0.44 ± 0.01 µM). Moreover, SFE-G0-PS markedly suppressed SRD5A1-3 gene expression—key regulators in androgenetic alopecia—in both DU-145 and HFDPCs, with approximately 2-fold and 1.5-fold greater inhibition compared to finasteride and minoxidil, respectively. Simultaneously, it upregulated the expression of hair growth-related genes, including CTNNB1, SHH, SMO, GLI1, and VEGF, by approximately 1.5-fold, demonstrating stronger activation than minoxidil. These findings suggest the potential of SFE-G0-PS as a natural therapeutic agent for promoting hair growth and preventing hair loss. Full article
Show Figures

Figure 1

20 pages, 2342 KiB  
Article
Metabolomic Profiling of Desiccation Response in Recalcitrant Quercus acutissima Seeds
by Haiyan Chen, Fenghou Shi, Boqiang Tong, Yizeng Lu and Yongbao Shen
Agronomy 2025, 15(7), 1738; https://doi.org/10.3390/agronomy15071738 - 18 Jul 2025
Viewed by 318
Abstract
Quercus acutissima seeds exhibit high desiccation sensitivity, posing significant challenges for long-term preservation. This study investigates the physiological and metabolic responses of soluble osmoprotectants—particularly soluble proteins and proline—during the desiccation process. Seeds were sampled at three critical moisture content levels: 38.8%, 26.8%, and [...] Read more.
Quercus acutissima seeds exhibit high desiccation sensitivity, posing significant challenges for long-term preservation. This study investigates the physiological and metabolic responses of soluble osmoprotectants—particularly soluble proteins and proline—during the desiccation process. Seeds were sampled at three critical moisture content levels: 38.8%, 26.8%, and 14.8%, corresponding to approximately 99%, 52%, and 0% germination, respectively. We measured germination ability, soluble protein content, and proline accumulation, and we performed untargeted metabolomic profiling using LC-MS. Soluble protein levels increased early but declined later during desiccation, while proline levels continuously increased for sustained osmotic adjustment. Metabolomics analysis identified a total of 2802 metabolites, with phenylpropanoids and polyketides (31.12%) and lipids and lipid-like molecules (29.05%) being the most abundant. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that differentially expressed metabolites were mainly enriched in key pathways such as amino acid metabolism, energy metabolism, and nitrogen metabolism. Notably, most amino acids decreased in content, except for proline, which showed an increasing trend. Tricarboxylic acid cycle intermediates, especially citric acid and isocitric acid, showed significantly decreased levels, indicating energy metabolism imbalance due to uncoordinated consumption without effective replenishment. The reductions in key amino acids such as glutamic acid and aspartic acid further reflected metabolic network disruption. In summary, Q. acutissima seeds fail to establish an effective desiccation tolerance mechanism. The loss of soluble protein-based protection, limited capacity for proline-mediated osmotic regulation, and widespread metabolic disruption collectively lead to irreversible cellular damage. These findings highlight the inherent metabolic vulnerabilities of recalcitrant seeds and suggest potential preservation strategies, such as supplementing critical metabolites (e.g., TCA intermediates) during storage to delay metabolic collapse and mitigate desiccation-induced damage. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 2410 KiB  
Article
Nanostructured Cellulose Acetate Membranes Embedded with Al2O3 Nanoparticles for Sustainable Wastewater Treatment
by Ines Elaissaoui, Soumaya Sayeb, Mouna Mekki, Francesca Russo, Alberto Figoli, Karima Horchani-Naifer and Dorra Jellouli Ennigrou
Coatings 2025, 15(7), 823; https://doi.org/10.3390/coatings15070823 - 15 Jul 2025
Viewed by 340
Abstract
Electrospun nanofiber membranes based on cellulose acetate (CA) have gained increasing attention for wastewater treatment due to their high surface area, tuneable structure, and ease of functionalization. In this study, the performance of CA membranes was enhanced by incorporating aluminum oxide (Al2 [...] Read more.
Electrospun nanofiber membranes based on cellulose acetate (CA) have gained increasing attention for wastewater treatment due to their high surface area, tuneable structure, and ease of functionalization. In this study, the performance of CA membranes was enhanced by incorporating aluminum oxide (Al2O3) nanoparticles (NPs) at varying concentrations (0–2 wt.%). The structural, morphological, and thermal properties of the resulting CA/Al2O3 nanocomposite membranes were investigated through FTIR, XRD, SEM, water contact angle (WCA), pore size measurements, and DSC analyses. FTIR and XRD confirmed strong interactions and the uniform dispersion of the Al2O3 NPs within the CA matrix. The incorporation of Al2O3 improved membrane hydrophilicity, reducing the WCA from 107° to 35°, and increased the average pore size from 0.62 µm to 0.86 µm. These modifications led to enhanced filtration performance, with the membrane containing 2 wt.% Al2O3 achieving a 99% removal efficiency for Indigo Carmine (IC) dye, a maximum adsorption capacity of 45.59 mg/g, and a high permeate flux of 175.47 L·m−2 h−1 bar−1. Additionally, phytotoxicity tests using Lactuca sativa seeds showed a significant increase in germination index from 20% (untreated) to 88% (treated), confirming the safety of the permeate for potential reuse in agricultural irrigation. These results highlight the effectiveness of Al2O3-modified CA electrospun membranes for sustainable wastewater treatment and water reuse. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

21 pages, 3177 KiB  
Article
The Physiological and Biochemical Mechanisms Bioprimed by Spermosphere Microorganisms on Ormosia henryi Seeds
by Meng Ge, Xiaoli Wei, Yongming Fan, Yan Wu, Mei Fan and Xueqing Tian
Microorganisms 2025, 13(7), 1598; https://doi.org/10.3390/microorganisms13071598 - 7 Jul 2025
Viewed by 323
Abstract
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto [...] Read more.
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto seed surfaces or into germination substrates, enhances germination kinetics and emergence uniformity through microbial metabolic functions and synergistic interactions with seed exudates. Notably, spermosphere-derived functional bacteria isolated from native spermosphere soil demonstrate superior colonization capacity and sustained bioactivity. This investigation employed selective inoculation of these indigenous functional strains to systematically analyze dynamic changes in endogenous phytohormones, enzymatic activities, and storage substances during critical germination phases, thereby elucidating the physiological mechanisms underlying biopriming-enhanced germination. The experimental results demonstrated significant improvements in germination parameters through biopriming. Inoculation with the Bacillus sp. strain achieved a peak germination rate (76.19%), representing a 16.19% increase over the control (p < 0.05). The biopriming treatment effectively improved the seed vigor, broke the impermeability of the seed coat, accelerated the germination speed, and positively regulated physiological indicators, especially amylase activity and the ratio of gibberellic acid to abscisic acid. This study establishes a theoretical framework for microbial chemotaxis and rhizocompetence in seed priming applications while providing an eco-technological solution for overcoming germination constraints in O. henryi cultivation. The optimized biopriming protocol addresses both low germination rates and post-germination growth limitations, providing technical support for the seedling cultivation of O. henryi. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

22 pages, 4164 KiB  
Article
Effects of Low-Temperature Plasma Treatment on Germination, Seedling Development, and Biochemical Parameters of Long-Term-Stored Seeds
by Martin Matějovič, Vladislav Čurn, Jan Kubeš, Eva Jozová, Zora Kotíková and Petra Hlásná Čepková
Agronomy 2025, 15(7), 1637; https://doi.org/10.3390/agronomy15071637 - 4 Jul 2025
Viewed by 347
Abstract
The promising field of low-temperature plasma treatment, known for its non-invasive and environmentally sustainable nature, is being actively investigated for its ability to enhance germination, emergence, yield, and overall plant development in a broad spectrum of crops. For gene bank requirements, low-temperature plasma [...] Read more.
The promising field of low-temperature plasma treatment, known for its non-invasive and environmentally sustainable nature, is being actively investigated for its ability to enhance germination, emergence, yield, and overall plant development in a broad spectrum of crops. For gene bank requirements, low-temperature plasma technologies can also improve germination parameters and promote the development seeds suitable for long-term storage. Seeds from four selected cultivars of wheat, oats, flax, and rapeseed stored in the gene bank for 1, 10, and 20 years were subjected to plasma treatments for 20, 25, and 30 min. The study evaluated the mean root and shoot length, root–shoot ratio, and seedling vigour index. Additionally, the malondialdehyde level, total polyphenol content, total flavonoid content, and total antioxidant capacity were analysed. Plasma treatment displayed varying effects on the morphological characteristics and antioxidant activity of the tested cultivars, which were influenced by treatment duration and cultivar. A positive effect of plasma treatment on seedling length, seedling vigour index, and root–shoot ratio was observed in flax cultivar ‘N-9/62/K3/B’ in all periods and in variants T2 and T3. Conversely, the wheat cultivar ‘Granny’ showed variable results, and the oat cultivar ‘Risto’ showed variable negative results in regards to mean root length and mean shoot length after plasma treatment. The indicators of oxidative stress and antioxidant capacity were affected in all the cultivars studied. A positive effect of plasma treatment on these indicators was observed in the wheat cultivar ‘Granny’, while flax cultivar ‘N-9/62/K3/B’ exhibited inconsistent results. While in cereals, a decrease in malondialdehyde content after plasma treatment was associated with an increase in polyphenol and flavonoid content as the treatment duration increased, small-seeded species responded somewhat differently. The rapeseed cultivar ‘Skrivenskij’ and flax cultivar ‘N-9/62/K3/B’ showed an increase in polyphenol and flavonoid content following a decrease in malondialdehyde levels. This study highlights the potential of low-temperature plasma treatment for long-term-stored seeds and its applicability to plant genetic resources. The findings emphasize the need for the further optimization of low-temperature plasma treatment conditions for different plant species and cultivars. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

15 pages, 3069 KiB  
Article
ZIF-93-Based Nanomaterials as pH-Responsive Drug Delivery Systems for Enhanced Antibacterial Efficacy of Kasugamycin in the Management of Pear Fire Blight
by Chunli Chen, Bin Hao, Jincheng Shen, Shuren Liu, Hongzu Feng, Jianwei Zhang, Chen Liu, Yong Li and Hongqiang Dong
Agronomy 2025, 15(7), 1535; https://doi.org/10.3390/agronomy15071535 - 25 Jun 2025
Viewed by 301
Abstract
Kasugamycin (KSM) is easily affected by photolysis, acid–base destruction, and oxidative decomposition in the natural environment, leading to its poor durability and low effective utilization rate, which affects its control effect on plant bacterial diseases. Nanomaterials modified with environment-responsive agents enable the control [...] Read more.
Kasugamycin (KSM) is easily affected by photolysis, acid–base destruction, and oxidative decomposition in the natural environment, leading to its poor durability and low effective utilization rate, which affects its control effect on plant bacterial diseases. Nanomaterials modified with environment-responsive agents enable the control of the release of pesticides through intelligently responding to external stimuli, thereby improving efficacy and reducing environmental impact. In this study, a pH-responsive controlled release system was constructed using zeolitic imidazolate frameworks (ZIF-93) for the sustained and targeted delivery of KSM. The synthesized KSM@ZIF-93 exhibited a diameter of 63.93 ± 11.19 nm with a drug loading capacity of 20.0%. Under acidic conditions mimicking bacterial infection sites, the Schiff base bonds and coordination bonds in ZIF-93 dissociated, triggering the simultaneous release of KSM and Zn2+, achieving a synergistic antibacterial effect. Light stability experiments revealed a 34.81% reduction in UV-induced degradation of KSM when encapsulated in ZIF-93. In vitro antimicrobial assays demonstrated that KSM@ZIF-93 completely inhibited Erwinia amylovora at 200 mg/L and had better antibacterial activity and persistence than KSM and ZIF-93. The field experiment and safety evaluation showed that the control effect of KSM@ZIF-93 on pear fire blight at the concentration of 200 mg/L was (75.19 ± 3.63)% and had no toxic effect on pollen germination. This pH-responsive system not only enhances the stability and bioavailability of KSM but also provides a targeted and environmentally compatible strategy for managing bacterial infections during the flowering period of pear trees. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 13737 KiB  
Article
Unravelling the Dynamic Physiological and Metabolome Responses of Wheat (Triticum aestivum L.) to Saline–Alkaline Stress at the Seedling Stage
by Wei Ren and Li Chen
Metabolites 2025, 15(7), 430; https://doi.org/10.3390/metabo15070430 - 23 Jun 2025
Cited by 1 | Viewed by 388
Abstract
Background/Objectives: Understanding metabolome adjustment under saline–alkaline conditions is crucial for enhancing crop tolerance capacity and ensuring food security. Although soil salinization impairs wheat seedlings’ growth, metabolome plasticity under saline–alkaline stress remains poorly understood. Here, we delved into dynamic physiological and metabolome shifts in [...] Read more.
Background/Objectives: Understanding metabolome adjustment under saline–alkaline conditions is crucial for enhancing crop tolerance capacity and ensuring food security. Although soil salinization impairs wheat seedlings’ growth, metabolome plasticity under saline–alkaline stress remains poorly understood. Here, we delved into dynamic physiological and metabolome shifts in wheat seedlings grown on SAS (saline–alkaline soil) on the 7th and 15th days post-germination (DPG). Methods: A self-developed and cultivated high-generation salt–alkali wheat variety (011) was grown on SAS and control soil, followed by comparative physiological, biochemical, and metabolomics analyses of seedlings. Results: The seedlings’ saline–alkaline stress responses were developmentally regulated with reduced growth, increasing accumulation of proline and soluble sugars, and differential antioxidant response. LC-MS-based global metabolomics analysis revealed significant metabolite profile differences, with 367 and 485 differential metabolites identified on the 7th and 15th DPG, respectively, between control and treatment. Upregulation of saccharides, flavonoids, organic acids (citrate cycle-related), phenolic acids, amino acids and derivatives, phytohormones, and sphingolipid metabolism was essential for seedlings’ growth on SAS. The key induced metabolites in seedlings grown on SAS include saccharic acid, trehalose, sucrose, glucose, L-citramalic acid, phellodendroside, scutellarin, anthranilate-1-O-sophoroside, lavandulifolioside, N-methyl-L-glutamate, etc. Up-regulated phytohormones include abscisic acid (3.8-fold, 7th DPG and 3.18-fold, 15th DPG), jasmonic acid (1.93-fold, 15th DPG), and jasmonoyl isoleucine (2.03-fold, 15th DPG). Conclusions: Our findings highlight the importance of ABA and jasmonic acid in regulating salt–alkali tolerance in wheat seedlings. Moreover, this study depicts key pathways involved in salt–alkali tolerance in wheat seedlings and unveils key DMs, offering resources for boosting wheat production on SAS. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

21 pages, 3063 KiB  
Article
Total Antioxidant Capacity of Arachis hypogaea Seed Kernels and Coats: An Analytical and Sensory Investigation
by Julie Marshall, Lissa Gilliam, Melanie McGilton, Ana Patty, Lily Sowell, Ashley Cherry, Brian Fisher, Matt Scholten, Chris Liebold, Darlene Cowart and Samara Sterling
Int. J. Mol. Sci. 2025, 26(13), 5990; https://doi.org/10.3390/ijms26135990 - 22 Jun 2025
Viewed by 672
Abstract
Antioxidants are critical components of the body’s defense system, providing protection against cell-damaging free radicals responsible for oxidative damage of biomolecules. Humans benefit from the consumption of plants with high antioxidant content, which have been shown to positively impact health. In plant physiology, [...] Read more.
Antioxidants are critical components of the body’s defense system, providing protection against cell-damaging free radicals responsible for oxidative damage of biomolecules. Humans benefit from the consumption of plants with high antioxidant content, which have been shown to positively impact health. In plant physiology, antioxidants provide protection from biotic and abiotic stress, particularly during the development of seeds and germination. Peanut seeds and seed coats have been shown to contain several beneficial antioxidants and are a good source of phytonutrients. Seed coat color can vary greatly and impact the antioxidant capacity of the edible portion of the peanut. Additionally, the seed coat can provide bitter notes in products, affecting their palatability and potentially negating the beneficial properties of the antioxidants present. A total of 42 accessions from the Germplasm Resource Information Network (GRIN) with a variety of seed coat colors were obtained and analyzed for total antioxidant capacity to provide a baseline assessment of the distribution of antioxidants in kernel versus seed coats. The results demonstrated that seed coat color somewhat impacts antioxidant capacity, and 56–88% of the total antioxidant capacity resides in the seed kernel. Three control samples, not part of the germplasm collection, were roasted and prepared for analysis by the descriptive sensory panel. Seed coats were added back to the roasted paste in increasing proportion for analysis by the panel, and perceptions regarding bitterness and overall organoleptic properties were noted. Based on the results of this study, several accessions were selected and then planted for increase and potential crossbreeding with appropriate commercial cultivars. This information could be used to selectively add antioxidant capacity to peanut breeding programs to provide additional health benefits to consumers without compromising the sensory perception and desirability and peanut products in nutrition. Full article
(This article belongs to the Special Issue Natural-Derived Bioactive Compounds in Disease Treatment)
Show Figures

Figure 1

18 pages, 1416 KiB  
Review
Impacts of Phenolic Compounds and Their Benefits on Human Health: Germination
by Jonathan Hernández-Miranda, Karen Argelia Reyes-Portillo, Abigail García-Castro, Esther Ramírez-Moreno and Alma Delia Román-Gutiérrez
Metabolites 2025, 15(7), 425; https://doi.org/10.3390/metabo15070425 - 22 Jun 2025
Viewed by 1071
Abstract
Due to their outstanding nutritional profile, the consumption of seeds has been an essential source of nutrients. These foods have a unique composition, containing carbohydrates, proteins, lipids, fiber, vitamins, minerals, and bioactive compounds in the same food matrix. Furthermore, the nutritional profile can [...] Read more.
Due to their outstanding nutritional profile, the consumption of seeds has been an essential source of nutrients. These foods have a unique composition, containing carbohydrates, proteins, lipids, fiber, vitamins, minerals, and bioactive compounds in the same food matrix. Furthermore, the nutritional profile can naturally be maximized and optimized through the germination process through two key methods: degradation of macromolecules and biosynthesis of metabolites, which favors an increase in the concentration of bioactive compounds, such as phenolic compounds. The extraction of these compounds has been studied in various plant fractions, including roots, stems, leaves, fruits, and seeds, using different extraction techniques. Among these, ultrasound-assisted extraction has gained popularity due to its efficiency and yield, considering specific parameters to maximize the bioactive yield. These advances have allowed us to evaluate the potential of the extracted compounds as preventive agents in cardiovascular and degenerative diseases, showing promising results in preventive medicine. Recent studies have shown that cereals possess anti-lipid, anti-hypercholesterolemic, anti-diabetic, anti-inflammatory, and antibiotic properties, mainly due to their antioxidant capacity. This work describes the effects of germination on the nutritional profile, presents benefits to human health through seed consumption, and refers to a collection of strategies to improve the extraction process. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Graphical abstract

17 pages, 1977 KiB  
Article
Metabolomic Profiling and Antioxidant Capacity Changes in Longzi Black Barley During Germination
by Gan Hu, Yan Wei, Yuanhang Ren, Xinhui Wang, Dabing Xiang, Bin Li, Jinqiu Wang and Fang Geng
Foods 2025, 14(12), 2113; https://doi.org/10.3390/foods14122113 - 16 Jun 2025
Viewed by 410
Abstract
Longzi black barley (Hordeum vulgare L. var. nudum, LBB), a highland barley variant with superior nutritional properties, has gained increasing attention for its health-promoting benefits. However, the metabolic changes during its germination process remain poorly understood. This study investigated the metabolic [...] Read more.
Longzi black barley (Hordeum vulgare L. var. nudum, LBB), a highland barley variant with superior nutritional properties, has gained increasing attention for its health-promoting benefits. However, the metabolic changes during its germination process remain poorly understood. This study investigated the metabolic changes and antioxidant capacity during LBB germination. The results revealed significant dynamic changes in total flavonoid and total phenolic contents during germination, with the total flavonoids significantly decreasing by 32.59% initially (0–12 h, from 2.64 to 1.78 mg/g) and then slightly rebounding by 15.34% at 72 h, while the total phenolics decreased by 36.35% in the early stages (0–12 h, from 6.52 to 4.15 μmol/g) and increased markedly by 44.73% in the later stages (60–72 h, reaching 6.13 μmol/g) of germination. A metabolomic analysis identified 1015 metabolites, primarily including flavonoids, phenolic acids, amino acids and their derivatives, and alkaloids. During germination, the total flavonoid content continuously decreased by 24.24%, the phenolic acids showed no significant change, the amino acids and their derivatives increased significantly by 3.63-fold, and the alkaloid content increased slightly by 1.30-fold in the early stages (0–12 h) and significantly by 3.39-fold in the later stages (12–60 h). The study revealed the metabolic changes during the germination of LBB, providing scientific evidence for the further utilization of its nutritional value. Full article
Show Figures

Figure 1

Back to TopTop