Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (342)

Search Parameters:
Keywords = genesis mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 155
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

21 pages, 5158 KiB  
Article
Genesis of the Erentaolegai Silver Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusion and H-O-S Isotopes
by Yushan Zuo, Xintong Dong, Zhengxi Gao, Liwen Wu, Zhao Liu, Jiaqi Xu, Shanming Zhang and Wentian Mi
Minerals 2025, 15(7), 748; https://doi.org/10.3390/min15070748 - 17 Jul 2025
Viewed by 217
Abstract
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization [...] Read more.
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization process of the deposit is divided into three stages: Stage I: Pyrite–Quartz Stage; Stage II: Sulfide–Quartz Stage; Stage III: Quartz–Manganese Carbonate Stage. This paper discusses the ore-forming fluids, ore-forming materials, and deposit genesis of the Erentaolegai silver deposits using fluid inclusions microthermometry, laser Raman spectroscopy, and H-O-S isotope analyses. Fluid inclusion microthermometry and laser Raman spectroscopy analyses indicate that the Erentaolegai silver deposit contains exclusively fluid-rich two-phase fluid inclusions, all of which belong to the H2O-NaCl system. Homogenization temperatures of fluid inclusions in the three stages (from early to late) ranged from 257 to 311 °C, 228 to 280 °C, and 194 to 238 °C, corresponding to salinities of 1.91 to 7.86 wt%, 2.07 to 5.41 wt%, and 0.70–3.55 wt% NaCl equivalent, densities of 0.75 to 0.83 g/cm−3, 0.80 to 0.86 g/cm−3 and 0.85 to 0.89 g/cm−3. The mineralization pressure ranged from 12.2 to 29.5 MPa, and the mineralization depth was 0.41 to 0.98 km, indicating low-pressure and shallow-depth mineralization conditions. H-O isotope results indicate that the ore-forming fluid is a mixture of magmatic fluids and meteoric water, with meteoric contribution dominating in the late stage. The δ34S values of metallic sulfides ranged from −1.8 to +4.0‰, indicating that the metallogenic material of the Erentaolegai silver deposit was dominated by a deep magmatic source. This study concludes that meteoric water mixing and subsequent fluid cooling served as the primary mechanism for silver mineral precipitation. The Erentaolegai silver deposit is classified as a low-sulfidation epithermal silver deposit. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

13 pages, 880 KiB  
Review
Inclusions, Nitrogen Occurrence Modes, and C-N Isotopic Compositions of Diamonds as Indicators for Exploring the Genesis Mechanism of Diamond: A Review
by Xiao-Xia Wang, Yang-Yang Wang, Xiaodong Yao, Tianyin Chang, Xiang Li, Xiaomin Wang and Zihao Zhao
Minerals 2025, 15(7), 728; https://doi.org/10.3390/min15070728 - 12 Jul 2025
Viewed by 168
Abstract
Diamond, a crucial carbon phase in the deep Earth, forms under ultrahigh-pressure (UHP, P > 4 GPa) conditions and serves as an important indicator mineral for the UHP environment. Based on their host rocks, diamonds are classified into mantle-derived diamonds, UHP metamorphic diamonds, [...] Read more.
Diamond, a crucial carbon phase in the deep Earth, forms under ultrahigh-pressure (UHP, P > 4 GPa) conditions and serves as an important indicator mineral for the UHP environment. Based on their host rocks, diamonds are classified into mantle-derived diamonds, UHP metamorphic diamonds, impact diamonds, etc. While carbon constitutes the primary component of diamonds, nitrogen represents one of the most significant impurity elements. The study of the occurrence mode of nitrogen and the C-N isotope composition is essential for exploring the formation mechanism of diamond. Nitrogen primarily exists in diamonds as either isolated atoms (N) or aggregated forms (N2 or N4), with the dominant mode being controlled by temperature and residence time in the mantle. As temperature and residence time increase, isolated nitrogen progressively transforms into aggregated forms. As a result, mantle-derived diamonds typically contain nitrogen predominantly as N2 or N4, whereas metamorphic diamonds and impact diamonds mainly retain isolated N. Global C-N isotopic composition of over 4400 diamonds reveals a wide compositional range, with δ13C ranging from −38.5‰ to +5.0‰, and δ15N from −39.4‰ to +15.0‰. These values significantly exceed the typical mantle δ13C and δ15N values of −5‰ ± 3‰, indicating that the diamond formation may be influenced by subducted crustal materials. During crystallization, diamonds can encapsulate surrounding materials as inclusions, which are divided into three types based on their formation sequence relative to the host diamond: preformed, syngenetic, and epigenetic. Syngenetic inclusions are particularly valuable for constraining crystallization conditions and the genesis of diamonds. Furthermore, geochronology studies of radioactive isotope-bearing syngenetic inclusions are helpful to clarify the age of diamond formation. Usually, mantle-derived diamonds exhibit Archean age, whereas metamorphic diamonds are associated with subduction, showing younger ages that could be associated with metamorphic events. Therefore, the formation conditions and genesis of diamonds can be clearly constrained through integrating investigations of inclusions, nitrogen occurrence modes, and C-N isotopic compositions. The characteristics of occurrence modes, inclusions, and C-N isotope compositions of different types of diamonds are systematically reviewed in this paper, providing critical insights into their genesis and contributing to a deeper understanding of diamond formation processes in Earth’s interior. Full article
Show Figures

Figure 1

17 pages, 14349 KiB  
Article
The Western North Pacific Monsoon Dominates Basin-Scale Interannual Variations in Tropical Cyclone Frequency
by Xin Li, Jian Cao, Boyang Wang and Jiawei Feng
Remote Sens. 2025, 17(13), 2317; https://doi.org/10.3390/rs17132317 - 6 Jul 2025
Viewed by 256
Abstract
The monsoon is regarded as a key system influencing tropical cyclone (TC) activity over the Western North Pacific (WNP). However, the relationship between WNP TC frequency (TCF) and the monsoon across different timescales remains incompletely understood. This study explores the interannual-scale relationship between [...] Read more.
The monsoon is regarded as a key system influencing tropical cyclone (TC) activity over the Western North Pacific (WNP). However, the relationship between WNP TC frequency (TCF) and the monsoon across different timescales remains incompletely understood. This study explores the interannual-scale relationship between WNP TCF and the WNP summer monsoon over the period 1982–2020. We found that the interannual variation in basin-scale TCF is dominated by dynamic factors, particularly lower troposphere vorticity and middle troposphere ascending motion, which are driven by the WNP summer monsoon. Enhanced monsoonal precipitation over the WNP intensifies convective heating, which acts as a diabatic heat source and triggers a Rossby wave response to the west. This response generates anomalous lower troposphere cyclonic circulation and ascending motion in the main TC development region. In turn, the strengthened WNP summer monsoon circulation further amplifies precipitation, establishing positive feedback between atmospheric circulation and convection. This mechanism establishes dynamic conditions favorable for TC genesis, thereby dominating the basin-scale interannual variation in TCF. Full article
Show Figures

Figure 1

19 pages, 6150 KiB  
Article
Ore Genesis of the Jurassic Granite-Hosted Naizhigou Gold Deposit in the Jiapigou District of Northeast China: Constraints from Fluid Inclusions and H–O–S Isotopes
by Jilong Han, Zhicheng Lü, Chuntao Zhao, Xiaotian Zhang, Jinggui Sun, Shu Wang and Xinwen Zhang
Minerals 2025, 15(7), 696; https://doi.org/10.3390/min15070696 - 29 Jun 2025
Viewed by 232
Abstract
The Jiapigou mining district (>180 t Au) is an important gold district in China. For a long time, the ore genesis of the gold deposits in the Jiapigou district has been a subject of controversy and differing opinions, which has severely hindered metallogenic [...] Read more.
The Jiapigou mining district (>180 t Au) is an important gold district in China. For a long time, the ore genesis of the gold deposits in the Jiapigou district has been a subject of controversy and differing opinions, which has severely hindered metallogenic theories and mineral exploration. Here we present a comprehensive investigation including geology, fluid inclusions (FIs), and H–O–S isotopic data for the Naizhigou deposit in the Jiapigou district to elucidate the sources of orefluids and metals, as well as the metallogenic mechanism. The results show the following: (1) The Naizhigou deposit is characterized by quartz vein-type ores and is hosted in the Middle Jurassic granitic pluton. Native gold and sulfides were mainly deposited in the second stage (quartz–polymetallic sulfides) compared with the first (quartz–pyrite–molybdenite) and third (quartz–calcite) stages. (2) The FI studies indicated that the orefluids evolved from the early–main-stage CO2–H2O–NaCl system to the late-stage H2O–NaCl system and have homogenization temperatures of 289–363, 210–282, and 124–276 °C and salinities of 4.1–20.9, 5.8–16.4, and 6.1–12.7 wt% NaCl equivalent, respectively. Fluid boiling and fluid mixing collectively controlled the precipitation of gold and ore-forming elements. (3) The δD values of the FIs hosted in quartz from the three stags range from −81 to −75 ‰, from −99 to −86 ‰, and from −110 to −101 ‰, while δ18Owater values of these FIs range from 5.3 to 5.9 ‰, from 1.1 to 5.2 ‰, and from −2.1 to −0.7 ‰, respectively. Pyrite samples from the three stages in the Naizhigou deposit have δ34S values of 2.1 to 2.5 ‰, 3.1 to 4.3 ‰, and 3.8 to 3.9 ‰, respectively. The stable isotopes indicate that the orefluids and metals mainly originated from magma. A comparative study of regional observations reveals that the Naizhigou deposit is a magmatic-related mesothermal gold deposit, rather than a metamorphism-related orogenic gold deposit. The estimated ore-forming depths are 4.0–20.7 km, with exhumation depths of 4.1–5.5 km, which indicated that the deposit has been well preserved. Regionally, the new exploration strategies should place greater emphasis on work concerning ore-related plutons, ore-controlling faults, and hydrothermal alteration. Full article
Show Figures

Figure 1

28 pages, 5040 KiB  
Article
Formation and Evolution Mechanisms of Geothermal Waters Influenced by Fault Zones and Ancient Lithology in the Yunkai Uplift, Southern China
by Xianxing Huang, Yongjun Zeng, Shan Lu, Guoping Lu, Hao Ou and Beibei Wang
Water 2025, 17(13), 1885; https://doi.org/10.3390/w17131885 - 25 Jun 2025
Viewed by 423
Abstract
Geothermal systems play a crucial role in understanding Earth’s heat dynamics. The Yunkai Uplift in southern China exemplifies a geothermally rich region characterized by ancient lithologies and high heat flow. This study investigates the geochemical characteristics of geothermal waters in the Yunkai Uplift. [...] Read more.
Geothermal systems play a crucial role in understanding Earth’s heat dynamics. The Yunkai Uplift in southern China exemplifies a geothermally rich region characterized by ancient lithologies and high heat flow. This study investigates the geochemical characteristics of geothermal waters in the Yunkai Uplift. Both geothermal and non-thermal water samples were collected along the Xinyi–Lianjiang (XL) Fault Zone and the Cenxi–Luchuan (CL) Fault Zone flanking the core of the Yunkai Mountains. Analytical techniques were applied to examine major ions, trace elements, and dissolved CO2 and H2, as well as isotopic characteristics of O, H, Sr, C, and He in water samples, allowing for an investigation of geothermal reservoir temperatures, circulation depths, and mixing processes. The findings indicate that most geothermal waters are influenced by water–rock interactions primarily dominated by granites. The region’s diverse lithologies, change from ancient Caledonian granites and medium–high-grade metamorphic rocks in the central hinterland (XL Fault Zone) to low-grade metamorphic rocks and sedimentary rocks in the western margin (CL Fault Zone). The chemical compositions of geothermal waters are influenced through mixing contacts between diverse rocks of varying ages, leading to distinct geochemical characteristics. Notably, δ13CCO2 values reveal that while some samples exhibit significant contributions from metamorphic CO2 sources, others are characterized by organic CO2 origins. Regional heat flow results from the upwelling of mantle magma, supplemented by radioactive heat generated from crustal granites. Isotopic evidence from δ2H and δ18O indicates that the geothermal waters originate from atmospheric sources, recharged by precipitation in the northern Yunkai Mountains. After infiltrating to specific depths, meteoric waters are heated to temperatures ranging from about 76.4 °C to 178.5 °C before ascending through the XL and CL Fault Zones under buoyancy forces. During their upward migration, geothermal waters undergo significant mixing with cold groundwater (54–92%) in shallow strata. As part of the western boundary of the Yunkai Uplift, the CL Fault Zone may extend deeper into the crust or even interact with the upper mantle but exhibits weaker hydrothermal activities than the XL Fault Zone. The XL Fault Zone, however, is enriched with highly heat-generating granites, is subjected more to both the thermal and mechanical influences of upwelling mantle magma, resulting in a higher heat flow and tension effect, and is more conducive to the formation of geothermal waters. Our findings underscore the role of geotectonic processes, lithological variation, and fault zone activity in shaping the genesis and evolution of geothermal waters in the Yunkai Uplift. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 569 KiB  
Review
The Role of Somatic Mutation in Hereditary Hemorrhagic Telangiectasia Pathogenesis
by Evon DeBose-Scarlett and Douglas A. Marchuk
J. Clin. Med. 2025, 14(13), 4479; https://doi.org/10.3390/jcm14134479 - 24 Jun 2025
Viewed by 442
Abstract
Historically, the factor(s) that stimulate vascular malformation genesis in hereditary hemorrhagic telangiectasia (HHT) has been hotly debated. Once heterozygous loss-of-function germline mutations in ENG, ACVRL1, or SMAD4 were discovered in individuals with HHT, haploinsufficiency, a 50% reduction in the encoded protein, [...] Read more.
Historically, the factor(s) that stimulate vascular malformation genesis in hereditary hemorrhagic telangiectasia (HHT) has been hotly debated. Once heterozygous loss-of-function germline mutations in ENG, ACVRL1, or SMAD4 were discovered in individuals with HHT, haploinsufficiency, a 50% reduction in the encoded protein, was proposed as the molecular mechanism of HHT. However, the focal and discrete nature of HHT-associated vascular malformations suggested to others that vascular malformation genesis requires an additional, local trigger. In this review, we discuss the evidence for the Knudsonian two-hit mutation mechanism of vascular malformation pathogenesis in HHT, where the inherited, heterozygous mutation is augmented by an acquired somatic mutation in the remaining normal copy of the gene. We consider the mechanisms of HHT–vascular malformation development in the broader context of the emerging role of somatic mutations in both sporadic and inherited vascular malformations. We discuss different mechanisms of biallelic gene inactivation in HHT, difficulties with the detection of all possible mechanisms of biallelic inactivation, and issues related to the somatic mosaic nature of the lesion. We then discuss the critical importance of non-genetic factors on the pathogenesis of HHT-associated vascular malformations. Finally, we discuss the implications of the two-hit mutation mechanism for the design of novel treatments for HHT. Full article
Show Figures

Figure 1

30 pages, 2140 KiB  
Review
Nutraceutical Strategies for Targeting Mitochondrial Dysfunction in Neurodegenerative Diseases
by Federica Davì, Antonella Iaconis, Marika Cordaro, Rosanna Di Paola and Roberta Fusco
Foods 2025, 14(13), 2193; https://doi.org/10.3390/foods14132193 - 23 Jun 2025
Viewed by 586
Abstract
In neurons, mitochondria generate energy through ATP production, thereby sustaining the high energy demands of the central nervous system (CNS). Mitochondrial dysfunction within the CNS was implicated in the pathogenesis and progression of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral [...] Read more.
In neurons, mitochondria generate energy through ATP production, thereby sustaining the high energy demands of the central nervous system (CNS). Mitochondrial dysfunction within the CNS was implicated in the pathogenesis and progression of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, often involving altered mitochondrial dynamics like fragmentation and functional impairment. Accordingly, mitochondrial targeting represents an alternative therapeutic strategy for the treatment of these disorders. Current standard drug treatments present limitations due to adverse effects associated with their chronic use. Therefore, in recent years, nutraceuticals, natural compounds exhibiting diverse biological activities, have garnered significant attention for their potential to treat these diseases. It has been shown that these compounds represent safe and easily available sources for the development of innovative therapeutics, and by modulating mitochondrial function, nutraceuticals offer a promising approach to address neurodegenerative pathologies. We referred to approximately 200 articles published between 2020 and 2025, identified through a focused search across PubMed, Google Scholar, and Scopus using keywords such as “nutraceutical,” “mitochondrial dysfunction,” and “neurodegenerative diseases. The purpose of this review is to examine how mitochondrial dysfunction contributes to the genesis and progression of neurodegenerative diseases. Also, we discuss recent advances in mitochondrial targeting using nutraceuticals, focusing on their mechanisms of action related to mitochondrial biogenesis, fusion, fission, bioenergetics, oxidative stress, calcium homeostasis, membrane potential, and mitochondrial DNA stability. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

18 pages, 4318 KiB  
Article
The Genesis and Hydrochemical Formation Mechanism of Karst Springs in the Central Region of Shandong Province, China
by Yuanqing Liu, Le Zhou, Xuejun Ma, Dongguang Wen, Wei Li and Zheming Shi
Water 2025, 17(12), 1805; https://doi.org/10.3390/w17121805 - 17 Jun 2025
Viewed by 321
Abstract
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the [...] Read more.
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the Laiwu Basin. To support the scientific development and management of karst water, this study utilizes comprehensive analysis and deuterium-oxygen isotope test data from surveys and sampling of 20 typical karst springs conducted between 2016 and 2018. By integrating mathematical statistics, correlation analysis, and ion component ratio methods, the study analyzes the genesis, hydrochemical ion component sources, and controlling factors of typical karst springs in the Laiwu Basin. The results indicate that the genesis of karst springs in the Laiwu Basin is controlled by three factors: faults, rock masses, and lithology, and can be classified into four types: water resistance controlled by lithology, by faults, by basement, and by rock mass. The karst springs are generally weakly alkaline freshwater, with the main ion components being HCO3 and Ca2+, accounting for approximately 55.02% and 71.52% of the anion and cation components, respectively; about 50% of the sampling points have a hydrochemical type of HCO3·SO4-Ca·Mg. Stable isotope (δ18O and δD) results show that atmospheric precipitation is the primary recharge source for karst springs in the Laiwu Basin. There are varying degrees of evaporative fractionation and water–rock interaction during the groundwater flow process, resulting in significantly higher deuterium excess (d-excess) in the sampling points on the southern side of the basin compared to the northern side, indicating clear differentiation. The hydrochemical composition of the karst groundwater system is predominantly governed by water–rock interactions during flow processes and anthropogenic influences. Carbonate dissolution (primarily calcite) serves as the principal source of HCO3, SO42−, Ca2+, and Mg2+, while evaporite dissolution and reverse cation exchange contribute to the slight enrichment of Ca2+ and Mg2+ alongside depletion of Na+ and K+ in spring waters. Saturation indices (SI) reveal that spring waters are saturated with respect to gypsum, aragonite, calcite, and dolomite, but undersaturated for halite. The mixing of urban domestic sewage, agricultural planting activities, and the use of manure also contributes to the formation of Cl and NO3 ions in karst springs. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

33 pages, 48291 KiB  
Article
The Influence of Seasonal Variations in a Continental Lacustrine Basin in an Arid Climate on the Occurrence Characteristics of Gypsum: A Case Study from the Paleogene Bottom Sandstone Member, Tabei Uplift
by Xiaoyang Gao, Wenxiang He, Luxing Dou, Jingwen Yan, Qi Sun, Zhenli Yi and Bin Li
Minerals 2025, 15(6), 639; https://doi.org/10.3390/min15060639 - 12 Jun 2025
Viewed by 330
Abstract
The occurrence of gypsum in clastic rocks of continental saline lake basins reflects complex depositional and diagenetic processes. However, its genesis remains relatively understudied. Based on core descriptions and thin-section analyses, this study investigates the occurrence types and genetic mechanisms of gypsum in [...] Read more.
The occurrence of gypsum in clastic rocks of continental saline lake basins reflects complex depositional and diagenetic processes. However, its genesis remains relatively understudied. Based on core descriptions and thin-section analyses, this study investigates the occurrence types and genetic mechanisms of gypsum in the Bottom Sandstone Member of the northern Tabei Uplift. Five types of gypsum occurrences are identified: layered gypsum, gypsum clasts, spotted gypsum, gypsum nodules, and a mixed deposition of clastic rocks and gypsum. The mixed deposition of clastic rocks and gypsum includes gypsiferous mudstone, muddy gypsum, gypsiferous mudstone containing muddy clasts, and sandy gypsum. Layered gypsum, spotted gypsum, gypsiferous mudstone, and muddy gypsum mainly result from in situ chemical precipitation during periods of high evaporation and reduced runoff. In contrast, gypsum clasts, gypsiferous mudstone containing muddy clasts, and sandy gypsum reflect processes of transportation and reworking induced by flood events. Seasonal variations in hydrodynamic conditions play a critical role in the formation and distribution of gypsum. During dry periods, surface runoff weakens or ceases, and the salinity of lake water or pore water in clastic deposits increases due to intense evaporation, promoting gypsum precipitation. During flood periods, increased runoff can erode previously formed gypsum, which is subsequently transported and deposited as gypsum clasts. The morphology of gypsum varies with its transport distance. These findings enhance our understanding of clastic–evaporite mixed systems in arid continental lacustrine settings and provide insights into sedimentary processes influenced by seasonal climatic fluctuations. Full article
(This article belongs to the Special Issue Deep-Time Source-to-Sink in Continental Basins)
Show Figures

Figure 1

32 pages, 32067 KiB  
Article
Genesis Mechanism of Geothermal Water in Binhai County, Jiangsu Province, China
by Zhuoqun Yang, Zujiang Luo and Jinyuan Han
Water 2025, 17(10), 1542; https://doi.org/10.3390/w17101542 - 20 May 2025
Viewed by 407
Abstract
Taking the coastal area of Binhai County, Jiangsu Province, as an example, this study first investigated the basic natural geography and the regional geological and hydrogeological conditions of the study area, and then carried out in-depth geophysical prospecting, hydrogeological tests, geothermal temperature monitoring, [...] Read more.
Taking the coastal area of Binhai County, Jiangsu Province, as an example, this study first investigated the basic natural geography and the regional geological and hydrogeological conditions of the study area, and then carried out in-depth geophysical prospecting, hydrogeological tests, geothermal temperature monitoring, hydrochemistry and isotope analyses, and other studies based on the results to comprehensively and systematically reveal the genesis mechanism of the geothermal water resources of this coastal area from multiple perspectives. The results showed the following: the geothermal water in this area mainly comes from atmospheric precipitation; the deep east–northwest interlaced fracture is the recharge and transportation channel; the Cambrian–Ordovician carbonate rock layer, enriched by the development of cavernous fissures, forms the thermal storage layer; the underground heat mainly comes from the upward heat flow along the deep fracture and the natural warming of the strata; and the thermal reservoir cover comprises Paleozoic and Mesozoic clastic rocks that have a high mud content and form a thick layer. The genesis mode of this area is as follows: the atmospheric precipitation infiltrates and is recharged through the exposed alpine carbonate fissures in the Lianyungang area, and then it is transported to the south along the large deep fracture under the action of a high hydraulic pressure head; meanwhile, it is heated by the heat flow in the deep part of the fracture and water–rock interactions with the strata occur. Geothermal water with a calculated thermal storage temperature of 83.6 °C is formed at a depth of 2.9 km, which is blocked by the intersection of the northeast and northwest fractures to form a stagnant zone in the coastal area. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

28 pages, 2657 KiB  
Review
Exploring the Classic and Novel Pathogenetic Insights of Plastic Exposure in the Genesis and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
by Mario Romeo, Marcello Dallio, Fiammetta Di Nardo, Giuseppina Martinelli, Claudio Basile, Alessia Silvestrin, Giusy Senese, Annachiara Coppola, Carmine Napolitano, Angela Amoresano, Carlo Altucci and Alessandro Federico
Livers 2025, 5(2), 21; https://doi.org/10.3390/livers5020021 - 2 May 2025
Viewed by 1411
Abstract
The term “plastics” is an umbrella term generally referring to any material containing a high level of polymer content as an essential ingredient. Micro(nano)plastics (MNPs) are derived from the degradation of plastics, representing exogenous substances whose exposure can potentially interfere with different physiological [...] Read more.
The term “plastics” is an umbrella term generally referring to any material containing a high level of polymer content as an essential ingredient. Micro(nano)plastics (MNPs) are derived from the degradation of plastics, representing exogenous substances whose exposure can potentially interfere with different physiological processes. In this scenario, even considering the relative paramount detoxification role, the liver emerges as a key active organ in the relationship between plastic exposure and human disease. In industrialized countries, where plastics constitute largely diffused components of objects routinely adopted in daily/social life, including food packaging, Metabolic dysfunction-associated Steatotic Liver Disease (MASLD) represents the predominant hepatopathy and is progressively becoming the leading cause of cirrhosis and liver cancer, with an incompletely elucidated multifactorial pathogenesis. Notably, oral exposure to MNPs has been revealed to impact the gut–liver axis by influencing gut microbiota composition, gastrointestinal absorption, and, ultimately, determining hepatic accumulation. At the hepatic level, MNPs can contribute to the onset and worsening of steatosis by inducing metabolic dysfunction and inflammation. Plastics can also serve as vectors for different potentially toxic additives, with specific MNPs constituting a persistent source of release of bisphenol A (BPA), a well-recognized exogenous etiological factor contributing to MASLD genesis and worsening. Recently, exposure to MNPs and additives has demonstrated significant impacts on the immune system, oxidative stress, and metabolism. In particular, polystyrene-derived MNPs impair the mechanisms regulating hepatic lipid metabolism, simultaneously acting as antigens abnormally triggering the innate immune response. At the same time, environmental BPA exposure has been revealed to trigger trained immunity-related pathways, configuring novel pathogenetic drivers potentially promoting the progression of MASLD. The present review, after rapidly overviewing the main sources and toxicological properties of MNPs and related additives, explores plastic-related exposure’s potential implications in the genesis and progression of hepatic steatosis, highlighting the urgent need for further clarification of relative pathogenetic mechanisms. Full article
Show Figures

Figure 1

28 pages, 4902 KiB  
Review
Advancements in the Field of Protein-Based Hydrogels: Main Types, Characteristics, and Their Applications
by Gábor Katona, Bence Sipos and Ildikó Csóka
Gels 2025, 11(5), 306; https://doi.org/10.3390/gels11050306 - 22 Apr 2025
Cited by 2 | Viewed by 1258
Abstract
Regenerative medicine is a challenging field in current research and development, whilst translating the findings of novel tissue regenerative agents into clinical application. Protein-based hydrogels are derived from various sources, with animal-derived products being primarily utilized to deliver cells and promote cell genesis [...] Read more.
Regenerative medicine is a challenging field in current research and development, whilst translating the findings of novel tissue regenerative agents into clinical application. Protein-based hydrogels are derived from various sources, with animal-derived products being primarily utilized to deliver cells and promote cell genesis and proliferation, thereby aiding in numerous indications, including bone tissue regeneration, cartilage regeneration, spinal cord injury, and wound healing. As biocompatible and biodegradable systems, they are tolerated by the human body, allowing them to exert their beneficial effects in many indications. In this review article, multiple types of animal-derived proteins (e.g., collagen, gelatin, serum albumin, fibrin) were described, and a selection of the recent literature was collected to support the claims behind these innovative systems. During the literature review, special indications were found when applying these hydrogels, including the therapeutic option to treat post-myocardial infarct sites, glaucoma, and others. Maintaining their structure and mechanical integrity is still challenging. It is usually solved by adding (semi)synthetic polymers or small molecules to strengthen or loosen the mechanical stress in the hydrogel’s structure. All in all, this review points out the potential application of value-added delivery systems in regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Protein Gels and Their Applications)
Show Figures

Graphical abstract

23 pages, 21739 KiB  
Article
Fine-Scale Geomorphologic Classification of Guyots in Representative Areas of the Western Pacific Ocean
by Heshun Wang, Yongfu Sun, Shengli Wang, Wei Gao, Weikun Xu, Zhen Liu, Xuebing Yin, Sidi Ruan and Yihui Shao
J. Mar. Sci. Eng. 2025, 13(4), 823; https://doi.org/10.3390/jmse13040823 - 21 Apr 2025
Viewed by 657
Abstract
Guyots are a special type of seamount with a flat top and are widely distributed in the global ocean. In this paper, a geomorphologic classification method for guyots based on multibeam bathymetry data is proposed. By studying typical guyots, namely, the Jiaxie Guyots, [...] Read more.
Guyots are a special type of seamount with a flat top and are widely distributed in the global ocean. In this paper, a geomorphologic classification method for guyots based on multibeam bathymetry data is proposed. By studying typical guyots, namely, the Jiaxie Guyots, the Caiwei Guyots, and the DD Guyot in the Western Pacific Ocean, in this study, a multilevel classification system was established, integrating elevation, slope, and bathymetric position index (BPI). The method successfully classified seafloor geomorphology into nine types: summit platform, extremely steep slope, steep slope, gentle slope, very gentle slope, gully on the slope, seafloor plain, local crest, and local depression. Significant differences in the area distribution, depth characteristics, and slope extent of different geomorphologic units in the guyots were revealed by quantitative analysis. The flexibility and accuracy of the method were demonstrated through depth profile validation and method comparison validation. This classification system provides a new cognitive framework for defining the boundaries of seamounts, as well as for the study of the genesis mechanisms of the gullies on the slopes, local crests, and local depressions formed by volcanic activity and other actions. Full article
Show Figures

Figure 1

18 pages, 7321 KiB  
Article
Geothermal Genesis Mechanism of the Yinchuan Basin Based on Thermal Parameter Inversion
by Baizhou An, Lige Bai, Jianwei Zhao and Zhaofa Zeng
Sustainability 2025, 17(8), 3424; https://doi.org/10.3390/su17083424 - 11 Apr 2025
Viewed by 329
Abstract
The Yinchuan Basin harbors significant geothermal resource potential and could be a clean energy source critical for transitioning to a low-carbon economy. However, the current research primarily focuses on the exploration and development of geothermal water in the sedimentary basins, with limited studies [...] Read more.
The Yinchuan Basin harbors significant geothermal resource potential and could be a clean energy source critical for transitioning to a low-carbon economy. However, the current research primarily focuses on the exploration and development of geothermal water in the sedimentary basins, with limited studies on the deep geothermal formation mechanisms and regional geothermal types. Although geophysical methods provide insights into the types and formation mechanisms of deep geothermal resources in the basin, there is still a lack of a connection between quantitative understanding and direct evidence. A series of algorithms based on thermal parameter characteristics can directly extract underground thermal features from raw geophysical signal data, offering a powerful tool for characterizing the structure and aggregation patterns of deep thermal sources. Therefore, this study employed a Bayesian thermal parameter inversion method based on interface information to obtain the spatial distribution of thermal conductivity, surface heat flow, and mantle heat parameters in the Ningxia Basin study area. Additionally, correlation analysis and global sensitivity analysis were conducted to further interpret the predicted results. A comprehensive analysis of the geophysical inversion results showed that the deep thermal anomalies in the basin are primarily controlled by fault activities and the lithospheres’ thermal structure, while shallow high-heat flow anomalies are closely related to convective circulation within faults and heat transfer from deep thermal sources. The established geothermal genesis mechanism and model of the Yinchuan Basin provide crucial support for sustainable regional geothermal development planning and the utilization of deep geothermal resources, contributing to energy security and emission reduction goals. Full article
Show Figures

Figure 1

Back to TopTop