Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,706)

Search Parameters:
Keywords = gel electrophoresis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1321 KiB  
Article
Detection of Cathelicidin-1 and Cathelicidin-2 Biomolecules in the Milk of Goats and Their Use as Biomarkers for the Diagnosis of Mastitis
by Maria V. Bourganou, Dimitra V. Liagka, Konstantinos Vougas, Daphne T. Lianou, Natalia G. C. Vasileiou, Konstantina S. Dimoveli, Antonis P. Politis, Nikos G. Kordalis, Efthymia Petinaki, Vasia S. Mavrogianni, George Th. Tsangaris, George C. Fthenakis and Angeliki I. Katsafadou
Animals 2025, 15(15), 2301; https://doi.org/10.3390/ani15152301 - 6 Aug 2025
Abstract
The objectives of the present work were as follows: (i) the detection of cathelicidin biomolecules in the milk of individual goats during the early stages of mastitis and their potential use for the diagnosis of mastitis at its early stage and (ii) the [...] Read more.
The objectives of the present work were as follows: (i) the detection of cathelicidin biomolecules in the milk of individual goats during the early stages of mastitis and their potential use for the diagnosis of mastitis at its early stage and (ii) the evaluation of the presence of cathelicidin proteins in the bulk-tank milk from goat and sheep farms. In an experimental study, after inoculation of Staphylococcus simulans into a mammary gland of goats, bacteriological and cytological examinations of milk samples, as well as proteomics examinations [two-dimensional gel electrophoresis analysis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) analysis] were performed sequentially, from 4 to 48 h post-challenge. Cathelicidin-1 and cathelicidin-2 were detected consistently in milk samples obtained throughout the study, and spot optical densities obtained from PDQuest v.8.0 were recorded. Associations were calculated between the presence of mastitis in a mammary gland at a given timepoint and the detection of cathelicidin proteins in the respective milk sample. All inoculated mammary glands developed mastitis, confirmed by the consistent bacterial isolation from milk samples and the increased somatic cell content therein. Spot optical density of cathelicidin proteins was higher than in samples from contralateral mammary glands. There was a significant association between the presence of mastitis in a mammary gland and the detection of cathelicidin biomolecules in the respective milk sample; the overall accuracy was 81.8% (95% confidence interval: 70.4–90.2%). In a field investigation, the presence of cathelicidin proteins was evaluated in the bulk-tank milk of 32 dairy goat and 57 dairy sheep farms. In this part of the work, no cathelicidin proteins were detected in any bulk-tank milk sample of goat, 0.0% (95% confidence interval: 0.0–10.7%), or sheep, 0.0% (95% confidence interval: 0.0–6.3%), farms. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

19 pages, 3995 KiB  
Article
Lectin Recognition Patterns in the Gut of Meccus (Triatoma) pallidipennis and Their Association with Trypanosoma cruzi Metacyclogenesis
by Berenice González-Rete, Juan Antonio López-Aviña, Olivia Alicia Reynoso-Ducoing, Margarita Cabrera-Bravo, Martha Irene Bucio-Torres, Mauro Omar Vences-Blanco, Elia Torres-Gutiérrez and Paz María Silvia Salazar-Schettino
Microorganisms 2025, 13(8), 1823; https://doi.org/10.3390/microorganisms13081823 - 5 Aug 2025
Viewed by 164
Abstract
The successful transmission of Trypanosoma cruzi, the causative agent of Chagas disease, depends on intricate interactions with its insect vector. In Mexico, Meccus pallidipennis is a relevant triatomine species involved in the parasite’s life cycle. In the gut of these insects, the parasite [...] Read more.
The successful transmission of Trypanosoma cruzi, the causative agent of Chagas disease, depends on intricate interactions with its insect vector. In Mexico, Meccus pallidipennis is a relevant triatomine species involved in the parasite’s life cycle. In the gut of these insects, the parasite moves from the anterior midgut (AMG) to the posterior midgut (PMG), where it multiplies. Finally, T. cruzi differentiates into its infective form by metacyclogenesis in the proctodeum or rectum (RE). This study aimed to characterize and compare the protein and glycoprotein profiles of the anterior midgut (AMG) and rectum (RE) of M. pallidipennis, and to assess their potential association with T. cruzi metacyclogenesis, with special attention to sex-specific differences. Insects were infected with the T. cruzi isolate ITRI/MX/12/MOR (Morelos). Protein profiles were analyzed by polyacrylamide gel electrophoresis, while glycoproteins were detected using ConA, WGA, and PNA lectins. The metacyclogenesis index was calculated for male and female triatomines. A lower overlap of protein fractions was found in the RE compared to the AMG between sexes, suggesting functional sexual dimorphism. Infected females showed greater diversity in glycoprotein patterns in the RE, potentially related to higher blood intake and parasite burden. The metacyclogenesis index was significantly higher in females than in males. These findings highlight sex-dependent differences in gut protein and glycoprotein profiles in M. pallidipennis, which may influence the efficiency of T. cruzi development within the vector. Further proteomic studies are needed to identify the molecular components involved and clarify their roles in parasite differentiation and suggest new targets for disrupting parasite transmission within the vector. Full article
Show Figures

Figure 1

15 pages, 362 KiB  
Article
Associations Between DAT1 Gene VNTR Polymorphism and Impulsivity Dimensions in Individuals with Behavioural Addictions
by Remigiusz Recław, Aleksandra Suchanecka, Elżbieta Grzywacz, Krzysztof Chmielowiec, Jolanta Chmielowiec, Anna Makarewicz, Kinga Łosińska, Dariusz Larysz, Grzegorz Trybek and Anna Grzywacz
Biomedicines 2025, 13(8), 1852; https://doi.org/10.3390/biomedicines13081852 - 30 Jul 2025
Viewed by 270
Abstract
Background/Objectives: Impulsivity is a key psychological construct implicated in the onset and maintenance of behavioural addictions. Dysregulation of impulsivity is central to behavioural addictions, yet its genetic basis remains unclear. This study examined the association between the DAT1 variable number tandem repeat [...] Read more.
Background/Objectives: Impulsivity is a key psychological construct implicated in the onset and maintenance of behavioural addictions. Dysregulation of impulsivity is central to behavioural addictions, yet its genetic basis remains unclear. This study examined the association between the DAT1 variable number tandem repeat polymorphism and impulsivity in individuals with behavioural addictions. Methods: A total of 328 males (128 with behavioural addictions and 200 controls) completed the Barratt Impulsiveness Scale. DAT1 genotyping was performed via PCR and gel electrophoresis. Statistical analyses included chi-square tests, Mann–Whitney U-tests, and two-way ANOVA. Results: No differences in DAT1 genotype frequencies were found between groups. However, a significant interaction emerged for attentional impulsivity: individuals with behavioural addictions and the 9/9 genotype had the highest BIS-AI scores (F2, 322 = 5.48; p = 0.0046). Conclusions: The DAT1 9/9 genotype may increase vulnerability to attentional impulsivity, but only in the context of behavioural addictions. These findings highlight a gene–environment interaction and support the role of dopaminergic mechanisms in cognitive dysregulation. Future studies should validate these findings using longitudinal designs and neurobiological methods. Full article
(This article belongs to the Special Issue Dopamine Signaling Pathway in Health and Disease—2nd Edition)
Show Figures

Figure 1

13 pages, 931 KiB  
Article
Ultrasensitive and Multiplexed Target Detection Strategy Based on Photocleavable Mass Tags and Mass Signal Amplification
by Seokhwan Ji, Jin-Gyu Na and Woon-Seok Yeo
Nanomaterials 2025, 15(15), 1170; https://doi.org/10.3390/nano15151170 - 29 Jul 2025
Viewed by 273
Abstract
Co-infections pose significant challenges not only clinically, but also in terms of simultaneous diagnoses. The development of sensitive, multiplexed analytical platforms is critical for accurately detecting viral co-infections, particularly in complex biological environments. In this study, we present a mass spectrometry (MS)-based detection [...] Read more.
Co-infections pose significant challenges not only clinically, but also in terms of simultaneous diagnoses. The development of sensitive, multiplexed analytical platforms is critical for accurately detecting viral co-infections, particularly in complex biological environments. In this study, we present a mass spectrometry (MS)-based detection strategy employing a target-triggered hybridization chain reaction (HCR) to amplify signals and in situ photocleavable mass tags (PMTs) for the simultaneous detection of multiple targets. Hairpin DNAs modified with PMTs and immobilized loop structures on magnetic particles (Loop@MPs) were engineered for each target, and their hybridization and amplification efficiency was validated using native polyacrylamide gel electrophoresis (PAGE) and laser desorption/ionization MS (LDI-MS), with silica@gold core–shell hybrid (SiAu) nanoparticles being employed as an internal standard to ensure quantitative reliability. The system exhibited excellent sensitivity, with a detection limit of 415.12 amol for the hepatitis B virus (HBV) target and a dynamic range spanning from 1 fmol to 100 pmol. Quantitative analysis in fetal bovine serum confirmed high accuracy and precision, even under low-abundance conditions. Moreover, the system successfully and simultaneously detected multiple targets, i.e., HBV, human immunodeficiency virus (HIV), and hepatitis C virus (HCV), mixed in various ratios, demonstrating clear PMT signals for each. These findings establish our approach as a robust and reliable platform for ultrasensitive multiplexed detection, with strong potential for clinical and biomedical research. Full article
(This article belongs to the Special Issue Synthesis and Application of Optical Nanomaterials: 2nd Edition)
Show Figures

Graphical abstract

14 pages, 722 KiB  
Article
When the Last Line Fails: Characterization of Colistin-Resistant Acinetobacter baumannii Reveals High Virulence and Limited Clonal Dissemination in Greek Hospitals
by Dimitrios Karakalpakidis, Theofilos Papadopoulos, Michalis Paraskeva, Michaela-Eftychia Tsitlakidou, Eleni Vagdatli, Helen Katsifa, Apostolos Beloukas, Charalampos Kotzamanidis and Christine Kottaridi
Pathogens 2025, 14(8), 730; https://doi.org/10.3390/pathogens14080730 - 24 Jul 2025
Viewed by 1471
Abstract
Acinetobacter baumannii has emerged as a major pathogen responsible for healthcare-associated infections, particularly in intensive care units, contributing to significant morbidity and mortality due to its multidrug resistance and ability to persist in clinical environments. This study aimed to investigate the phenotypic and [...] Read more.
Acinetobacter baumannii has emerged as a major pathogen responsible for healthcare-associated infections, particularly in intensive care units, contributing to significant morbidity and mortality due to its multidrug resistance and ability to persist in clinical environments. This study aimed to investigate the phenotypic and genomic characteristics of all multidrug-resistant A. baumannii isolates collected between January and June 2022 from two tertiary care hospitals in Thessaloniki, Greece. A total of 40 isolates were included. All isolates exhibited resistance to colistin; however, none harbored the mcr-1 to mcr-9 genes, as confirmed by polymerase chain reaction (PCR). PCR-based screening for virulence-associated genes revealed high prevalence rates of basD (100%), pld (95%), csuE (87.5%), and bap (77.5%). In contrast, ompA and pglC were not detected. Twitching motility ranged from 2 to 50 mm, with 25% of the isolates classified as non-motile and 20% as highly motile. Swarming motility was observed in all strains. Additionally, all isolates demonstrated positive α-hemolysis, suggesting a potential virulence mechanism involving tissue damage and iron acquisition. Pulsed-field gel electrophoresis (PFGE) revealed significant genomic diversity among the isolates, indicating a low likelihood of patient-to-patient or clonal transmission within the hospital setting. These findings highlight the complex relationship between antimicrobial resistance and virulence in clinical A. baumannii isolates and emphasize the urgent need for robust infection control strategies and continued microbiological surveillance. Full article
(This article belongs to the Special Issue Acinetobacter baumannii: An Emerging Pathogen)
Show Figures

Figure 1

17 pages, 2519 KiB  
Article
Gel Electrophoresis of an Oil Drop
by Hiroyuki Ohshima
Gels 2025, 11(7), 555; https://doi.org/10.3390/gels11070555 - 18 Jul 2025
Viewed by 297
Abstract
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. [...] Read more.
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. Unlike solid particles, liquid drops exhibit internal fluidity and interfacial dynamics, leading to distinct electrokinetic behavior. In this study, the drop motion is driven by long-range hydrodynamic effects from the surrounding gel, which are treated using the Debye–Bueche–Brinkman continuum framework. A simplified version of the Baygents–Saville theory is adopted, assuming that no ions are present inside the drop and that the surface charge distribution results from linear ion adsorption. An approximate analytical expression is derived for the electrophoretic mobility of the drop under the condition of low zeta potential. Importantly, the derived expression explicitly includes the Marangoni effect, which arises from spatial variations in interfacial tension due to non-uniform ion adsorption. This model provides a physically consistent and mathematically tractable basis for understanding the electrophoretic transport of oil drops in soft porous media such as hydrogels, with potential applications in microfluidics, separation processes, and biomimetic systems. These results also show that the theory could be applied to more complicated or biologically important soft materials. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

18 pages, 2417 KiB  
Article
Multifaceted Applications of Zerumbone-Loaded Metal–Organic Framework-5: Anticancer, Antibacterial, Antifungal, DNA-Binding, and Free Radical Scavenging Potentials
by Sumeyya Deniz Aybek, Mucahit Secme, Hasan Ilhan, Leyla Acik, Suheyla Pinar Celik and Gonca Gulbay
Molecules 2025, 30(14), 2936; https://doi.org/10.3390/molecules30142936 - 11 Jul 2025
Viewed by 312
Abstract
In the present research, metal–organic framework-5 (MOF-5) was synthesized and loaded with zerumbone (ZER@MOF-5), followed by the evaluation of its anticancer, antibacterial, antifungal, DNA-binding, and free radical scavenging potentials. The synthesized nanoparticles were characterized using X-ray diffraction, ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy, energy-dispersive [...] Read more.
In the present research, metal–organic framework-5 (MOF-5) was synthesized and loaded with zerumbone (ZER@MOF-5), followed by the evaluation of its anticancer, antibacterial, antifungal, DNA-binding, and free radical scavenging potentials. The synthesized nanoparticles were characterized using X-ray diffraction, ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The in vitro anticancer activity of ZER@MOF-5 was studied in a human breast cancer cell line (MCF-7) using the CCK-8 assay. The interaction of ZER@MOF-5 with pBR322 plasmid DNA was assessed by gel electrophoresis. The antimicrobial effect of ZER@MOF-5 was examined in gram-positive and gram-negative bacterial strains and yeast strains using the microdilution method. The free radical scavenging activity was assessed using the DPPH assay. Cytotoxicity assay revealed a notable enhancement in the anticancer activity of zerumbone upon its encapsulation into MOF-5. The IC50 value for ZER@MOF-5 was found to be 57.33 µg/mL, which was lower than that of free zerumbone (IC50: 89.58 µg/mL). The results of the DNA-binding experiment indicate that ZER@MOF-5 can bind to target DNA and cause a conformational change in DNA. The results of the antibacterial activity experiment showed that the antibacterial ability of ZER@MOF-5 was limited compared to free zerumbone. The results of the DPPH assay demonstrated that the antioxidant activity of free zerumbone was higher than that of ZER@MOF-5. MOFs encapsulate compounds within their porous crystalline structure, which leads to prolonged circulation time compared to single ligands. Although the unique structure of MOFs may limit their antibacterial and antioxidant activity in the short term, it may increase therapeutic efficacy in the long term. However, to fully understand the long-term antibacterial and antioxidant effects of the ZER@MOF-5, further comprehensive in vitro and in vivo experiments are necessary. This finding indicates that the MOF-5 could potentially be an impressive carrier for the oral administration of zerumbone. Full article
Show Figures

Figure 1

29 pages, 17950 KiB  
Article
Organ-Specific Small Protein Networks in 100 kDa Ultrafiltrates: Functional Analysis and Implications for Neuroregenerative Medicine
by Jakub Peter Slivka, Chris Bauer, Tasneem Halhouli, Alexander Younsi, Michelle B. F. Wong, Mike K. S. Chan and Thomas Skutella
Int. J. Mol. Sci. 2025, 26(14), 6659; https://doi.org/10.3390/ijms26146659 - 11 Jul 2025
Viewed by 305
Abstract
In this research, the proteomic landscape of 100 kDa protein extract sourced from rabbit brain was compared to extracts from liver and from organ mixture (OM). Our aim was to compare the efficacy of Nanomised Organo Peptides (NOP) ultrafiltrates from two different tissues [...] Read more.
In this research, the proteomic landscape of 100 kDa protein extract sourced from rabbit brain was compared to extracts from liver and from organ mixture (OM). Our aim was to compare the efficacy of Nanomised Organo Peptides (NOP) ultrafiltrates from two different tissues and a tissue mixture for inducing neurite outgrowth, and subsequently to identify the molecular networks and proteins that could explain such effects. Proteins were isolated by gentle homogenization followed by crossflow ultrafiltration. Proteomic evaluation involved gel electrophoresis, complemented by mass spectrometry and bioinformatics. GO (Gene Ontology) and protein analysis of the mass spectrometry results identified a diverse array of proteins involved in critical specific biological functions, including neuronal development, regulation of growth, immune response, and lipid and metal binding. Data from this study are accessible from the ProteomeXchange repository (identifier PXD051701). Our findings highlight the presence of small proteins that play key roles in metabolic processes and biosynthetic modulation. In vitro outgrowth experiments with neural stem cells (NSCs) showed that 100 kDa protein extracts from the brain resulted in a greater increase in neurite length compared to the liver and organ mixture extracts. The protein networks identified in the NOP ultrafiltrates may significantly improve biological therapeutic strategies related to neural differentiation and outgrowth. This comprehensive proteomic analysis of 100 kDa ultrafiltrates revealed a diverse array of proteins involved in key biological processes, such as neuronal development, metabolic regulation, and immune response. Brain-specific extracts demonstrated the capacity to promote neurite outgrowth in NSCs, suggesting potential application for neuroregenerative therapies. Our findings highlight the potential of small proteins and organ-specific proteins in the development of novel targeted treatments for various diseases, particularly those related to neurodegeneration and aging. Full article
Show Figures

Figure 1

21 pages, 2631 KiB  
Article
Characterization of a Periplasmic D-Malate:Cytochrome c Oxidoreductase from Ectopseudomonas oleovorans CECT 5344 and Its Role in Extracytoplasmic Respiration and Cyanide Detoxification
by Faustino Merchán, Ana G. Población, María Isabel Guijo, Mar Gómez-Ortega, Felipe Morales-Durán, Irene Alonso-Ríos, Rubén Sánchez-Clemente and Rafael Blasco
Int. J. Mol. Sci. 2025, 26(14), 6575; https://doi.org/10.3390/ijms26146575 - 8 Jul 2025
Viewed by 292
Abstract
A periplasmic D-malate:cytochrome c oxidoreductase (DMCO) was identified in Ectopseudomonas oleovorans CECT5344, utilizing 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride (INT) as an artificial electron acceptor. The assay was adapted for a spectrophotometric or native polyacrylamide gel electrophoresis (PAGE) analysis. The DMCO-encoding gene (BN5_4044) was cloned and [...] Read more.
A periplasmic D-malate:cytochrome c oxidoreductase (DMCO) was identified in Ectopseudomonas oleovorans CECT5344, utilizing 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride (INT) as an artificial electron acceptor. The assay was adapted for a spectrophotometric or native polyacrylamide gel electrophoresis (PAGE) analysis. The DMCO-encoding gene (BN5_4044) was cloned and expressed in Escherichia coli, enabling a partial purification and biochemical characterization. In addition to D-malate, the enzyme oxidizes D-2-hydroxyglutarate and, to a lesser extent, D-lactate, with cytochrome c also serving as an electron acceptor. DMCO requires Zn2+ for activity and exists as a dimer, as determined by gel filtration. The in vitro reconstitution of the electron transfer from D-malate to oxygen was achieved using spheroplasts, enriched periplasmic fractions, and cytochrome c. This extracytoplasmic respiration, unique among homologs of this protein, may eliminate the need for a dedicated inner membrane transporter, thereby avoiding potential upstream respiratory bottlenecks. In the context of bioremediation, and particularly regarding the cyanide metabolism, this D-malate oxidation to oxaloacetate facilitates detoxification by forming the corresponding cyanohydrin, which can be subsequently assimilated for growth. Full article
(This article belongs to the Special Issue Current Advances and Perspectives in Microbial Genetics and Genomics)
Show Figures

Figure 1

29 pages, 3353 KiB  
Article
A Comparative Study of the Antioxidant and Antidiabetic Properties of Fermented Camel (Camelus dromedarius) and Gir Cow (Bos primigenius indicus) Milk and the Production of Bioactive Peptides via In Vitro and In Silico Studies
by Brijesh Bhuva, Bethsheba Basaiawmoit, Amar A. Sakure, Pooja M. Mankad, Anita Rawat, Mahendra Bishnoi, Kanthi Kiran Kondepudi, Ashish Patel, Preetam Sarkar and Subrota Hati
Fermentation 2025, 11(7), 391; https://doi.org/10.3390/fermentation11070391 - 8 Jul 2025
Viewed by 572
Abstract
In this study, camel milk (CM) and Gir cow milk (GCM) were fermented through cofermentation via yeast–lactic cultures, i.e., Lacticaseibacillus rhamnosus (M9, MTCC 25516) and Saccharomyces cerevisiae (WBS2A, MG101828), and their antioxidant and antidiabetic effectiveness were studied. To optimize the growth conditions, the [...] Read more.
In this study, camel milk (CM) and Gir cow milk (GCM) were fermented through cofermentation via yeast–lactic cultures, i.e., Lacticaseibacillus rhamnosus (M9, MTCC 25516) and Saccharomyces cerevisiae (WBS2A, MG101828), and their antioxidant and antidiabetic effectiveness were studied. To optimize the growth conditions, the level of proteolysis was evaluated by exploring various inoculation levels (1.5, 2.0 and 2.5%) as well as incubation durations (0, 12, 24, 36 and 48 h). Peptides were extracted and purified through 2D gel electrophoresis as well as SDS–PAGE. Water-soluble extracts (WSEs) of ultrafiltered (UF) peptide fractions were evaluated via reversed-phase high-performance liquid chromatography (RP-HPLC) to identify the peptide segments. By applying the Peakview tool, peptide sequences obtained from liquid chromatography–mass spectrometry (LC/MS) were reviewed by comparison with those in the BIOPEP database. Furthermore, the elevated levels of TNF-α, IL-6, IL-1β and nitric oxide (NO) in RAW 267.4 cells treated with lipopolysaccharide (LPS) are considerably lower than those in cultured CM and GCM. Protein macromolecules in CMs and GCMs have been captured via confocal laser scanning microscopy (CLSM) and Fourier transform infrared (FTIR) spectroscopy both before and after fermentation. Full article
(This article belongs to the Special Issue Advances in Fermented Foods and Beverages)
Show Figures

Figure 1

12 pages, 472 KiB  
Article
Impact of hMLH1 −93G>A (rs1800734) and hMSH2 1032G>A (rs4987188) Polymorphisms on Colorectal Cancer Susceptibility
by Bayram Bayramov, Nigar Karimova, Nigar Mehdiyeva, Hagigat Valiyeva, Rena Karimova, Royal Shirinov, Hazi Aslanov, Zumrud Safarzade, Orkhan Isayev and Nuru Bayramov
J. Mol. Pathol. 2025, 6(3), 15; https://doi.org/10.3390/jmp6030015 - 8 Jul 2025
Viewed by 322
Abstract
Background: This study is the first to investigate the association between colorectal cancer (CRC) risk and the hMLH1 −93G>A and hMSH2 1032G>A polymorphisms of mismatch repair (MMR) genes in the Azerbaijani population. Methods: Peripheral blood samples containing EDTA were collected from the study [...] Read more.
Background: This study is the first to investigate the association between colorectal cancer (CRC) risk and the hMLH1 −93G>A and hMSH2 1032G>A polymorphisms of mismatch repair (MMR) genes in the Azerbaijani population. Methods: Peripheral blood samples containing EDTA were collected from the study subjects (134 patients and 137 controls), and genomic DNA was extracted using the non-enzymatic salting-out method. Genotypes were determined by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), and the results were visualized through agarose gel electrophoresis. Results: Overall, no statistically significant correlation was observed between CRC risk and the hMLH1 −93G>A polymorphism in the heterozygous GA (OR = 0.760; 95% CI = 0.374–1.542; p = 0.446), the mutant AA (OR = 1.474; 95% CI = 0.738–2.945; p = 0.270), or the A allele (OR = 1.400; 95% CI = 0.984–1.995; p = 0.062). However, in contrast to the dominant model, a statistically significant association was found between the recessive model and an increased CRC risk, with an odds ratio of 1.788 (95% CI = 1.102–2.900; p = 0.018). The hMLH1 −93G>A polymorphism was identified at a significantly higher frequency across the TNM stages, with the distribution showing statistical significance (p < 0.05). Additionally, no statistically significant association was observed between the hMSH2 1032G>A polymorphism and CRC risk. Conclusions: Although no overall association was observed for hMLH1 −93G>A, our findings suggest a potential link with increased colorectal cancer risk under the recessive model in the Azerbaijani population. Further studies are warranted to confirm this model-specific association and investigate the underlying biological mechanisms. Full article
Show Figures

Figure 1

13 pages, 1890 KiB  
Article
Compound Salt-Based Coagulants for Tofu Gel Production: Balancing Quality and Protein Digestibility
by Zhaolu Li, Sisi Zhang, Zihan Gao, Xinyue Guo, Ruohan Wang, Maoqiang Zheng and Guangliang Xing
Gels 2025, 11(7), 524; https://doi.org/10.3390/gels11070524 - 6 Jul 2025
Viewed by 412
Abstract
Tofu quality is critically influenced by coagulants, though their impact on protein digestibility remains underexplored. This study aimed to investigate the effects of calcium sulfate (CaSO4), magnesium chloride (MgCl2), and their combination (CaSO4 + MgCl2) on [...] Read more.
Tofu quality is critically influenced by coagulants, though their impact on protein digestibility remains underexplored. This study aimed to investigate the effects of calcium sulfate (CaSO4), magnesium chloride (MgCl2), and their combination (CaSO4 + MgCl2) on the physicochemical properties and protein digestibility of tofu. Water-holding capacity, cooking loss, texture, protein composition, and protein digestibility were analyzed. The results showed that the CaSO4 + MgCl2 combination yielded a water-holding capacity of 99.16%, significantly higher than CaSO4 tofu (93.73%) and MgCl2 tofu (96.82%), while reducing cooking loss to 2.03% and yielding the highest hardness (897.27 g) and gumminess (765.72). Electrophoresis revealed distinct protein retention patterns, with MgCl2 (0.6% w/v) forming denser gels that minimized protein leakage into soy whey. During in vitro digestion, MgCl2-coagulated tofu exhibited superior soluble protein release (5.33 mg/mL after gastric digestion) and higher intestinal peptide (5.89 mg/mL) and total amino acid (123.06 μmol/mL) levels, indicating enhanced digestibility. Conversely, the CaSO4 + MgCl2 combination showed delayed proteolysis in electrophoresis analysis. These findings demonstrate that coagulant selection directly modulates tofu’s texture, water retention, and protein bioavailability, with MgCl2 favoring digestibility and the hybrid coagulant optimizing physical properties. This provides strategic insights for developing nutritionally enhanced tofu products. Full article
(This article belongs to the Special Issue Food Gel-Based Systems: Gel-Forming and Food Applications)
Show Figures

Graphical abstract

23 pages, 1189 KiB  
Article
Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System
by Viktor Korzhikov-Vlakh, Polina Teterina, Nina Gubina, Apollinariia Dzhuzha, Tatiana Tennikova and Evgenia Korzhikova-Vlakh
Polysaccharides 2025, 6(3), 60; https://doi.org/10.3390/polysaccharides6030060 - 5 Jul 2025
Viewed by 536
Abstract
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free [...] Read more.
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free strain-promoted azide-alkyne cycloaddition reaction was proposed. For this purpose, hyaluronic acid was modified with dibenzocyclooctyne moieties, and poly-L-lysine with a terminal azido group was obtained using ring-opening polymerization of N-carboxyanhydride of the corresponding protected amino acid, initiated with the amino group azido-PEG3-amine. Two HA-g-PLys samples with different degrees of grafting were synthesized, and the structures of all modified and synthesized polymers were confirmed using 1H NMR and FTIR spectroscopy. The HA-g-PLys samples obtained were able to form nanoparticles in aqueous media due to self-assembly driven by electrostatic interactions. The binding of DNA and model siRNA by copolymers to form polyplexes was analyzed using ethidium bromide, agarose gel electrophoresis, and SybrGreen I assays. The hydrodynamic diameter of polyplexes was ˂300 nm (polydispersity index, PDI ˂ 0.3). The release of a model fluorescently-labeled oligonucleotide in the complex biological medium was significantly higher in the case of HA-g-PLys as compared to that in the case of PLys-based polyplexes. In addition, the cytotoxicity in normal and cancer cells, as well as the ability of HA-g-PLys to facilitate intracellular delivery of anti-GFP siRNA to NIH-3T3/GFP+ cells, were evaluated. Full article
Show Figures

Figure 1

24 pages, 4258 KiB  
Article
Proteomic Profiling Reveals Novel Molecular Insights into Dysregulated Proteins in Established Cases of Rheumatoid Arthritis
by Afshan Masood, Hicham Benabdelkamel, Assim A. Alfadda, Abdurhman S. Alarfaj, Amina Fallata, Salini Scaria Joy, Maha Al Mogren, Anas M. Abdel Rahman and Mohamed Siaj
Proteomes 2025, 13(3), 32; https://doi.org/10.3390/proteomes13030032 - 4 Jul 2025
Viewed by 623
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder that predominantly affects synovial joints, leading to inflammation, pain, and progressive joint damage. Despite therapeutic advancements, the molecular basis of established RA remains poorly defined. Methods: In this study, we conducted an untargeted [...] Read more.
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder that predominantly affects synovial joints, leading to inflammation, pain, and progressive joint damage. Despite therapeutic advancements, the molecular basis of established RA remains poorly defined. Methods: In this study, we conducted an untargeted plasma proteomic analysis using two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in samples from RA patients and healthy controls in the discovery phase. Results: Significantly (ANOVA, p ≤ 0.05, fold change > 1.5) differentially abundant proteins (DAPs) were identified. Notably, upregulated proteins included mitochondrial dicarboxylate carrier, hemopexin, and 28S ribosomal protein S18c, while CCDC124, osteocalcin, apolipoproteins A-I and A-IV, and haptoglobin were downregulated. Receiver operating characteristic (ROC) analysis identified CCDC124, osteocalcin, and metallothionein-2 with high diagnostic potential (AUC = 0.98). Proteins with the highest selected frequency were quantitatively verified by multiple reaction monitoring (MRM) analysis in the validation cohort. Bioinformatic analysis using Ingenuity Pathway Analysis (IPA) revealed the underlying molecular pathways and key interaction networks involved STAT1, TNF, and CD40. These central nodes were associated with immune regulation, cell-to-cell signaling, and hematological system development. Conclusions: Our combined proteomic and bioinformatic approaches underscore the involvement of dysregulated immune pathways in RA pathogenesis and highlight potential diagnostic biomarkers. The utility of these markers needs to be evaluated in further studies and in a larger cohort of patients. Full article
(This article belongs to the Special Issue Proteomics in Chronic Diseases: Issues and Challenges)
Show Figures

Figure 1

15 pages, 1140 KiB  
Article
Serum Proteomic Changes in Pet Rabbits with Subclinical and Clinical Encephalitozoonosis in Thailand
by Taksaon Duangurai, Onrapak Reamtong, Tipparat Thiangtrongjit, Siriluk Jala, Peerut Chienwichai and Naris Thengchaisri
Animals 2025, 15(13), 1962; https://doi.org/10.3390/ani15131962 - 3 Jul 2025
Viewed by 507
Abstract
Encephalitozoon cuniculi causes both clinical and subclinical infections in rabbits, complicating a diagnosis due to the limitations of conventional tools like ELISA. This study analyzes serum proteomic profiles across clinical, subclinical, and healthy rabbits to identify discriminatory biomarkers. Serum from 90 pet rabbits [...] Read more.
Encephalitozoon cuniculi causes both clinical and subclinical infections in rabbits, complicating a diagnosis due to the limitations of conventional tools like ELISA. This study analyzes serum proteomic profiles across clinical, subclinical, and healthy rabbits to identify discriminatory biomarkers. Serum from 90 pet rabbits (30 per group) was pooled (10 samples per pool, 3 pools per group) and analyzed using one-dimensional gel electrophoresis and mass spectrometry. The proteomic analysis revealed 109, 98, and 74 proteins expressed in healthy, subclinical, and clinical groups, respectively. Of these, 50, 40, and 33 proteins were unique to the healthy, subclinical, and clinical groups, respectively, with only 10 proteins shared across all. A total of 88 proteins were differentially expressed in infected groups compared to healthy controls. Importantly, 12 proteins were consistently upregulated in both subclinical and clinical infections. These include markers related to the immune response (beta-2-microglobulin, alpha-2-HS-glycoprotein), coagulation (antithrombin-III, alpha-1-antiproteinase S-1), vitamin A transport (retinol-binding proteins), lipid metabolism (apolipoprotein C-III), cytoskeletal regulation (actin-depolymerizing factor), extracellular matrix integrity (fibrillin 2), and oxidative stress (monooxygenase DBH-like 1). Additionally, Gc-globulin and ER lipid-raft-associated 1 were linked to immune modulation and signaling. These findings identify specific serum proteins as promising biomarkers for distinguishing subclinical from clinical encephalitozoonosis in rabbits, enabling an early diagnosis and effective disease monitoring. Full article
(This article belongs to the Special Issue Advances in Exotic Pet Medicine)
Show Figures

Figure 1

Back to TopTop