Associations Between DAT1 Gene VNTR Polymorphism and Impulsivity Dimensions in Individuals with Behavioural Addictions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Measures
2.3. Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moeller, F.G.; Barratt, E.S.; Dougherty, D.M.; Schmitz, J.M.; Swann, A.C. Psychiatric Aspects of Impulsivity. Am. J. Psychiatry 2001, 158, 1783–1793. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, B.N.; Cho, S.C. The dopamine transporter gene and the impulsivity phenotype in attention deficit hyperactivity disorder: A case-control association study in a Korean sample. Mol. Psychiatry 2006, 11, 158–165. [Google Scholar] [CrossRef]
- Rajala, A.Z.; Zaitoun, I.S.; Henriques, J.B.; Converse, A.K.; Murali, D.; Epstein, M.; Populin, L.C. Dopamine transporter gene susceptibility to methylation is associated with impulsivity in nonhuman primates. J. Neurophysiol. 2014, 112, 2138–2146. [Google Scholar] [CrossRef]
- Fuke, S.; Suo, S.; Takahashi, N.; Koike, H.; Sasagawa, N.; Ishiura, S. The VNTR Polymorphism of the Human Dopamine Transporter (DAT1) Gene Affects Gene Expression. Pharmacogenom. J. 2001, 1, 152–156. [Google Scholar] [CrossRef]
- Luht, K.; Tokko, T.; Eensoo, D.; Vaht, M.; Harro, J. Efficacy of intervention at traffic schools reducing impulsive action, and association with candidate gene variants. Acta Neuropsychiatr. 2019, 31, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Aarts, E.; van Holstein, M.; Hoogman, M.; Onnink, M.; Kan, C.; Franke, B.; Buitelaar, J.; Cools, R. Reward modulation of cognitive function in adult attention-deficit/hyperactivity disorder: A pilot study on the role of striatal dopamine. Behav. Pharmacol. 2015, 26, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Dreher, J.; Kohn, P.; Kolachana, B.; Weinberger, D.R.; Berman, K.F. Variation in Dopamine Genes Influences Responsivity of the Human Reward System. Proc. Natl. Acad. Sci. USA 2009, 106, 617–622. [Google Scholar] [CrossRef]
- Brand, M.; Young, K.S.; Laier, C.; Wölfling, K.; Potenza, M.N. Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neurosci. Biobehav. Rev. 2016, 71, 252–266. [Google Scholar] [CrossRef]
- Fineberg, N.A.; Demetrovics, Z.; Stein, D.J.; Ioannidis, K.; Potenza, M.N.; Grünblatt, E.; Brand, M. Manifesto for a European research network into Problematic Usage of the Internet. Eur. Neuropsychopharmacol. 2018, 28, 1232–1246. [Google Scholar] [CrossRef]
- Werling, A.M.; Grünblatt, E. A review of the genetic basis of problematic Internet use. Curr. Opin. Behav. Sci. 2022, 46, 101149. [Google Scholar] [CrossRef]
- De Nardi, L.; Carpentieri, V.; Pascale, E.; Pucci, M.; D’Addario, C.; Cerniglia, L.; Adriani, W.; Cimino, S. Involvement of DAT1 gene on Internet addiction: Cross-correlations of methylation levels in 5′-UTR and 3′-UTR genotypes, interact with impulsivity and attachment-driven quality of relationships. Int. J. Environ. Res. Public Health 2020, 17, 7956. [Google Scholar] [CrossRef]
- Modestino, E.J.; Blum, K.; Dennen, C.A.; Downs, B.W.; Bagchi, D.; Llanos-Gomez, L.; Elman, I.; Baron, D.; Thanos, P.K.; Badgaiyan, R.D.; et al. Theorizing the role of dopaminergic polymorphic risk alleles with intermittent explosive disorder (IED), violent/aggressive behavior and addiction. J. Pers. Med. 2022, 12, 1946. [Google Scholar] [CrossRef]
- Tsatali, M.; Moraitou, D.; Papantoniou, G.; Foutsitzi, E.; Bonti, E.; Kougioumtzis, G.; Ntritsos, G.; Sofologi, M.; Tsolaki, M. Measuring Impulsivity in Greek Adults: Psychometric Properties of the Barratt Impulsiveness Scale (BIS-11) and Impulsive Behavior Scale (Short Version of UPPS-P). Brain Sci. 2021, 11, 1007. [Google Scholar] [CrossRef]
- Čulík, K.; Kalašová, A. Statistical Evaluation of BIS-11 and DAQ Tools in the Field of Traffic Safety. Mathematics 2021, 9, 433. [Google Scholar] [CrossRef]
- Bellia, F.; Piccinini, A.; Annunzi, E.; Cannito, L.; Lionetti, F.; Dell’Osso, B.; Adriani, W.; Dainese, E.; Di Domenico, A.; Pucci, M.; et al. Dopamine and Serotonin Transporter Genes Regulation in Highly Sensitive Young Adults under Stress. Biomedicines 2022, 12, 2149. [Google Scholar] [CrossRef]
- Kessler, R.C.; Adler, L.; Ames, M.; Demler, O.; Faraone, S.; Hiripi, E.; Howes, M.J.; Jin, R.; Secnik, K.; Spencer, T.; et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS). Psychol. Med. 2005, 35, 245–256. [Google Scholar] [CrossRef]
- Chmielowiec, J.; Chmielowiec, K.; Suchanecka, A.; Trybek, G.; Mroczek, B.; Małecka, I.; Grzywacz, A. Associations Between the Dopamine D4 Receptor and DAT1 Dopamine Transporter Genes Polymorphisms and Personality Traits in Addicted Patients. Int. J. Environ. Res. Public Health 2018, 15, 2076. [Google Scholar] [CrossRef]
- Chmielowiec, J.; Chmielowiec, K.; Masiak, J.; Pawłowski, T.; Larysz, D.; Grzywacz, A. Analysis of Relationships between DAT1 Polymorphism Variants, Personality Dimensions, and Anxiety in New Psychoactive Substance (Designer Drug) (NPS) Users. Genes 2021, 12, 1977. [Google Scholar] [CrossRef]
- van Dyck, C.H.; Malison, R.T.; Jacobsen, L.K.; Seibyl, J.P.; Staley, J.K.; Laruelle, M.; Baldwin, R.M.; Innis, R.B.; Gelernter, J. Increased Dopamine Transporter Availability Associated with the 9-Repeat Allele of the SLC6A3 Gene. J. Nucl. Med. 2005, 46, 745–751. [Google Scholar] [PubMed]
- Faraone, S.V.; Spencer, T.J.; Madras, B.K.; Zhang-James, Y.; Biederman, J. Functional Effects of Dopamine Transporter Gene Genotypes on In Vivo Dopamine Transporter Functioning: A Meta-Analysis. Mol. Psychiatry 2014, 19, 880–889. [Google Scholar] [CrossRef]
- Costa, V.D.; Tran, V.L.; Turchi, J.; Averbeck, B.B. Dopamine Modulates Novelty Seeking Behavior during Decision Making. Behav. Neurosci. 2014, 128, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Chmielowiec, J.; Chmielowiec, K.; Strońska-Pluta, A.; Suchanecka, A.; Humińska-Lisowska, K.; Lachowicz, M.; Niewczas, M.; Białecka, M.; Śmiarowska, M.; Grzywacz, A. Methylation in the Promoter Region of the Dopamine Transporter DAT1 Gene in People Addicted to Nicotine. Int. J. Environ. Res. Public Health 2022, 19, 8602. [Google Scholar] [CrossRef]
- Rogalska, S.; Achrem, M.; Wojciechowski, A. Chromatyna. Molekularne Mechanizmy Epigenetyczne; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2010. [Google Scholar]
- Wang, Y.; Leung, F.C.C. An Evaluation of New Criteria for CpG Islands in the Human Genome as Gene Markers. Bioinformatics 2004, 20, 1170–1177. [Google Scholar] [CrossRef]
- Kordi-Tamandani, D.M.; Tajoddini, S.; Salimi, F. Promoter Methylation and BDNF and DAT1 Gene Expression Profiles in Patients with Drug Addiction. Pathobiology 2015, 82, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhang, Y.; Li, Y.; Wu, J.; Wang, R.; Lv, Q.; Li, D.; Lang, Y. Resting-state brain networks alterations in adolescents with Internet Gaming Disorder associate with cognitive control impairments. Front. Psychiatry 2024, 15, 1404050. [Google Scholar] [CrossRef]
- Reise, S.; Moore, T.M.; Sabb, F.W.; Brown, A.K.; London, E.D. The Barratt Impulsiveness Scale-11: Reassessment of Its Structure in a Community Sample. Psychol. Assess. 2013, 25, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, H.; Gao, X. Influences of Emotional Information on Response Inhibition in Gaming Disorder: Behavioral and ERP Evidence from Go/Nogo Task. Int. J. Environ. Res. Public Health 2022, 19, 16264. [Google Scholar] [CrossRef]
- Brand, M.; Wegmann, E.; Stark, R.; Müller, A.; Wölfling, K.; Robbins, T.W.; Potenza, M.N. The Interaction of Person-Affect-Cognition-Execution (I-PACE) Model for Addictive Behaviors: Update, Generalization to Addictive Behaviors beyond Internet-Use Disorders, and Specification of the Process Character of Addictive Behaviors. Neurosci. Biobehav. Rev. 2019, 104, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Masiak, J.; Chmielowiec, J.; Chmielowiec, K.; Grzywacz, A. DRD4, DRD2, DAT1, and ANKK1 Genes Polymorphisms in Patients with Dual Diagnosis of Polysubstance Addictions. J. Clin. Med. 2020, 9, 3593. [Google Scholar] [CrossRef]
- Williams, O.O.F.; Coppolino, M.; George, S.R.; Perreault, M.L. Sex Differences in Dopamine Receptors and Relevance to Neuropsychiatric Disorders. Brain Sci. 2021, 11, 1199. [Google Scholar] [CrossRef]
- Stevens, M.W.; Dorstyn, D.; Delfabbro, P.H.; King, D.L. Global Prevalence of Gaming Disorder: A Systematic Review and Meta-Analysis. Aust. N. Z. J. Psychiatry 2021, 55, 553–568, Corrigendum in Aust. N. Z. J. Psychiatry 2023, 57, 928. https://doi.org/10.1177/00048674221137011. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-X.; Wang, J.-Y.; Dong, G.-H. The Prevalence and Possible Risk Factors of Internet Gaming Disorder among Adolescents and Young Adults: Systematic Reviews and Meta-Analyses. J. Psychiatr. Res. 2022, 154, 35–43. [Google Scholar] [CrossRef]
- Humińska-Lisowska, K. Dopamine in Sports: A Narrative Review on the Genetic and Epigenetic Factors Shaping Personality and Athletic Performance. Int. J. Mol. Sci. 2024, 25, 11602. [Google Scholar] [CrossRef]
- Chmielowiec, K.; Chmielowiec, J.; Masiak, J.; Strońska-Pluta, A.; Lachowicz, M.; Boroń, A.; Larysz, D.; Dzitkowska-Zabielska, M.; Cięszczyk, P.; Grzywacz, A. DNA Methylation of the Dopamine Transporter DAT1 Gene—Bliss Seekers in the Light of Epigenetics. Int. J. Mol. Sci. 2023, 24, 5265. [Google Scholar] [CrossRef]
- Ikegami, M.; Sorama, M. Differential Neural Correlates in the Prefrontal Cortex during a Delay Discounting Task in Healthy Adults: An fNIRS Study. Brain Sci. 2023, 13, 758. [Google Scholar] [CrossRef]
- Gaspar-Pérez, A.; Granero, R.; Fernández-Aranda, F.; Rosinska, M.; Artero, C.; Ruiz-Torras, S.; Gearhardt, A.N.; Demetrovics, Z.; Guàrdia-Olmos, J.; Jiménez-Murcia, S. Exploring Food Addiction Across Several Behavioral Addictions: Analysis of Clinical Relevance. Nutrients 2025, 17, 1279. [Google Scholar] [CrossRef] [PubMed]
- Keskinsezer, M.; Yazici, A.B.; Guney Eskiler, G.; Hamarat, K.F.; Davutoglu, O.; Yazici, E. Exploring the Relationship Between VMAT2 and DAT Expression, Psychotic Experiences, Craving, and Treatment Motivation in Male Patients with Methamphetamine Use Disorder. J. Clin. Med. 2024, 13, 7105. [Google Scholar] [CrossRef] [PubMed]
- Casey, B.J.; Jones, R.M. Neurobiology of the Adolescent Brain and Behavior: Implications for Substance Use Disorders. J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 1189–1201. [Google Scholar] [CrossRef]
- Reynolds, B. A Review of Delay-Discounting Research with Humans: Relations to Drug Use and Gambling. Behav. Pharmacol. 2006, 17, 651–667. [Google Scholar] [CrossRef]
- Steinberg, L.; Graham, S.; O’Brien, L.; Woolard, J.; Cauffman, E.; Banich, M. Age Differences in Future Orientation and Delay Discounting. Child Dev. 2009, 80, 28–44. [Google Scholar] [CrossRef]
- Chiș, A.; Oltean, L.-E.; Bîlc, M.; Vulturar, R.; Șoflău, R.; David, D.; Szentágotai-Tătar, A.; Miu, A.C. Gene–Environment Interactions in Irrational Beliefs: The Roles of Childhood Adversity and Multiple Candidate Genes. Int. J. Mol. Sci. 2024, 25, 4206. [Google Scholar] [CrossRef] [PubMed]
- Cheslack-Postava, K.; Cycowicz, Y.M.; Rodriguez-Moreno, D.V.; Amsel, L.V.; Musa, G.J.; Ryan, M.; Bresnahan, M.; Tang, H.; Geronazzo-Alman, L.; Bisaga, A.; et al. Characteristics of Adolescents with and without a Family History of Substance Use Disorder from a Minority Cohort. Children 2024, 11, 671. [Google Scholar] [CrossRef] [PubMed]
Behavioural Addicts | Control | ||||
---|---|---|---|---|---|
n = 128 | % | n = 200 | % | ||
Marital status | Single | 114 | 89.1 | 174 | 87 |
Married | 7 | 5.5 | 20 | 10 | |
Divorced | 6 | 4.7 | 5 | 2.5 | |
Widowed | 1 | 0.8 | 1 | 0.5 | |
Education | Primary | 9 | 7.0 | 5 | 2.5 |
Vocational | 39 | 30.5 | 58 | 29.0 | |
High school | 51 | 39.8 | 112 | 56.0 | |
Higher | 29 | 22.7 | 25 | 12.5 | |
Residence | City | 31 | 24.2 | 61 | 30.5 |
Village | 97 | 75.8 | 139 | 69.5 |
Hardy–Weinberg Equilibrium Including Analysis for Ascertainment Bias | Observed (Expected) | Allele Freq | χ2 (p Value) | |
---|---|---|---|---|
Behavioural addictions n = 128 | 10/10 | 75 (78.1) | p (10)= 0.78 q (9)= 0.22 | 2.612 (0.1060) |
9/10 | 50 (43.8) | |||
9/9 | 3 (6.1) | |||
Control n = 200 | 10/10 | 123 (120.9) | p (10)= 0.78 q (9)= 0.22 | 0.736 (0.3910) |
9/10 | 65 (69.2) | |||
9/9 | 12 (9.9) |
DAT | |||||
---|---|---|---|---|---|
Genotypes | Alleles | ||||
10/10 n (%) | 9/10 n (%) | 9/9 n (%) | 10 n (%) | 9 n (%) | |
Behavioural addictions n = 128 | 75 (58.59%) | 50 (39.06%) | 3 (2.34%) | 200 (78.12%) | 56 (21.88%) |
Control n = 200 | 123 (61.50%) | 65 (32.50%) | 12 (6.00%) | 311 (77.75%) | 89 (22.25%) |
χ2 (p value) | 3.349 0.1874 | 0.0127 (0.9101) |
BIS-11 Scale | Behavioural Addictions (n = 128) M ± SD | Control (n = 200) M ± SD | Z | p-Value |
---|---|---|---|---|
BIS-AI | 19.52 ± 4.34 | 17.54 ± 3.59 | 4.455 | 0.0001 * |
BIS-MI | 26.00 ± 4.83 | 23.46 ± 4.28 | 4.809 | 0.0001 * |
BIS-NI | 27.72 ± 4.83 | 27.07 ± 4.21 | 1.367 | 0.1717 |
BIS-11 TOTAL | 73.23 ± 12.00 | 67.98 ± 10.16 | 4.203 | 0.0001 * |
BIS-11 Scale | Group | DAT | ANOVA | |||||
---|---|---|---|---|---|---|---|---|
10/10 n = 198 M ± SD | 9/10 n = 115 M ± SD | 9/9 n = 15 M ± SD | Factor | F (p Value) | η2 | Power (Alfa = 0.05) | ||
BIS-AI | Behavioural addictions (Beh); n = 128 | 18.95 ± 4.19 | 20.04 ± 4.40 | 25.00 ± 2.00 | Intercept Beh/control DAT Beh/control × DAT | F1, 322 = 1934.90 (p < 0.0001) * F1, 322 = 19.09 (p < 0.0001) * F2, 322 = 2.75 (p = 0.0654) F2, 322 = 5.48 (p = 0.0046) * | 0.857 0.056 0.017 0.033 | 1.000 0.992 0.541 0.848 |
Control; n = 200 | 17.95 ± 3.60 | 16.72 ± 3.55 | 17.75 ± 3.22 | |||||
BIS-MI | Behavioural addictions (Beh); n = 128 | 25.71 ± 4.78 | 26.16 ± 4.93 | 30.67 ± 2.31 | Intercept Beh/control DAT Beh/control × DAT | F1, 322 = 2411.77 (p < 0.0001) * F1, 322 = 17.48 (p = < 0.0001) * F2, 322 = 0.91 (p = 0.4048) F2, 322 = 2.01 (p = 0.1353) | 0.882 0.051 0.006 0.012 | 1.000 0.986 0.206 0.414 |
Control; n = 200 | 23.55 ± 4.48 | 23.45 ± 3.80 | 22.58 ± 4.87 | |||||
BIS-NI | Behavioural addictions (Beh); n = 128 | 27.28 ± 4.71 | 28.36 ± 5.01 | 28.00 ± 5.29 | Intercept Beh/control DAT Beh/control × DAT | F1, 322 = 2880.72 (p < 0.0001) * F1, 322 = 0.64 (p = 0.4257) F2, 322 = 0.05 (p = 0.9541) F2, 322 = 1.63 (p = 0.1973) | 0.899 0.002 0.0003 0.010 | 1.000 0.125 0.057 0.344 |
Control; n = 200 | 27.35 ± 4.35 | 26.51 ± 3.55 | 27.33 ± 5.85 | |||||
BIS-11 TOTAL | Behavioral addictions (Beh); n = 128 | 71.93 ± 11.76 | 74.54 ± 12.27 | 83.67 ± 8.33 | Intercept (Beh)/control DAT (Beh)/control × DAT | F1, 322 = 3347.91 (p < 0.0001) * F1, 322 = 13.10 (p = 0.0003) * F2, 322 = 1.10 (p = 0.3327) F2, 322 = 2.78 (p = 0.0632) | 0.912 0.039 0.007 0.017 | 1.000 0.950 0.244 0.546 |
Control; n = 200 | 68.70 ± 10.62 | 66.68 ± 8.68 | 67.67 ± 12.74 |
DAT1 and BIS-AI Scale | ||||||
---|---|---|---|---|---|---|
{1} M = 18.95 |
{2} M = 20.04 |
{3} M = 25.00 |
{4} M = 17.95 |
{5} M = 16.72 |
{6} M = 17.75 | |
Behavioural addictions 10/10 {1} | 0.1204 | 0.0079 * | 0.0782 | 0.0007 * | 0.3177 | |
Behavioural addictions 9/10 {2} | 0.0308 * | 0.0013 * | 0.0001 * | 0.0649 | ||
Behavioural addictions 9/9 {3} | 0.0019 * | 0.0003 * | 0.0037 * | |||
Control 10/10 {4} | 0.0381 * | 0.8628 | ||||
Control 9/10 {5} | 0.3960 | |||||
Control 9/9 {6} |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recław, R.; Suchanecka, A.; Grzywacz, E.; Chmielowiec, K.; Chmielowiec, J.; Makarewicz, A.; Łosińska, K.; Larysz, D.; Trybek, G.; Grzywacz, A. Associations Between DAT1 Gene VNTR Polymorphism and Impulsivity Dimensions in Individuals with Behavioural Addictions. Biomedicines 2025, 13, 1852. https://doi.org/10.3390/biomedicines13081852
Recław R, Suchanecka A, Grzywacz E, Chmielowiec K, Chmielowiec J, Makarewicz A, Łosińska K, Larysz D, Trybek G, Grzywacz A. Associations Between DAT1 Gene VNTR Polymorphism and Impulsivity Dimensions in Individuals with Behavioural Addictions. Biomedicines. 2025; 13(8):1852. https://doi.org/10.3390/biomedicines13081852
Chicago/Turabian StyleRecław, Remigiusz, Aleksandra Suchanecka, Elżbieta Grzywacz, Krzysztof Chmielowiec, Jolanta Chmielowiec, Anna Makarewicz, Kinga Łosińska, Dariusz Larysz, Grzegorz Trybek, and Anna Grzywacz. 2025. "Associations Between DAT1 Gene VNTR Polymorphism and Impulsivity Dimensions in Individuals with Behavioural Addictions" Biomedicines 13, no. 8: 1852. https://doi.org/10.3390/biomedicines13081852
APA StyleRecław, R., Suchanecka, A., Grzywacz, E., Chmielowiec, K., Chmielowiec, J., Makarewicz, A., Łosińska, K., Larysz, D., Trybek, G., & Grzywacz, A. (2025). Associations Between DAT1 Gene VNTR Polymorphism and Impulsivity Dimensions in Individuals with Behavioural Addictions. Biomedicines, 13(8), 1852. https://doi.org/10.3390/biomedicines13081852