Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (346)

Search Parameters:
Keywords = gas exchange characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1742 KiB  
Article
Assessment of Aerodynamic Properties of the Ventilated Cavity in Curtain Wall Systems Under Varying Climatic and Design Conditions
by Nurlan Zhangabay, Aizhan Zhangabay, Kenzhebek Akmalaiuly, Akmaral Utelbayeva and Bolat Duissenbekov
Buildings 2025, 15(15), 2637; https://doi.org/10.3390/buildings15152637 - 25 Jul 2025
Viewed by 322
Abstract
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to [...] Read more.
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to ensure healthy and favorable conditions for human life but also to the need for the rational use of energy resources. This area is becoming particularly relevant in the context of global challenges related to climate change, rising energy costs and increased environmental requirements. Practice shows that any technical solutions to ensure comfortable temperature, humidity and air exchange in rooms should be closely linked to the concept of energy efficiency. This allows one not only to reduce operating costs but also to significantly reduce greenhouse gas emissions, thereby contributing to sustainable development and environmental safety. In this connection, this study presents a parametric assessment of the influence of climatic and geometric factors on the aerodynamic characteristics of the air cavity, which affect the heat exchange process in the ventilated layer of curtain wall systems. The assessment was carried out using a combined analytical calculation method that provides averaged thermophysical parameters, such as mean air velocity (Vs), average internal surface temperature (tin.sav), and convective heat transfer coefficient (αs) within the air cavity. This study resulted in empirical average values, demonstrating that the air velocity within the cavity significantly depends on atmospheric pressure and façade height difference. For instance, a 10-fold increase in façade height leads to a 4.4-fold increase in air velocity. Furthermore, a three-fold variation in local resistance coefficients results in up to a two-fold change in airflow velocity. The cavity thickness, depending on atmospheric pressure, was also found to affect airflow velocity by up to 25%. Similar patterns were observed under ambient temperatures of +20 °C, +30 °C, and +40 °C. The analysis confirmed that airflow velocity is directly affected by cavity height, while the impact of solar radiation is negligible. However, based on the outcomes of the analytical model, it was concluded that the method does not adequately account for the effects of solar radiation and vertical temperature gradients on airflow within ventilated façades. This highlights the need for further full-scale experimental investigations under hot climate conditions in South Kazakhstan. The findings are expected to be applicable internationally to regions with comparable climatic characteristics. Ultimately, a correct understanding of thermophysical processes in such structures will support the advancement of trends such as Lightweight Design, Functionally Graded Design, and Value Engineering in the development of curtain wall systems, through the optimized selection of façade configurations, accounting for temperature loads under specific climatic and design conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 2256 KiB  
Article
Performance Analysis of Different Borehole Heat Exchanger Configurations: A Case Study in NW Italy
by Jessica Maria Chicco, Nicolò Giordano, Cesare Comina and Giuseppe Mandrone
Smart Cities 2025, 8(4), 121; https://doi.org/10.3390/smartcities8040121 - 21 Jul 2025
Viewed by 330
Abstract
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is [...] Read more.
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is a promising and vital option to optimize heating and cooling systems, promoting sustainability of urban environments. To this end, a proper design is of paramount importance to guarantee the energy performance of the whole system. This work deals with the optimization of the technical and geometrical characteristics of borehole heat exchangers (BHEs) as part of a shallow geothermal plant that is assumed to be integrated in an already operating gas-fired DH grid. Thermal performances of three different configurations were analysed according to the geological information that revealed an aquifer at −36 m overlying a poorly permeable marly succession. Numerical simulations validated the geological, hydrogeological, and thermo-physical models by back-analysing the experimental results of a thermal response test (TRT) on a pilot 150 m deep BHE. Five-year simulations were then performed to compare 150 m and 36 m polyethylene 2U, and 36 m steel coaxial BHEs. The coaxial configuration shows the best performance both in terms of specific power (74.51 W/m) and borehole thermal resistance (0.02 mK/W). Outcomes of the study confirm that coupling the best geological and technical parameters ensure the best energy performance and economic sustainability. Full article
(This article belongs to the Special Issue Energy Strategies of Smart Cities)
Show Figures

Figure 1

27 pages, 3398 KiB  
Review
A Comprehensive Review on Studies of Flow Characteristics in Horizontal Tube Falling Film Heat Exchangers
by Zhenchuan Wang and Meijun Li
Energies 2025, 18(13), 3587; https://doi.org/10.3390/en18133587 - 7 Jul 2025
Viewed by 386
Abstract
The horizontal tube falling film heat exchangers (HTFFHEs), which exhibit remarkable advantages such as high efficiency in heat and mass transfer, low resistance, and a relatively simple structural configuration, have found extensive applications. Complex flow phenomena and the coupled processes of heat and [...] Read more.
The horizontal tube falling film heat exchangers (HTFFHEs), which exhibit remarkable advantages such as high efficiency in heat and mass transfer, low resistance, and a relatively simple structural configuration, have found extensive applications. Complex flow phenomena and the coupled processes of heat and mass transfer take place within it. Given that the heat and mass transfer predominantly occur at the gas-liquid interface, the flow characteristics therein emerge as a significant factor governing the performance of heat and mass transfer. This article elaborates on the progress of experimental and simulation research approaches with respect to flow characteristics. It systematically reviews the influence patterns of various operating parameters, namely parameters of gas, solution and internal medium, as well as structural parameters like tube diameter and tube spacing, on the flow characteristics, such as the flow regime between tubes, liquid film thickness, and wettability. This review serves to furnish theoretical underpinnings for optimizing the heat and mass transfer performance of the horizontal tube falling film heat exchanger. It is further indicated that the multi-dimensional flow characteristics and their quantitative characterizations under the impacts of different airflow features will constitute the focal research directions for horizontal tube falling film heat exchangers in the foreseeable future. Full article
Show Figures

Figure 1

24 pages, 5848 KiB  
Article
Influence of Thermal Inertia on Dynamic Characteristics of Gas Turbine Impeller Components
by Yang Liu, Yuhao Jia and Yongbao Liu
Entropy 2025, 27(7), 711; https://doi.org/10.3390/e27070711 - 1 Jul 2025
Viewed by 336
Abstract
Gas turbines in land-based microgrids and shipboard-isolated power grids frequently face operational challenges, such as the startup and shutdown of high-power equipment and sudden load fluctuations, which significantly impact their performance. To examine the dynamic behavior of gas turbines under transitional operating conditions, [...] Read more.
Gas turbines in land-based microgrids and shipboard-isolated power grids frequently face operational challenges, such as the startup and shutdown of high-power equipment and sudden load fluctuations, which significantly impact their performance. To examine the dynamic behavior of gas turbines under transitional operating conditions, a three-dimensional computational fluid dynamic simulation is employed to create a model of the gas turbine rotor, incorporating thermal inertia, which is then analyzed in conjunction with three-dimensional finite element methods. The governing equations of the flow field are discretized, providing results for the flow and temperature fields throughout the entire flow path. A hybrid approach, combining temperature differences and heat flux density, is applied to set the thermal boundary conditions for the walls, with the turbine’s operational state determined based on the direction of heat transfer. Additionally, mesh division techniques and turbulence models are selected based on the geometric dimensions and operating conditions of the compressor and turbine. The simulation results reveal that thermal inertia induces a shift in the dynamic characteristics of the rotor components. Under the same heat transfer conditions, variations in rotational speed have a minimal impact on the shift in the characteristic curve. The working fluid temperature inside the compressor components is lower, with a smaller temperature difference from the wall, resulting in less intense heat transfer compared to the turbine components. Overall, heat transfer accounts for only about 0.1% of the total enthalpy at the inlet. When heat exchange occurs between the working fluid and the walls, around 6–15% of the exchanged heat is converted into changes in technical work, with this percentage increasing as the temperature difference rises. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

14 pages, 3332 KiB  
Article
Physiological Responses of Olive Cultivars Under Water Deficit
by Lorenzo León, Willem Goossens, Helena Clauw, Olivier Leroux and Kathy Steppe
Horticulturae 2025, 11(7), 745; https://doi.org/10.3390/horticulturae11070745 - 27 Jun 2025
Viewed by 296
Abstract
Olive trees are generally considered a species well-adapted to drought, but the impact of water shortage is of critical importance on olive production. For this reason, developing tolerant cultivars could be an effective strategy to mitigate the impact of drought in the future. [...] Read more.
Olive trees are generally considered a species well-adapted to drought, but the impact of water shortage is of critical importance on olive production. For this reason, developing tolerant cultivars could be an effective strategy to mitigate the impact of drought in the future. Characterizing drought stress tolerance in olive is a complex task due to the numerous traits involved in this response. In this study, plant growth, pressure–volume curves, gas-exchange and chlorophyll fluorescence traits, and stomata characteristics were monitored in nine cultivars to assess the effects of mild and severe drought stress conditions induced by withholding water for 7 and 21 days, respectively, and were compared to a well-watered control treatment. The plant materials evaluated included traditional cultivars, as well as new developed cultivars suited for high-density hedgerow olive orchards or resistant to verticillium wilt. Significant differences between cultivars were observed for most evaluated traits, with more pronounced differences under severe drought conditions. A multivariate analysis of the complete dataset recorded throughout the evaluation period allowed for the identification of promising cultivars under stress conditions (‘Sikitita’, ‘Sikitita-2’, and ‘Martina’) as well as highly discriminative traits that could serve as key selection parameters in future breeding programs. Full article
(This article belongs to the Special Issue Strategies of Producing Horticultural Crops Under Climate Change)
Show Figures

Figure 1

16 pages, 1390 KiB  
Article
A Fast-Time MATLAB Model of an Aeronautical Low-Temperature PEM Fuel Cell for Sustainable Propulsion and Compressor Behavior at Varying Altitudes
by Abolfazl Movahedian, Gianluca Marinaro and Emma Frosina
Sustainability 2025, 17(13), 5817; https://doi.org/10.3390/su17135817 - 24 Jun 2025
Viewed by 388
Abstract
The aviation sector significantly contributes to environmental challenges, including global warming and greenhouse gas emissions, due to its reliance on fossil fuels. Fuel cells present a viable alternative to conventional propulsion systems. In the context of light aircraft applications, proton exchange membrane fuel [...] Read more.
The aviation sector significantly contributes to environmental challenges, including global warming and greenhouse gas emissions, due to its reliance on fossil fuels. Fuel cells present a viable alternative to conventional propulsion systems. In the context of light aircraft applications, proton exchange membrane fuel cells (PEMFCs) have recently attracted growing interest as a substitute for internal combustion engines (ICEs). However, their performance is highly sensitive to altitude variations, primarily due to limitations in compressor efficiency and instability in cathode pressure. To address these challenges, this research presents a comprehensive numerical model that couples a PEMFC system with a dynamic air compressor model under altitude-dependent conditions ranging from 0 to 3000 m. Iso-efficiency lines were integrated into the compressor map to evaluate its behavior across varying environmental parameters. The study examines key fuel cell stack characteristics, including voltage, current, and net power output. The results indicate that, as altitude increases, ambient pressure and air density decrease, causing the compressor to work harder to maintain the required compression ratio at the cathode of the fuel cell module. This research provides a detailed prediction of compressor efficiency trends by implementing iso-efficiency lines into the compressor map, contributing to sustainable aviation and aligning with global goals for low-emission energy systems by supporting cleaner propulsion technologies for lightweight aircraft. Full article
Show Figures

Figure 1

16 pages, 2624 KiB  
Article
Grain Size Engineering and Tuning of Magnetic Properties in Ultra-Thin NiMnGa Glass-Coated Microwires: Insights from Annealing Effects
by Mohamed Salaheldeen, Valentina Zhukova, Julian Gonzalez and Arcady Zhukov
Crystals 2025, 15(6), 565; https://doi.org/10.3390/cryst15060565 - 16 Jun 2025
Cited by 1 | Viewed by 328
Abstract
We studied the influence of annealing on the magnetic properties and microstructure of ultrathin (metallic nucleus diameter ≈ 5 μm, total diameter ≈ 19 μm) Heusler-type NiMnGa glass-coated microwires prepared using the Taylor–Ulitovsky method. The as-prepared NiMnGa microwires exhibit unexpectedly strong magnetic anisotropy, [...] Read more.
We studied the influence of annealing on the magnetic properties and microstructure of ultrathin (metallic nucleus diameter ≈ 5 μm, total diameter ≈ 19 μm) Heusler-type NiMnGa glass-coated microwires prepared using the Taylor–Ulitovsky method. The as-prepared NiMnGa microwires exhibit unexpectedly strong magnetic anisotropy, characterized by a coercivity exceeding 3 kOe at room temperature. Furthermore, their Curie temperature (Tc) lies above room temperature. Additionally, a spontaneous exchange bias of approximately 120 Oe is observed in the as-prepared sample at 100 K. Annealing the microwires leads to a decrease in coercivity, spontaneous exchange bias, and Tc values. Notably, the annealing process shifts the Tc of the samples closer to room temperature, making them more suitable for magnetic solid-state refrigeration applications. Moreover, the hysteresis observed in the temperature dependence of magnetization for the samples annealed for 1 h and 2 h, along with the magnetic softening observed at around 260 K, is attributed to a first-order phase transformation. The observed changes are discussed in the context of internal stress relaxation after annealing, the nanocrystalline structure of both the as-prepared and annealed samples, the recrystallization process, and the magnetic ordering of phases identified in the as-prepared sample and those appearing during recrystallization. The glass coating on microwires offers benefits like better flexibility and resistance to damage and corrosion. However, it is important to recognize that this coating can substantially alter the microwires’ magnetic characteristics. Consequently, precise control over the annealing process is vital to obtain the specific martensitic transformation needed. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

19 pages, 2511 KiB  
Article
Electrochemical Production of Hypochlorous Acid and Sodium Hydroxide Using Ion Exchange Membranes
by Juan Taumaturgo Medina Collana, Kevin Azorza Guillen, Edgar Williams Villanueva Martinez, Carlos Ancieta Dextre, Luis Carrasco Venegas, Oscar Rodriguez Taranco, Jorge Lopez Herrera, Pablo Diaz Bravo, Jose Porlles Loarte and Jorge Montaño Pisfil
Sustainability 2025, 17(12), 5465; https://doi.org/10.3390/su17125465 - 13 Jun 2025
Viewed by 875
Abstract
Given the problems related to drinking water supplies in rural and economically disadvantaged regions, point-of-use disinfection technologies are a viable alternative to improve access to drinking. Electrochlorinators are devices that produce chlorine-based disinfectants onsite via the electrolysis of a sodium chloride solution. In [...] Read more.
Given the problems related to drinking water supplies in rural and economically disadvantaged regions, point-of-use disinfection technologies are a viable alternative to improve access to drinking. Electrochlorinators are devices that produce chlorine-based disinfectants onsite via the electrolysis of a sodium chloride solution. In this research, we have constructed an innovative laboratory-scale three-compartment cell that includes two ion exchange membranes, fixed between two electrodes; in the anodic compartment, an acidic mixture of chlorine-based species (Cl2, HClO, HCl and ClO) is obtained, and, in the cathodic compartment, an alkaline solution is present (NaOH and hydrogen gas), while the central compartment is fed with a sodium chloride solution. The Taguchi methodology was used to examine the impact of the process operating conditions on the results obtained. The effects of the electrical potential levels (4.5, 6 and 7 V), electrolysis times (30, 60 and 90 min) and initial sodium chloride concentrations (5, 15 and 30 g/L) on the physical and chemical characteristics (concentrations of available chlorine and sodium hydroxide and pH of the solutions) and energy consumption were investigated. Variations in the electrical potential significantly influenced the concentration levels of active chlorine and sodium hydroxide produced, as well as the pH values of the respective solutions. The most favorable conditions for the production of electrolyzed water were an electrical potential of 7 volts, an electrolysis time of 90 min and a concentration of 30 g/L of sodium chloride, which was verified by ANOVA. The maximum concentration of active chlorine reached 290 mg/L and that of sodium hydroxide reached 1450 mg/L without the presence of hypochlorite ions under the best synthesis conditions. The energy consumption was 18.6 kWh/kg Cl2 and 4.4 kWh/kg NaOH, while the average electric current efficiency for sodium hydroxide formation reached 88.9%. Similarly, the maximum conversion of chloride ions reached 24.37% under the best operating conditions. Full article
Show Figures

Figure 1

22 pages, 6213 KiB  
Article
Mechanistic Insights into Ammonium Chloride Particle Deposition in Hydrogenation Air Coolers: Experimental and CFD-DEM Analysis
by Haoyu Yin, Haozhe Jin, Xiaofei Liu, Chao Wang, Wei Chen, Fengguan Chen, Shuangqing Xu and Shuangquan Li
Processes 2025, 13(6), 1816; https://doi.org/10.3390/pr13061816 - 8 Jun 2025
Cited by 1 | Viewed by 654
Abstract
The operational reliability of industrial cooling systems is critically compromised by the crystallization of ammonium chloride (NH4Cl) in the terminal sections of heat exchangers and at air-cooler inlets. This study systematically investigated the deposition characteristics of NH4Cl particles in [...] Read more.
The operational reliability of industrial cooling systems is critically compromised by the crystallization of ammonium chloride (NH4Cl) in the terminal sections of heat exchangers and at air-cooler inlets. This study systematically investigated the deposition characteristics of NH4Cl particles in hydrogenation air coolers, along with the factors influencing this process, using a combination of experimental analyses and CFD-DEM coupled simulations. Numerical simulations indicated that gas velocity is the primary factor that governs the NH4Cl deposition behavior, whereas the NH4Cl particle size significantly affects the deposition propensity. Under turbulent conditions, larger particles (>300 μm) exhibit a greater deposition tendency due to increased inertial effects. A power-law equation (R2 > 0.75) fitted to the experimental data effectively predicts the variations in the deposition rates across tube bundles. This study offers a theoretical foundation and predictive framework for optimizing anti-clogging design and maintenance strategies in industrial air coolers. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

13 pages, 2357 KiB  
Article
Effect of Coal Gangue Powder Addition on Hydraulic Properties of Aeolian Sandy Soil and Plant Growth
by Xiaoyun Ding, Ruimin He, Zhenguo Xing, Haoyan Wei, Jiping Niu, Shi Chen and Min Li
Horticulturae 2025, 11(6), 634; https://doi.org/10.3390/horticulturae11060634 - 5 Jun 2025
Viewed by 451
Abstract
Coal gangue is a fine-grained mineral with nutrient content, which can be used as a potential soil amendment. Nevertheless, current research on using coal gangue to improve soil water and support plant growth is still insufficient. In this study, coal gangue powder (CGP) [...] Read more.
Coal gangue is a fine-grained mineral with nutrient content, which can be used as a potential soil amendment. Nevertheless, current research on using coal gangue to improve soil water and support plant growth is still insufficient. In this study, coal gangue powder (CGP) was added to aeolian sandy soil. We compared the soil hydraulic properties and plant growth of original aeolian sandy soil (CK) and different CGP application rates (10% and 20%). The results indicated that the application of CGP transformed the soil texture from sandy to loamy, significantly reduced soil bulk density and saturated hydraulic conductivity (Ks) values, altered the soil water characteristic curve, enhanced soil water-holding capacity, and increased plant-available water. Compared with the CK group, the emergence rate of alfalfa seeds increased from approximately 50% to over 70% after CGP application. During the growth process, CGP application significantly elevated the net photosynthetic rate, transpiration rate, and stomatal conductance of alfalfa leaves. Rapid fluorescence kinetics monitoring of leaves demonstrated that alfalfa treated with CGP had a higher efficiency in light energy utilization. However, the photosynthetic capacity of leaves did not improve as the CGP application rate increased from 10% to 20%, suggesting that excessive CGP addition did not continuously benefit plant gas exchange. In conclusion, CGP application can improve the soil hydraulic properties of aeolian sandy soil and support plant growth and development, which is conducive to reducing the accumulated amount of coal gangue, alleviating plant water stress, and promoting ecological restoration in arid mining areas. We recommend a 10% addition of coal gangue powder as the optimal amount for similar soils. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

17 pages, 4576 KiB  
Article
Experiment and Simulation on the Influence of Fire Radiation on the Evaporation of Liquefied Natural Gas
by Li Xiao, Fan Yang, Jing Tian, Wenqing Song and Cunyong Song
Processes 2025, 13(6), 1673; https://doi.org/10.3390/pr13061673 - 26 May 2025
Viewed by 678
Abstract
With the introduction of the “dual carbon” strategy, public attention to green energy has surged, leading to a notable increase in the demand for natural gas. Consequently, the storage and transportation of liquefied natural gas (LNG) have emerged as critical aspects to ensure [...] Read more.
With the introduction of the “dual carbon” strategy, public attention to green energy has surged, leading to a notable increase in the demand for natural gas. Consequently, the storage and transportation of liquefied natural gas (LNG) have emerged as critical aspects to ensure its safe and cost-effective utilization. For onshore LNG storage, LNG storage tanks play a pivotal role. However, in extreme scenarios such as fires, these tanks may be exposed to radiant heat, which not only jeopardizes their structural integrity but could also result in LNG leaks, triggering severe safety incidents and environmental disasters. Against this backdrop, this study delves into the evaporation characteristics of large-scale LNG storage tanks under fire radiation conditions. Given the unique properties of LNG and the similarity between the bubble-point lines and heat exchange curves of nitrogen and LNG, liquid nitrogen is employed as a substitute for LNG in experimental investigations to observe evaporation behaviors. Furthermore, the FLUENT 2022R1 software is utilized to conduct numerical simulations on a 160,000-cubic-meter LNG storage tank, aiming to model the intricate process of internal evaporation and the impact of environmental factors. The findings of this research aim to furnish a scientific basis for enhancing the storage safety of large-scale LNG storage tanks. Full article
(This article belongs to the Special Issue Multiphase Flow Process and Separation Technology)
Show Figures

Figure 1

12 pages, 7903 KiB  
Article
Variation Characteristics of Nitrous Oxide Along the East Antarctic Coast
by Yongnian Xu, Biao Tian, Jie Tang, Lingen Bian, Minghu Ding, Wanqi Sun, Xiuli Xu and Dongqi Zhang
J. Mar. Sci. Eng. 2025, 13(6), 1040; https://doi.org/10.3390/jmse13061040 - 26 May 2025
Viewed by 326
Abstract
Based on a laboratorial analysis of nitrous oxide (N2O) concentrations collected in gas bottles (glass flask) at the Zhongshan Station on the East Antarctic coast from 2008 to 2021, the variation characteristics and trends in the background concentration of N2 [...] Read more.
Based on a laboratorial analysis of nitrous oxide (N2O) concentrations collected in gas bottles (glass flask) at the Zhongshan Station on the East Antarctic coast from 2008 to 2021, the variation characteristics and trends in the background concentration of N2O at the station were analyzed and compared with the N2O data from other Antarctic stations. The results showed that the annual average concentration of atmospheric N2O along the East Antarctic coast increased from 320.40 ppb in 2008 to 333.31 ppb in 2021, with an overall increasing trend of 0.99 ppb per year. Pronounced seasonal variability was observed, with elevated concentrations occurring during austral spring–summer and reduced levels in autumn–winter, consistent with the seasonal patterns documented at other Antarctic sites. The overall variation trend of the N2O concentration at Zhongshan Station is basically consistent with the observation results at other stations in Antarctica, suggesting that the station’s background N2O measurements are representative of continental-scale atmospheric composition dynamics. Combined with the analysis of air mass tracks, this seasonal variation in N2O is mainly related to the mass movement of air mass and, to a certain extent, is influenced by the seasonal melting of sea ice and the exchange between the troposphere and stratosphere. The results supplement important basic data on N2O concentrations along the East Antarctic coast and have potential reference significance for further understanding the causes of atmospheric N2O variations in the Antarctic region. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

18 pages, 8119 KiB  
Article
Study on the Photosynthetic Physiological Responses of Greenhouse Young Chinese Cabbage (Brassica rapa L. Chinensis Group) Affected by Particulate Matter Based on Hyperspectral Analysis
by Lijuan Kong, Siyao Gao, Jianlei Qiao, Lina Zhou, Shuang Liu, Yue Yu and Haiye Yu
Plants 2025, 14(10), 1479; https://doi.org/10.3390/plants14101479 - 15 May 2025
Viewed by 525
Abstract
Particulate matter affects both the light environment and air quality in greenhouses, obstructing normal gas exchange and hindering efficient physiological activities such as photosynthesis. This study focused on young Chinese cabbage (Brassica rapa L. Chinensis Group) in a greenhouse at harvest [...] Read more.
Particulate matter affects both the light environment and air quality in greenhouses, obstructing normal gas exchange and hindering efficient physiological activities such as photosynthesis. This study focused on young Chinese cabbage (Brassica rapa L. Chinensis Group) in a greenhouse at harvest time, monitoring and comparing hyperspectral information, net photosynthetic rate, and microscopic leaf structure under two conditions: a quantitative artificial particulate matter environment and a healthy environment. Based on microscopic results combined with spectral responses and changes in photosynthetic physiological information, it is believed that particulate matter enters plant cells through stomata. Through retention and transport pathways, it disrupts the membrane structure, organelles, and other components of plant cells, resulting in adverse effects on the plant’s physiological functions. The study analyzed the mechanisms by which particulate matter influences the photosynthesis, spectral characteristics, and physiological responses of young Chinese cabbage. Physiological Reflectance Index (PRI), Modified Chlorophyll Absorption Ratio Index (MCARI), spectral red-edge position (λr), and spectral sensitive bands were used as spectral feature variables. Through cubic polynomial and 24 combinations of spectral preprocessing and modeling methods, an inversion model of spectral features and net photosynthetic rate was established. The optimal combination of spectral preprocessing and modeling methods was finally selected as SG + SD + PLS + MSC, which consists of Savitzky-Golay smooth (SG), second derivative (SD), partial least squares (PLS), and multiplicative scatter correction (MSC). The coefficient of determination (R2) of the model is 0.9513. The results indicate that particulate matter affects plant photosynthesis. The SG + SD + PLS + MSC combination method is relatively advantageous for processing the photosynthetic spectral physiological information of plants under the influence of particulate matter. The results of this study will deepen the understanding of the mechanisms by which particulate matter affects plants and provide a reference for the physiological information inversion of greenhouse vegetables under particulate matter pollution. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

28 pages, 16808 KiB  
Article
Experimental and Numerical Study on Flow and Heat Transfer Characteristics of Additively Manufactured Triply Periodic Minimal Surface (TPMS) Heat Exchangers for Micro Gas Turbine
by Xiyuan Su, Yueliang Zhang, Yu Rao, Kirttayoth Yeranee and Xintong Wang
Aerospace 2025, 12(5), 416; https://doi.org/10.3390/aerospace12050416 - 7 May 2025
Cited by 2 | Viewed by 1214
Abstract
This paper proposes two compact, efficient, and lightweight heat exchangers based on triply periodic minimal surfaces (TPMSs). Designed in an annular configuration, the heat exchangers meet the requirements of micro gas turbines for compactness. Two prototypes of Diamond and Gyroid modular TPMS heat [...] Read more.
This paper proposes two compact, efficient, and lightweight heat exchangers based on triply periodic minimal surfaces (TPMSs). Designed in an annular configuration, the heat exchangers meet the requirements of micro gas turbines for compactness. Two prototypes of Diamond and Gyroid modular TPMS heat exchangers were fabricated using selective laser melting (SLM) with stainless steel. The flow and heat transfer experimental results indicate that, within a Reynolds number range of 200 to 800, the effectiveness of both heat exchangers remained above 0.62, and the average Nusselt numbers of the Diamond and Gyroid structures reached 3.60 and 4.06 times that of the printed circuit heat exchanger (PCHE), respectively. Although both heat exchangers exhibited relatively high friction factors, their overall performance surpassed that of conventional heat exchangers. Additionally, performance comparisons with existing TPMS heat exchangers revealed that smaller lattice sizes contribute to improved volume-based power density, although they result in increased pressure loss. Simulation results indicated that the “merge–split” effect present in both structures enhances heat transfer between the fluid and the wall. Furthermore, the complex channels of the TPMS structures ensure that the fluid maintains strong turbulence intensity throughout the heat exchanger. This study demonstrates that stainless steel TPMS structures can serve as excellent candidates for applications in micro gas turbines. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

15 pages, 6002 KiB  
Article
Effect of Flow Length on Pressure and Measurement of PEMFC Temperature by Using Thin-Film Thermocouples
by Huijin Guo, Zhihui Liu, Xingyu Li, Xingshu Wang, Maopeng Zhang, Shiqi Zhang, Zixi Wang and Wanyu Ding
Micromachines 2025, 16(5), 535; https://doi.org/10.3390/mi16050535 - 29 Apr 2025
Viewed by 373
Abstract
Based on the COMSOL simulation software (v.6.1), this paper systematically investigates the influence law of runner length on the velocity and pressure distribution of cathode and anode gas runners in proton exchange membrane fuel cells (PEMFCs), and experimentally verifies the measurement effect of [...] Read more.
Based on the COMSOL simulation software (v.6.1), this paper systematically investigates the influence law of runner length on the velocity and pressure distribution of cathode and anode gas runners in proton exchange membrane fuel cells (PEMFCs), and experimentally verifies the measurement effect of thin-film thermocouples on the operating temperature of PEMFCs. The simulation results show that the maximum pressure of the cathode and anode increases nonlinearly with the increase in the runner length, while the velocity distribution remains stable; the shortening of the runners significantly reduces the friction loss along the flow path and optimizes the matching of the permeability of the porous medium. In addition, the NiCr/NiSi thin-film thermocouple prepared by magnetron sputtering exhibits high accuracy (Seebeck coefficient of 41.56 μV/°C) in static calibration and successfully captures the dynamic response characteristics of temperature in PEMFC operation. This study provides a theoretical basis and experimental support for the optimization of fuel cell flow channel design and temperature monitoring technology. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

Back to TopTop