Study on the Photosynthetic Physiological Responses of Greenhouse Young Chinese Cabbage (Brassica rapa L. Chinensis Group) Affected by Particulate Matter Based on Hyperspectral Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Data Collection and Processing
4. Results and Discussion
4.1. Spectral Characteristics
4.2. Mechanism Analysis of Microscopic Results
4.3. Spectral Preprocessing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lozano, Y.M.; Lehnert, T.; Linck, L.T.; Lehmann, A.; Rillig, M.C. Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass. Front. Plant Sci. 2021, 12, 616645. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.L.; Geng, X.Y.; Ouyang, H.L.; Wang, L.N.; Li, Z.Z.; Wang, M.Y.; Sun, X.M.; Wu, Y.; Qin, Y.H.; Xu, Y.X.; et al. Abundant bacteria and fungi attached to airborne particulates in vegetable plastic greenhouses. Sci. Total Environ. 2023, 857, 159507. [Google Scholar] [CrossRef]
- Kianpoor Kalkhajeh, Y.; Huang, B.; Hu, W.; Ma, C.; Gao, H.; Thompson, M.L.; Bruun Hansen, H.C. Environmental soil quality and vegetable safety under current greenhouse vegetable production management in China. Agric. Ecosyst. Environ. 2021, 307, 107230. [Google Scholar] [CrossRef]
- Dong, J.W.; Gao, P.P.; Sun, H.X.; Zhou, C.; Zhang, X.Y.; Xue, P.Y.; Liu, W.J. Characteristics and Health Risk Assessment of Cadmium, Lead, and Arsenic Accumulation in Leafy Vegetables Planted in a Greenhouse. Environ. Sci. 2022, 43, 481–489. [Google Scholar]
- Liu, X.; Tong, X.; Chen, Z.H.; Zhang, T.T.; Guo, H.H.; Luo, X.S. Lettuce Foliar Uptake of Heavy Metals Directly from the Deposition of Atmospheric Particulate Matter Emitted from Coal Combustion. Acta Pedol. Sin. 2024. Available online: http://kns.cnki.net/kcms/detail/32.1119.P.20240826.1555.004.html (accessed on 12 May 2025).
- Yan, B.; Cui, Y.; Fan, M.Y.; Li, Z.X.; Sun, L.B.; Chang, X.M. Effect of Shelterbelt Structure on Particulate Matter Concentration in Bashang Area. Chin. J. Agrometeorol. 2024, 45, 1123–1130. [Google Scholar]
- Wang, X.Y.; Cui, L.; Xue, Y.G.; He, J.H.; Huang, Y. Characteristics and fate behavior of environmentally persistent free radicals in atmospheric particulate matter. J. Earth Environ. 2024, 15, 596–611. [Google Scholar]
- Bender, J.; Weigel, H.J. Changes in atmospheric chemistry and crop health: A review. Agron. Sustain. Dev. 2011, 31, 81–89. [Google Scholar] [CrossRef]
- Hema, K.; Rai, J.P.N. Detect urban trees air pollution sensitivity & tolerance by leaf trait analysis in the industrial zone of Kumaun Himalaya Uttarakhand India. Urban Clim. 2024, 55, 101932. [Google Scholar]
- Miguel, I.D.; Veronika, H.; Fernando, B.P.; Eduardo, D.M.; Yawen, Y.; Jakob, M. Assessment of lettuces grown in urban areas for human consumption and as bioindicators of atmospheric pollution. Ecotoxicol. Environ. Saf. 2023, 256, 114883. [Google Scholar]
- Marie, L.; Veronika, Z.; Milan, P.; Daniela, P.; František, H.; Marek, P. Leaf fitness and stress response after the application of contaminated soil dust particulate matter. Sci. Rep. 2022, 12, 10046. [Google Scholar]
- Wei, Z.; Le, Q.V.; Peng, W.; Yang, Y.; Yang, H.; Gu, H.; Lam, S.S.; Sonne, C. A review on phytoremediation of contaminants in air, water and soil. J. Hazard. Mater. 2021, 403, 123658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gong, J.; Li, Y.; Zhang, W.; Zhang, T.; Meng, H.; Liu, X. Analysis of the influencing factors of atmospheric particulate matter accumulation on coniferous species: Measurement methods, pollution level, and leaf traits. Environ. Sci. Pollut. Res. 2022, 29, 62299–62311. [Google Scholar] [CrossRef] [PubMed]
- Corada, K.; Woodward, H.; Alaraj, H.; Collins, C.M.; de Nazelle, A. A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas. Environ. Pollut. 2020, 269, 116104. [Google Scholar] [CrossRef]
- Perez, P.; Menares, C.; Ramirez, C. PM2.5 forecasting in Coyhaique, the most polluted city in the Americas. Urban Clim. 2020, 32, 100608. [Google Scholar] [CrossRef]
- Zhai, C.; Bao, G.D.; Zhang, D.; Sha, Y.H. Urban forest locations and patch characteristics regulate PM2.5 mitigation capacity. Forests 2022, 13, 1408. [Google Scholar] [CrossRef]
- Gao, P.P.; Zhang, X.M.; Xue, P.Y.; Dong, J.W.; Dong, Y.; Zhao, Q.L.; Geng, L.P.; Lu, Y.; Zhao, J.J.; Liu, W.J. Mechanism of Pb accumulation in Chinese cabbage leaves: Stomata and trichomes regulate foliar uptake of Pb in atmospheric PM 2.5. Environ. Pollut. 2022, 293, 118585. [Google Scholar] [CrossRef]
- Gao, P.P.; Xue, P.Y.; Dong, J.W.; Zhang, X.M.; Sun, H.X.; Geng, L.P.; Luo, S.X.; Zhao, J.J.; Liu, W.J. Contribution of PM2.5-Pb in atmospheric fallout to Pb accumulation in Chinese cabbage leaves via stomata. J. Hazard. Mater. 2021, 407, 124356. [Google Scholar] [CrossRef]
- Taesik, G.; Jihwan, K.; Sang, J.L. Three-dimensional volumetric monitoring of settling particulate matters on a leaf using digital in-line holographic microscopy. J. Hazard. Mater. 2020, 404, 124116. [Google Scholar]
- Jihwan, K.; Jeongju, K.; Youngdo, K.; Taesik, G.; Sang, J.L. Accelerated settling velocity of airborne particulate matter on hairy plant leaves. J. Environ. Manag. 2023, 332, 117313. [Google Scholar]
- Lyu, X.; Chang, L.; Lu, Z.; Li, J. The ability of three climbing plant species to capture particulate matter and their physiological responses at different environmental sampling sites. Front. Environ. Sci. 2023, 10, 1084902. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Lei, S.G.; Yang, X.C.; Gong, C.G.; Wang, C.J.; Cheng, W.; Li, H.; She, C.C. Study on spectral response and estimation of grassland plants dust retention based on hyperspectral data. Remote Sens. 2020, 12, 2019. [Google Scholar] [CrossRef]
- Gao, K.; Li, X.J. Effects of Particulate PM 2.5 and PM10 on Photosynthetic Characteristics of Four Coniferous Plants. Tianjin Agric. Sci. 2023, 29, 11–18. [Google Scholar]
- Sheng, Q.Q.; He, W.Y.; Liu, Y.Y.; Ye, S.Y.; Zhou, S.C.; Li, J.W. Current Status and Progress of Plant Physiological Information Monitoring Technology. J. West China For. Sci. 2020, 49, 8–15. [Google Scholar]
- Wittenberghe, S.V.; Sabater, N.; Cendrero—Mateo, M.P.; Tenjo, C.; Moncholi, A.; Alonso, L.; Moreno, J. Towards the quantitative and physically-based interpretation of solar-induced vegetation fluorescence retrieved from global imaging. Photosynthetica 2021, 59, 438–457. [Google Scholar] [CrossRef]
- Moncholi-Estornell, A.; Van Wittenberghe, S.; Cendrero-Mateo, M.P.; Alonso, L.; Malenovsky, Z.; Moreno, J. Impact of Structural, Photochemical and Instrumental Effects on Leaf and Canopy Reflectance Variability in the 500–600 nm Range. Remote Sens. 2022, 14, 56. [Google Scholar] [CrossRef]
- Moncholi-Estornell, A.; Cendrero-Mateo, M.P.; Antala, M.; Cogliati, S.; Moreno, J.; Van Wittenberghe, S. Enhancing Solar-Induced Fluorescence Interpretation: Quantifying Fractional Sunlit Vegetation Cover Using Linear Spectral Unmixing. Remote Sens. 2023, 15, 4274. [Google Scholar] [CrossRef]
- Zha, H.N.; Miao, Y.X.; Wang, T.T.; Li, Y.; Zhang, J.; Sun, W.C.; Feng, Z.Q.; Kusnierek, K. Improving Unmanned Aerial Vehicle Remote Sensing-Based Rice Nitrogen Nutrition Index Prediction with Machine Learning. Remote Sens. 2020, 12, 215. [Google Scholar] [CrossRef]
- Su, K.; Yu, Q.; Sun, X.T.; Yue, D.P. Effects of leaf dust retention on spectral characteristics of Euonymus japonicus. J. Beijing For. Univ. 2021, 43, 40–49. [Google Scholar]
- Yang, P.Q.; Christiaan, T.; Petya, K.E.; Campbell, E.M. Unraveling the hysical and physiological basis for the solarinduced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop. Biogeosciences 2021, 8, 441–465. [Google Scholar] [CrossRef]
- Kong, L.J.; Sui, Y.Y.; Liu, S.S.; Chen, L.M.; Zhou, L.N.; Liu, C.H.; Jiang, L.; Li, S.; Yu, H.Y. Inversion of Physiological Information of Lettuce Polluted by Particulate Matter Based on Optimal Spectral Characteristic Variables. Spectrosc. Spectr. Anal. 2024, 44, 1128–1135. [Google Scholar]
- Xiang, Y.Z.; Wang, X.; An, J.Q.; Tang, Z.J.; Li, W.Y.; Shi, H.Z. Estimation of Leaf Area Index of Soybean Based on Fractional Order Differentiation and Optimal Spectral Index. Trans. Chin. Soc. Agric. Mach. 2023, 54, 329–342. [Google Scholar]
- Hong, Y.; Liu, Y.; Chen, Y.; Liu, Y.; Yu, L.; Liu, Y.; Cheng, H. Application of fractional—Order derivative in the quantitative estimation of soil organic matter content through visible and near—Infrared spectroscopy. Geoderma 2019, 337, 758–769. [Google Scholar] [CrossRef]
- Walid, C. Assessment of vegetation cover changes and the contributing factors in the A1一Ahsa Oasis using Normalized Difference Vegetation Index (NDVl). Reg. Sustain. 2024, 5, 100111. [Google Scholar]
- Alexey, S.; Konstantin, D.; Aleksei, S. Function fitting for modeling seasonal normalized difference vegetation index time series and early forecasting of soybean yield. Crop J. 2022, 10, 1452–1459. [Google Scholar]
- Pu, J.; Song, K.S.; Liu, G.; Wen, Z.D.; Fang, C.; Hou, J.B.; Lv, Y.F. Difkrentiation of Algal Blooms and Aquatic Vegetation in Chinese Lakes Using Modi6ed Vegetation Presence Frequency Index Method. Chin. Geogr. Sci. 2022, 32, 792–807. [Google Scholar] [CrossRef]
- Somayeh, T.; Zhao, T.J.; Shi, J.C.; Paolo, F.; Wigneron, J.P.; Mehdi, Z.; Peejush, P. Microwave Vegetation Index from Multi-Angular Observations and Its Application in Vegetation Properties Retrieval: Theoretical Modelling. Remote Sens. 2019, 11, 730. [Google Scholar]
- Abbasi, N.; Nouri, H.; Didan, K.; Barreto-Muñoz, A.; Chavoshi Borujeni, S.; Salemi, H.; Opp, C.; Siebert, S.; Nagler, P. Estimating Actual Evapotranspiration over Croplands Using Vegetation Index Methods and Dynamic Harvested Area. Remote Sens. 2021, 13, 5167. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Oh, D.; Cho, J. Simple method for extracting the seasonal signals of photochemical reflectance index and normalized difference vegetation index measured using a spectral reflectance sensor. J. Integr. Agric. 2021, 20, 1969–1986. [Google Scholar] [CrossRef]
- Kong, L.J.; Yu, H.Y.; Chen, M.C.; Piao, Z.J.; Liu, S.; Dang, J.M.; Zhang, L.; Sui, Y.Y. Analyze on the Response Characteristics of Leaf Vegetables to Particle Matters based on Hyperspectral. Spectrosc. Spectr. Anal. 2021, 41, 236–242. [Google Scholar]
- Liu, X. Investigation of the Potential and Mechanism of Vegetative Barriers for Mitigating Airborne Particulate Matter Emissionfrom Animal Operation Sources. Ph.D. Thesis, Jilin University, Changchun, China, 2017. [Google Scholar]
- Zhu, J.Y.; Yu, Q.; Liu, X.X.; Yu, Y.; Yao, J.M.; Su, K.; Niu, T.; Zhu, H.; Zhu, Q.Y. Effect of Leaf Dust Retention on Spectral Characteristics of Euonymus japonicus and Its Dust Retention Prediction. Spectrosc. Spectr. Anal. 2020, 40, 517–522. [Google Scholar]
- Vescovo, L.; Wohlfahrt, G.; Balzarolo, M.; Pilloni, S.; Sottocornola, M.; Rodeghiero, M.; Gianelle, D. New Spectral Vegetation Indices Based on the Near-infrared Shoulder Wavelengths for Remote Detection of Grassland Phytomass. Int. J. Remote Sens. 2012, 33, 2178–2195. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.M.; Qi, J.S.; Li, T.Z.; Zhang, L.Y.; Tian, M. Impact of leaf absorption of atmospheric heavy metals on plants: A review. Plant Sci. J. 2023, 41, 694–704. [Google Scholar]
- Sutapa, A.; Madeleen, S.; Stefan, J.S. Identifying Common Trees and Herbaceous Plants to Mitigate Particulate Matter Pollution in a Semi-Arid Mining Region of South Africa. Climate 2023, 11, 9. [Google Scholar]
- Su, K.; Yu, Q.; Hu, Y.H.; Liu, Z.L.; Wang, P.C.; Zhang, Q.B.; Zhu, J.Y.; Niu, T.; Pei, Y.R.; Yue, D.P. Inversion Research on Dust Distribution of Urban Forests in Beijing in Winter Based on Spectral Characteristics. Spectrosc. Spectr. Anal. 2020, 40, 1696–1702. [Google Scholar]
Spectral Characteristic Variables | Parameter Description |
---|---|
Red edge position (λr) | The wavelength position corresponding to the maximum of the red wavelength range (i.e., the red edge amplitude) |
PRI | (R550 − R530)/(R550 + R530) |
MCARI | [(R700 − R670) − 0.2 (R700 − R550)]/(R700/R670) |
Sensitive spectral bands | The spectral characteristic band (570~675 nm) identified through correlation analysis as sensitive spectral band |
Spectral Pretreatment Method | SG | |
---|---|---|
SG | SG | |
FD | FD + SG | |
SD | SD + SG | |
MSC | MSC + SG | FD + MSC + SG |
SD + MSC + SG | ||
SNV | SNV + SG | FD + SNV + SG |
SD + SNV + SG |
Spectral Characteristic Variables | Fitting Model | Determination Coefficient (R2) |
---|---|---|
λr | y = 79.95731 + 87.01537X − 3.965X2 + 0.05966X3 | 0.82061 |
PRI | y = −0.77578 + 0.11797X − 0.00566X2 + 9.41219X3 | 0.84542 |
MCARI | y = −0.16599 − 0.01887X + 8.05999X2 − 1.27072X3 | 0.83083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, L.; Gao, S.; Qiao, J.; Zhou, L.; Liu, S.; Yu, Y.; Yu, H. Study on the Photosynthetic Physiological Responses of Greenhouse Young Chinese Cabbage (Brassica rapa L. Chinensis Group) Affected by Particulate Matter Based on Hyperspectral Analysis. Plants 2025, 14, 1479. https://doi.org/10.3390/plants14101479
Kong L, Gao S, Qiao J, Zhou L, Liu S, Yu Y, Yu H. Study on the Photosynthetic Physiological Responses of Greenhouse Young Chinese Cabbage (Brassica rapa L. Chinensis Group) Affected by Particulate Matter Based on Hyperspectral Analysis. Plants. 2025; 14(10):1479. https://doi.org/10.3390/plants14101479
Chicago/Turabian StyleKong, Lijuan, Siyao Gao, Jianlei Qiao, Lina Zhou, Shuang Liu, Yue Yu, and Haiye Yu. 2025. "Study on the Photosynthetic Physiological Responses of Greenhouse Young Chinese Cabbage (Brassica rapa L. Chinensis Group) Affected by Particulate Matter Based on Hyperspectral Analysis" Plants 14, no. 10: 1479. https://doi.org/10.3390/plants14101479
APA StyleKong, L., Gao, S., Qiao, J., Zhou, L., Liu, S., Yu, Y., & Yu, H. (2025). Study on the Photosynthetic Physiological Responses of Greenhouse Young Chinese Cabbage (Brassica rapa L. Chinensis Group) Affected by Particulate Matter Based on Hyperspectral Analysis. Plants, 14(10), 1479. https://doi.org/10.3390/plants14101479