Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (251)

Search Parameters:
Keywords = gamma-ray irradiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1263 KB  
Article
Impact of 6 MV-LINAC Radiation on Lymphocyte Phenotypes and Cytokine Profiles
by Papichaya Yudech, Wisawa Phongprapun, Pittaya Dankulchai, Duangporn Polpanich, Abdelhamid Elaissari, Rujira Wanotayan and Kulachart Jangpatarapongsa
Radiation 2025, 5(4), 29; https://doi.org/10.3390/radiation5040029 - 7 Oct 2025
Viewed by 269
Abstract
Radiotherapy employs high-energy X-rays to precisely target tumor tissues while minimizing damage to the surrounding healthy structures. Although its clinical efficacy is well established, the immunomodulatory effects of ionizing radiation remain complex and context-dependent. This study investigated the biological effects of radiotherapeutic doses [...] Read more.
Radiotherapy employs high-energy X-rays to precisely target tumor tissues while minimizing damage to the surrounding healthy structures. Although its clinical efficacy is well established, the immunomodulatory effects of ionizing radiation remain complex and context-dependent. This study investigated the biological effects of radiotherapeutic doses on immune cells by evaluating lymphocyte viability, phenotypic profiles, and cytokine expression levels. Peripheral blood mononuclear cells (PBMCs) were isolated from six healthy donors and irradiated with 0, 2, or 6 Gy using a 6 MV linear accelerator (LINAC). Dose validation with an ionization chamber demonstrated strong agreement between estimated and measured values (intraclass correlation coefficient = 1, 95% CI). Immune subsets, including T cells (CD3+), helper T cells (CD3+CD4+), cytotoxic T cells (CD3+CD8+), regulatory T cells (CD3+CD4+Foxp3+), and natural killer (CD3-CD56+) cells, along with intracellular cytokines interleukin-12 (IL-12) and interferon-gamma (IFN-γ), were analyzed via flow cytometry at multiple time points. The results showed a significant, dose-dependent decline in overall lymphocyte viability (p < 0.01) compared to control. Cytotoxic T cells were the most radiosensitive, followed by helper and regulatory T cells, while NK cells were the most radioresistant. IL-12 expression initially increased post-irradiation, while IFN-γ levels remained variable. These findings demonstrate that radiation induces distinct alterations in immune phenotypes and cytokine profiles, which may shape the immune response. Immune profiling following irradiation may therefore provide valuable insights for optimizing combination strategies that integrate radiotherapy and immunotherapy in cancer treatment. Full article
Show Figures

Graphical abstract

15 pages, 2964 KB  
Article
The Role of the MntABC Transporter System in the Oxidative Stress Resistance of Deinococcus radiodurans
by Binqiang Wang, Renjiang Pang, Chunhui Cai, Zichun Tan, Shang Dai, Bing Tian and Liangyan Wang
Int. J. Mol. Sci. 2025, 26(19), 9407; https://doi.org/10.3390/ijms26199407 - 26 Sep 2025
Viewed by 245
Abstract
The accumulation of high levels of manganese ions complexed with small molecules has been proposed as a pivotal factor contributing to the extraordinary radiation resistance of Deinococcus radiodurans. However, the molecular mechanisms governing the manganese ion homeostasis remain elusive. In this study, [...] Read more.
The accumulation of high levels of manganese ions complexed with small molecules has been proposed as a pivotal factor contributing to the extraordinary radiation resistance of Deinococcus radiodurans. However, the molecular mechanisms governing the manganese ion homeostasis remain elusive. In this study, we characterize the role of the MntABC transporter system for Mn ion accumulation in D. radiodurans. Its cellular membrane localization is unequivocally demonstrated through fluorescence labeling techniques. Mutation of the protein components of the MntABC led to a significant decrease in intracellular Mn ion accumulation, concomitant with impaired cellular growth, decreased resistance against hydrogen peroxide, and gamma-ray irradiation-induced oxidative stresses, indicating that the MntABC system plays an indispensable role in resistance of D. radiodurans to oxidative stresses. Protein structure modeling and molecular docking are employed to analyze the key active sites of the MntABC proteins and their intermolecular interactions. The results demonstrate that the MntABC system is essential for maintaining Mn ion homeostasis and the oxidative stress resistance of D. radiodurans. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

12 pages, 1695 KB  
Article
Silicone Films Modified with Ethylene Glycol Dicyclopentenyl Ether Acrylate for Antimicrobial Silver Loading
by Orlando Padilla, Miguel S. Pérez-Garibay, Alejandro Camacho-Cruz and Emilio Bucio
Polymers 2025, 17(18), 2482; https://doi.org/10.3390/polym17182482 - 14 Sep 2025
Viewed by 410
Abstract
In this research, silicone films (SR) were modified by grafting ethylene glycol dicyclopentenyl ether acrylate (EGDEA) through gamma-ray irradiation using both direct and pre-irradiation methods at a dose rate of 10.8 kGy/h, with doses ranging from 10 to 50 kGy. Several techniques, including [...] Read more.
In this research, silicone films (SR) were modified by grafting ethylene glycol dicyclopentenyl ether acrylate (EGDEA) through gamma-ray irradiation using both direct and pre-irradiation methods at a dose rate of 10.8 kGy/h, with doses ranging from 10 to 50 kGy. Several techniques, including TGA, DSC, contact angle measurement, mechanical testing, swelling, and FTIR, confirmed the grafting of EGDEA onto SR films. The highest grafting efficiency was achieved at 50 kGy using the direct method. Subsequently, SR-g-EGDEA films were loaded with silver for microbial testing, showing promising results for potential biomedical applications. Full article
Show Figures

Figure 1

10 pages, 1130 KB  
Article
DNA Damage Induced by Fast Neutron and Gamma Rays Evaluated Using qPCR
by Youichirou Matuo, Miyabi Yanami, Shingo Tamaki, Yoko Akiyama, Yoshinobu Izumi, Fuminobu Sato, Isao Murata and Kikuo Shimizu
Quantum Beam Sci. 2025, 9(3), 23; https://doi.org/10.3390/qubs9030023 - 7 Jul 2025
Viewed by 544
Abstract
We developed a novel dosimetric method using DNA molecules as a radiation sensor. The amount of neutron or gamma rays irradiated DNA damage was determined by evaluating the amount of DNA serving as a template for qPCR. The absorbed doses in the samples [...] Read more.
We developed a novel dosimetric method using DNA molecules as a radiation sensor. The amount of neutron or gamma rays irradiated DNA damage was determined by evaluating the amount of DNA serving as a template for qPCR. The absorbed doses in the samples were estimated using the tally of the “t-product” in the data from the PHITS Monte Carlo particle transport simulation code. The neutron fluence for each sample was measured using the niobium activation reaction 93Nb (n, 2n) 92mNb, and the absorbed dose per neutron fluence was estimated to be 7.1 × 10−11 Gy/(n/cm2). Based on the PHITS modeling, the effects of neutron beams are attributed to the combination of proton and alpha particle beams. The results from qPCR showed that neutrons caused more DNA damage than gamma rays. The qPCR method demonstrated that neutron irradiation caused 1.13-fold more DNA damage compared to gamma ray irradiation; however, this result did not show a statistically significant difference. This method we developed, using DNA molecules as a radiation sensor, may be useful for biodosimetry. Full article
(This article belongs to the Section Medical and Biological Applications)
Show Figures

Figure 1

13 pages, 1876 KB  
Article
Total Ionizing Dose Effects on Lifetime of NMOSFETs Due to Hot Carrier-Induced Stress
by Yujuan He, Rui Gao, Teng Ma, Xiaowen Zhang, Xianyu Zhang and Yintang Yang
Electronics 2025, 14(13), 2563; https://doi.org/10.3390/electronics14132563 - 25 Jun 2025
Viewed by 704
Abstract
This study systematically investigates the mechanism by which total ionizing dose (TID) affects the lifetime degradation of NMOS devices induced by hot-carrier injection (HCI). Experiments involved Cobalt-60 (Co-60) gamma-ray irradiation to a cumulative dose of 500 krad (Si), followed by 168 h annealing [...] Read more.
This study systematically investigates the mechanism by which total ionizing dose (TID) affects the lifetime degradation of NMOS devices induced by hot-carrier injection (HCI). Experiments involved Cobalt-60 (Co-60) gamma-ray irradiation to a cumulative dose of 500 krad (Si), followed by 168 h annealing at 100 °C to simulate long-term stability. However, under HCI stress conditions (VD = 2.7 V, VG = 1.8 V), irradiated devices show a 6.93% increase in threshold voltage shift (ΔVth) compared to non-irradiated counterparts. According to the IEC 62416 standard, the lifetime degradation of irradiated devices induced by HCI stress is only 65% of that of non-irradiated devices. Conversely, when the saturation drain current (IDsat) degrades by 10%, the lifetime doubles compared to non-irradiated counterparts. Mechanistic analysis demonstrates that partial neutralization of E’ center positive charges at the gate oxide interface by hot electrons weakens the electric field shielding effect, accelerating ΔVth drift, while interface trap charges contribute minimally to degradation due to annealing-induced self-healing. The saturation drain current shift degradation primarily correlates with electron mobility variations. This work elucidates the multi-physics mechanisms through which TID impacts device reliability and provides critical insights for radiation-hardened design optimization. Full article
Show Figures

Figure 1

12 pages, 2086 KB  
Article
Radiation Hardness of Oxide Thin Films Prepared by Magnetron Sputtering Deposition
by Marko Škrabić, Marija Majer, Zdravko Siketić, Maja Mičetić, Željka Knežević and Marko Karlušić
Appl. Sci. 2025, 15(13), 7067; https://doi.org/10.3390/app15137067 - 23 Jun 2025
Viewed by 356
Abstract
Thin amorphous oxide films (a-SiO2, a-Al2O3, a-MgO) were prepared by magnetron sputtering deposition. Their response to high-energy heavy ion beams (23 MeV I, 18 MeV Cu, 2.5 MeV Cu) and gamma-ray (1.25 MeV) irradiation was studied by [...] Read more.
Thin amorphous oxide films (a-SiO2, a-Al2O3, a-MgO) were prepared by magnetron sputtering deposition. Their response to high-energy heavy ion beams (23 MeV I, 18 MeV Cu, 2.5 MeV Cu) and gamma-ray (1.25 MeV) irradiation was studied by elastic recoil detection analysis and infrared spectroscopy. It was established that their high radiation hardness is due to a high level of disorder, already present in as-prepared samples, so the high-energy heavy ion irradiation cannot change their structure much. In the case of a-SiO2, this resulted in a completely different response to high-energy heavy ion irradiation found previously in thermally grown a-SiO2. In the case of a-MgO, only gamma-ray irradiation was found to induce significant changes. Full article
Show Figures

Figure 1

12 pages, 5712 KB  
Article
The Study of the Transient Dose Rate Effect on ROIC Pixels in Ultra-Large-Scale Infrared Detectors
by Yuan Liu, Bin Wang, Ziyuan Tang, Mengwei Chen, Hui Wang, Weitao Yang and Longsheng Wu
Micromachines 2025, 16(6), 700; https://doi.org/10.3390/mi16060700 - 12 Jun 2025
Viewed by 2729
Abstract
Infrared image sensors are crucial across various industries. However, with technological advancements, the growing scale of infrared image sensors has made the impact of transient dose rate effects increasingly significant. It is necessary to conduct relevant radiation effect studies to provide the theoretical [...] Read more.
Infrared image sensors are crucial across various industries. However, with technological advancements, the growing scale of infrared image sensors has made the impact of transient dose rate effects increasingly significant. It is necessary to conduct relevant radiation effect studies to provide the theoretical and data basis for future radiation-hardened design. This study explores the response of large-area N-wells in the readout circuit of infrared detectors to transient dose rate effects. The TCAD simulation results indicate that the expansive N-well area in the merged-design pixel units generates significant current pulses when exposed to gamma-ray irradiation. Specifically, at dose rates of 3 × 1011 rad/s, 5 × 1011 rad/s, 7 × 1011 rad/s, and 9 × 1011 rad/s, the pulse currents measured are 39 nA, 64 nA, 89 nA, and 119 nA, respectively. Due to the spatial constraints of the 55 nm merged design, the close proximity of the GND to the N-well creates a high potential barrier near the N-well, obstructing the path between the GND and the substrate, which results in the pulse current exhibiting a stepped-like characteristic. Full article
Show Figures

Figure 1

23 pages, 3013 KB  
Review
Recent Advances in Antibiotic Degradation by Ionizing Radiation Technology: From Laboratory Study to Practical Application
by Yuening Song, Yulin Wang and Jianlong Wang
Water 2025, 17(12), 1719; https://doi.org/10.3390/w17121719 - 6 Jun 2025
Cited by 2 | Viewed by 1332
Abstract
The widespread presence of antibiotics in aquatic environments poses significant ecological and public health risks due to their persistence, antimicrobial activity, and contribution to resistance gene proliferation. This review systematically evaluated the advancements in antibiotic degradation using ionizing radiation (γ-rays and electron beam) [...] Read more.
The widespread presence of antibiotics in aquatic environments poses significant ecological and public health risks due to their persistence, antimicrobial activity, and contribution to resistance gene proliferation. This review systematically evaluated the advancements in antibiotic degradation using ionizing radiation (γ-rays and electron beam) from laboratory studies to practical applications. By using keywords such as “antibiotic degradation” and “ionizing irradiation OR gamma radiation OR electron beam,” 328 publications were retrieved from Web of Science, with China contributing 33% of the literature, and a number of global representative studies were selected for in-depth discussion. The analysis encompassed mechanistic insights into oxidative (•OH) and reductive (eaq) pathways, degradation kinetics influenced by absorbed dose (1–10 kGy), initial antibiotic concentration, pH, and matrix complexity. The results demonstrated ≥90% degradation efficiency for major antibiotic classes (macrolides, β-lactams, quinolones, tetracyclines, and sulfonamides), though mineralization remains suboptimal (<50% TOC removal). Synergistic integration with peroxymonosulfate (PMS), H2O2, or O3 enhances mineralization rates. This review revealed that ionizing radiation is a chemical-free, compatible, and highly efficient technology with effective antibiotic degradation potential. However, it still faces several challenges in practical applications, including incomplete mineralization, matrix complexity in real wastewater, and operating costs. Further improvements and optimization, such as hybrid system development (e.g., coupling electron beam with other conventional technologies, such as flocculation, membrane separation, anaerobic digestion, etc.), catalytic enhancement, and life-cycle assessments of this emerging technology would be helpful for promoting its practical environmental application. Full article
Show Figures

Figure 1

17 pages, 3638 KB  
Article
New Cellular Interactions Due to the Radioprotective Effect of N-Acetylcysteine in a Model of Radiation-Induced Pancreatitis
by Grigory Demyashkin, Matvey Vadyukhin, Vladimir Shchekin, Tatyana Borovaya, Olga Zavialova, Dmitriy Belokopytov, Kirill Silakov, Petr Shegay and Andrei Kaprin
Int. J. Mol. Sci. 2025, 26(11), 5238; https://doi.org/10.3390/ijms26115238 - 29 May 2025
Viewed by 749
Abstract
Ionizing radiation at early stages leads to radiation-induced death of Langerhans islet cells and acinar cells, resulting in the development of acute/subacute pancreatitis. Conducting studies on radiation-induced changes in the pancreas following electron beam irradiation appears to be of great interest, and the [...] Read more.
Ionizing radiation at early stages leads to radiation-induced death of Langerhans islet cells and acinar cells, resulting in the development of acute/subacute pancreatitis. Conducting studies on radiation-induced changes in the pancreas following electron beam irradiation appears to be of great interest, and the evaluation of radioprotective agents for safeguarding normal tissues from radiation is equally important. The aim of this study was to preclinically investigate the antioxidant properties of N-Acetylcysteine in an animal model of radiation-induced pancreatitis over a three-month period. In this study, it was proven for the first time that even electrons can lead to characteristic signs of radiation-induced pancreatitis, the degree of which was assessed based on the levels of insulin, glucose, and amylase. Thus, conducting electron therapy also increases the risks of insulin resistance, as well as X-ray and gamma radiation. For the first time, a comprehensive analysis of biochemical, morphological, and immunohistochemical markers in the pancreas of a large cohort of electron-irradiated animals was conducted, including both acute and delayed effects of electron exposure. The crucial role of interleukins in shaping both the cellular and vascular components of the inflammatory response was identified. Additionally, the radioprotective properties of N-Acetylcysteine during electron irradiation of the pancreas were evaluated for the first time, and its effectiveness in reducing both acute and late complications of electron therapy was demonstrated. Thus, it can be concluded that N-Acetylcysteine is capable of effectively suppressing the inflammatory response in the pancreas. Full article
Show Figures

Figure 1

36 pages, 6289 KB  
Review
Ionizing Radiation and Its Effects on Thermoplastic Polymers: An Overview
by Ary Machado de Azevedo, Pedro Henrique Poubel Mendonça da Silveira, Thomaz Jacintho Lopes, Odilon Leite Barbosa da Costa, Sergio Neves Monteiro, Valdir Florêncio Veiga-Júnior, Paulo Cezar Rocha Silveira, Domingos D’Oliveira Cardoso and André Ben-Hur da Silva Figueiredo
Polymers 2025, 17(8), 1110; https://doi.org/10.3390/polym17081110 - 19 Apr 2025
Cited by 5 | Viewed by 3623
Abstract
This article explores the foundational principles of ionizing radiation and provides a comprehensive overview of its impact on thermoplastic polymers. Ionizing radiation, encompassing gamma rays, X-rays, and electron beams, has been extensively studied due to its capacity to alter the molecular structure of [...] Read more.
This article explores the foundational principles of ionizing radiation and provides a comprehensive overview of its impact on thermoplastic polymers. Ionizing radiation, encompassing gamma rays, X-rays, and electron beams, has been extensively studied due to its capacity to alter the molecular structure of polymers. These changes enable advancements in various applications by promoting molecular crosslinking, controlled degradation, molecular grafting, and crystallinity adjustments. The article delves into the fundamental mechanisms of radiation thermoplastic polymer interactions, including ionization, electronic excitation, and free radical formation. It highlights how these processes lead to structural transformations that enhance the physical, thermal, and mechanical properties of thermoplastic polymers. Factors such as radiation type, absorbed doses, temperature, and environmental conditions are discussed in the context of their role in controlling these modifications. Key practical applications are identified across fields such as medicine, food packaging, aerospace, and industry. Examples include the production of sterilizable medical devices, enhanced food packaging for longer shelf life, and radiation-resistant materials for the aerospace and nuclear sectors. Despite its many advantages, the article also emphasizes challenges such as process variability, polymer sensitivity to radiation, and standardization difficulties. The review underscores emerging research directions, including optimizing irradiation parameters and integrating advanced characterization techniques like Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray diffraction (XRD). The development of new polymer blends and composites, designed for irradiation-induced property enhancement, represents a promising area of innovation. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

36 pages, 971 KB  
Review
Physical Pretreatments of Lignocellulosic Biomass for Fermentable Sugar Production
by Damázio Borba Sant’Ana Júnior, Maikon Kelbert, Pedro Henrique Hermes de Araújo and Cristiano José de Andrade
Sustain. Chem. 2025, 6(2), 13; https://doi.org/10.3390/suschem6020013 - 14 Apr 2025
Cited by 8 | Viewed by 4417
Abstract
Physical pretreatments play a crucial role in reducing the recalcitrance of lignocellulosic biomass, facilitating its conversion into fermentable sugars for bioenergy and chemical applications. This study critically reviews physical pretreatment approaches, including mechanical comminution, irradiation (ultrasound, microwave, gamma rays, and electron beam), extrusion, [...] Read more.
Physical pretreatments play a crucial role in reducing the recalcitrance of lignocellulosic biomass, facilitating its conversion into fermentable sugars for bioenergy and chemical applications. This study critically reviews physical pretreatment approaches, including mechanical comminution, irradiation (ultrasound, microwave, gamma rays, and electron beam), extrusion, and pulsed electric field. The discussion covers the mechanisms of action, operational parameters, energy efficiency, scalability challenges, and associated costs. Methods such as ultrasound and microwave induce structural changes that enhance enzymatic accessibility, while extrusion combines thermal and mechanical forces to optimize hydrolysis. Mechanical comminution is most effective during short periods and when combined with other techniques to overcome limitations such as high energy consumption. Innovative approaches, such as pulsed electric fields, show significant potential but face challenges in large-scale implementation. This study provides technical and strategic insights into developing more effective physical pretreatments aligned with economic feasibility and industrial sustainability. Full article
Show Figures

Figure 1

24 pages, 2558 KB  
Article
Age-Dependent Variation in Longevity, Fecundity and Fertility of Gamma-Irradiated Bagrada hilaris (Hemiptera: Pentatomidae): Insights for a Sustainable SIT Program
by Alessandra Paolini, Sergio Musmeci, Chiara E. Mainardi, Chiara Peccerillo, Alessia Cemmi, Ilaria Di Sarcina, Francesca Marini, René F. H. Sforza and Massimo Cristofaro
Insects 2025, 16(4), 408; https://doi.org/10.3390/insects16040408 - 13 Apr 2025
Cited by 1 | Viewed by 706
Abstract
Bagrada hilaris is an invasive stink bug causing important yield losses in Brassica crops. It originates from India, Southeast Asia, the Middle East and South Africa and is reported as invasive in several southwestern US states, Hawaii, Mexico, Chile and in the Mediterranean [...] Read more.
Bagrada hilaris is an invasive stink bug causing important yield losses in Brassica crops. It originates from India, Southeast Asia, the Middle East and South Africa and is reported as invasive in several southwestern US states, Hawaii, Mexico, Chile and in the Mediterranean islands of Malta and Pantelleria (Italy). In this study, we tested the effects of gamma rays on the longevity, fecundity and fertility of bagrada bugs. We irradiated them at two different stages of their life cycle (fifth-instar nymphs and two-week-old adults). Irradiation at the nymphal stage had a strong impact on female fecundity, with egg numbers approaching zero at a dose of 80 Gy. Similarly, a full suppression of female fertility was achieved at 80 Gy when they were mated with males irradiated as nymphs or as mature adults. For longevity, gamma rays had only a slight impact on adult male and female life span. Due to the evidence of a gregarious phase during the autumn, these results suggest that small-scale SIT-localized applications by massive collections of bagrada bugs at various stages of development during autumn, followed by irradiation and reintroduction to the field, might be a safe and economically sound approach of control. Research is currently underway to evaluate the fitness of sterile males and mating patterns. Further studies in confined-field conditions will be needed. Full article
(This article belongs to the Collection Hemiptera: Ecology, Physiology, and Economic Importance)
Show Figures

Figure 1

11 pages, 4944 KB  
Article
Synthesis and Characterization of a Superabsorbent Polymer Gel Using a Simultaneous Irradiation Technique on Corn Straw
by Xingkui Tao, Jun Guo, Aihua Wang, Qiang Wang, Yang Yang and Minwei Xu
Gels 2025, 11(4), 244; https://doi.org/10.3390/gels11040244 - 26 Mar 2025
Cited by 1 | Viewed by 944
Abstract
Utilizing gamma rays as an initiating agent, a simultaneous irradiation method was applied to graft acrylic acid and acrylamide onto corn straw that had been decrystallized using a NaOH/urea solution at a reduced temperature, aiming to fabricate superabsorbent polymer gel (SAPG) capable of [...] Read more.
Utilizing gamma rays as an initiating agent, a simultaneous irradiation method was applied to graft acrylic acid and acrylamide onto corn straw that had been decrystallized using a NaOH/urea solution at a reduced temperature, aiming to fabricate superabsorbent polymer gel (SAPG) capable of absorbing significantly more water. The structural attributes of the corn straw, the decrystallized corn straw, and the SAPG were analyzed via Fourier transform infrared spectroscopy (FTIR), X-ray crystal powder diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). To enhance the SAPG’s performance, optimization of various parameters was carried out, such as irradiation dose, dose rate, the ratio of monomer to corn straw, the proportion of acrylic acid (AA) to acrylamide (Am), and the degree of neutralization. The resulting SAPG exhibited distilled water absorption of 1033 g/g and 90 g/g in 0.9 wt.% NaCl solution, with a radiation dose of 5 kGy, a dose rate of 1.5 kGy/h, AA-to-AM mass ratio of 1.2, monomer-to-CS mass ratio of 7, and 90% AA neutralization. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Graphical abstract

18 pages, 1402 KB  
Article
Analysis of Gamma-Irradiation Effect on Radicals Formation and on Antiradical Capacity of Horse Chestnut (Aesculus hippocastanum L.) Seeds
by Ralitsa Mladenova, Nikolay Solakov, Kamelia Loginovska and Yordanka Karakirova
Appl. Sci. 2025, 15(6), 3287; https://doi.org/10.3390/app15063287 - 17 Mar 2025
Viewed by 697
Abstract
The irradiation by gamma-rays is a widely used technique for disinfection in the pharmaceutical and cosmetic industries. In view of growing concerns by consumers about this technique, further investigation of the effects of radiation is required. In this work electron paramagnetic resonance (EPR) [...] Read more.
The irradiation by gamma-rays is a widely used technique for disinfection in the pharmaceutical and cosmetic industries. In view of growing concerns by consumers about this technique, further investigation of the effects of radiation is required. In this work electron paramagnetic resonance (EPR) spectroscopy was applied to study the free radicals in irradiated horse chestnut (Aesculus hippocastanum L.) seeds and to evaluate the free radical scavenging activity (FRSA) using the stable DPPH radical. In order to evaluate the antiradical potential, a spectrophotometric study was also used. The identification and quantification of some individual polyphenol compounds before and after irradiation by 1, 5, and 10 kGy gamma rays of peeled and shell seeds were obtained by high performance liquid chromatography (HPLC). The EPR spectrum recorded on irradiated horse chestnut is a typical signal for irradiated cellulose-contained substances. The results show that the signal is stable, and it can be found in the samples irradiated with a dose of 1 kGy, 45 days after treatment, whereas for samples irradiated by 5 and 10 kGy, it is even found 250 days later. The study showed that free radical scavenging activity increases in shell seeds, while it decreases in peeled seed extracts after irradiation depending on the dosage, which corresponds to the total phenolic content. Shell seed extracts have significantly stronger antiradical activity than that of peeled seeds. Regarding the HPLC analysis, some polyphenolics were degraded and others were formed as a result of irradiation. The irradiation by 5 kGy dosage has a most significant positive effect on the antioxidant potential of shell chestnut seeds. Full article
(This article belongs to the Special Issue Advances in Environmental Applied Physics—2nd Edition)
Show Figures

Graphical abstract

13 pages, 3451 KB  
Article
Performance Degradation of Ga2O3-Based X-Ray Detector Under Gamma-Ray Irradiation
by Xiao Ouyang, Silong Zhang, Tao Bai, Zhuo Chen, Yuxin Deng, Leidang Zhou, Xiaojing Song, Hao Chen, Yuru Lai, Xing Lu, Liang Chen, Liangliang Miao and Xiaoping Ouyang
Micromachines 2025, 16(3), 339; https://doi.org/10.3390/mi16030339 - 14 Mar 2025
Cited by 3 | Viewed by 913
Abstract
X-ray response performances of a p-NiO/β-Ga2O3 hetero-junction diode (HJD) X-ray detector were studied before and after γ-ray irradiation at −200 V, with a total dose of 13.5 kGy(Si). The response performances of the HJD X-ray detector were influenced [...] Read more.
X-ray response performances of a p-NiO/β-Ga2O3 hetero-junction diode (HJD) X-ray detector were studied before and after γ-ray irradiation at −200 V, with a total dose of 13.5 kGy(Si). The response performances of the HJD X-ray detector were influenced by the trap-assistant conductive process of the HJD under reverse bias, which exhibited an increasing net (response) current, nonlinearity, and a long response time. After irradiation, the Poole–Frenkel emission (PFE) dominated the leakage current of HJDs due to the higher electric field caused by the increased net carrier concentration of β-Ga2O3. This conductive process weakened the performance of the HJD X-ray detector in terms of sensitivity, output linearity, and response speed. This study provided valuable insights into the radiation damage and performance degradation mechanisms of Ga2O3-based radiation detectors and offered guidance on improving the reliability and stability of these radiation detectors. Full article
Show Figures

Figure 1

Back to TopTop