Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = gamma-carboxylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1311 KB  
Article
Effect of Warfarin on Lifespan and Oxidative Stress Tolerance of Drosophila melanogaster
by Anna Lavrenova, Oleg Klychnikov, Vitaliy Ioutsi, Igor Rodin, Oksana Luneva and Lidia Nefedova
Int. J. Mol. Sci. 2025, 26(10), 4808; https://doi.org/10.3390/ijms26104808 - 17 May 2025
Cited by 2 | Viewed by 1121
Abstract
In vertebrates, vitamin K is a cofactor for the gamma-glutamyl carboxylase (GGCX) involved in the carboxylation of glutamic acid residues. During the vitamin K cycle, vitamin K is oxidised by GGCX, and then reduced by vitamin K epoxide reductase (VKOR), which is inhibited [...] Read more.
In vertebrates, vitamin K is a cofactor for the gamma-glutamyl carboxylase (GGCX) involved in the carboxylation of glutamic acid residues. During the vitamin K cycle, vitamin K is oxidised by GGCX, and then reduced by vitamin K epoxide reductase (VKOR), which is inhibited by the synthetic coumarin warfarin. GGCX and VKOR are present in Drosophila melanogaster, but the existence of a vitamin K cycle remains unproven. Semi-lethal concentrations (LC50) of K3, menadione sodium bisulfite (MSB), and warfarin to neutralise the negative effect of MSB were selected for the Drosophila cultivation medium. LC-MS analysis was used for vitamin K measurement in flies’ extracts. The EPR method and RT-PCR were used for ROS level measurement and gene transcription assessment, respectively. The LC50 of MSB in the medium resulted in a more than 20-fold increase in endogenous K2 in flies, demonstrating the mechanism of K3-to-K2 conversion. Administration of 1 mM warfarin in the medium with MSB completely neutralised its negative effect on viability. Developed flies had decreased K2 level, confirming the existence of a vitamin K cycle, and both reduced ROS level and hsp22 gene transcription. The biochemical pathways affected by elevated K2 concentrations involves both elements of the vitamin K cycle and the adaptive mitochondrial antioxidant system. Full article
(This article belongs to the Special Issue Drosophila: A Versatile Model in Biology and Medicine—2nd Edition)
Show Figures

Figure 1

30 pages, 12333 KB  
Article
Beneficial Effects of ACC Deaminase-Producing Rhizobacteria on the Drought Stress Resistance of Coffea arabica L.
by Yesenia Jasso-Arreola, J. Antonio Ibarra, Flor de Fátima Rosas-Cárdenas and Paulina Estrada-de los Santos
Plants 2025, 14(7), 1084; https://doi.org/10.3390/plants14071084 - 1 Apr 2025
Cited by 4 | Viewed by 1745
Abstract
Given the challenges of climate change, effective adaptation strategies for crops like coffee are crucial. This study evaluated twelve 1-aminocyclopropane-1-carboxylate deaminase-producing bacterial strains selectively isolated from the rhizosphere of Coffea arabica L. cv. Costa Rica 95 in a plantation located in Veracruz, Mexico, [...] Read more.
Given the challenges of climate change, effective adaptation strategies for crops like coffee are crucial. This study evaluated twelve 1-aminocyclopropane-1-carboxylate deaminase-producing bacterial strains selectively isolated from the rhizosphere of Coffea arabica L. cv. Costa Rica 95 in a plantation located in Veracruz, Mexico, focusing on their potential to enhance drought resistance. The strains, representing seven genera from the Gamma-proteobacteria and Bacteroidota groups, were characterized for growth-promoting traits, including ACC deaminase activity, indole-3-acetic acid (IAA) synthesis, phosphates solubilization, siderophore production, and nitrogen fixation. Strains of the genus Pantoea exhibited higher ACC deaminase activity, phosphate solubilization, and IAA synthesis, while others, such as Sphingobacterium and Chryseobacterium, showed limited plant growth-promoting traits. A pot experiment was conducted with coffee plants subjected to either full irrigation (soil with 85% volumetric water content) or drought (soil with 55% volumetric water content) conditions, along with inoculation with the isolated strains. Plants inoculated with Pantoea sp. RCa62 demonstrated improved growth metrics and physiological traits under drought, including higher leaf area, relative water content (RWC), biomass, and root development compared to uninoculated controls. Similar results were observed with Serratia sp. RCa28 and Pantoea sp. RCa31 under full irrigation conditions. Pantoea sp. RCa62 exhibited superior root development under stress, contributing to overall plant development. Proline accumulation was significantly higher in drought-stressed, non-inoculated plants compared to those inoculated with Pantoea sp. RCa62. This research highlights the potential of Pantoea sp. RCa62 to enhance coffee plant resilience to drought and underscores the need for field application and further validation of these bioinoculants in sustainable agricultural practices. Full article
(This article belongs to the Special Issue Abiotic and Biotic Stress of the Crops and Horticultural Plants)
Show Figures

Figure 1

17 pages, 4274 KB  
Article
Experimental and Kinetic Studies on the Conversion of Glucose to Levulinic Acid Catalyzed by Synergistic Cr/HZSM-5 in GVL/H2O Biphasic System
by Han Wu, Rui Zhang, Jiantao Li, Jing Chang, Zhihua Liu, Jiale Chen, Jian Xiong, Yina Qiao, Zhihao Yu and Xuebin Lu
Catalysts 2025, 15(2), 162; https://doi.org/10.3390/catal15020162 - 10 Feb 2025
Cited by 1 | Viewed by 1120
Abstract
In this paper, modified HZSM-5 catalysts with different ratios of chromium (Cr/HZSM-5) were synthesized and the solvent effect of gamma valerolactone (GVL) on the enhancement of levulinic acid (LA) yield was investigated. Characterization of the Cr/HZSM-5 catalyst revealed that the introduction of Cr [...] Read more.
In this paper, modified HZSM-5 catalysts with different ratios of chromium (Cr/HZSM-5) were synthesized and the solvent effect of gamma valerolactone (GVL) on the enhancement of levulinic acid (LA) yield was investigated. Characterization of the Cr/HZSM-5 catalyst revealed that the introduction of Cr did not change the structure of HZSM-5. The LA yield was increased from 42.5% (H2O solvent system) to 51.4% (GVL/H2O solvent system) under optimal conditions. The influence of GVL on the reaction mechanism was investigated through kinetic analysis, revealing that the incorporation of GVL reduces the activation energy barrier for the conversion of glucose to LA, thereby enhancing the glucose dehydration process. The effect of GVL on the product (LA) was studied, based on molecular dynamics. It was found that the addition of GVL squeezes the water in the solvent system into the second solvation shell layer, which causes GVL to distribute around the carbonyl, hydroxyl, and carboxyl groups of LA, and reduces the likelihood of LA side reactions, thus increasing the yield of LA. Full article
(This article belongs to the Special Issue Catalysis on Zeolites and Zeolite-Like Materials, 3rd Edition)
Show Figures

Figure 1

18 pages, 2299 KB  
Article
An Investigation of the Effect of pH on Micelle Formation by a Glutamic Acid-Based Biosurfactant
by Jacob D. Mayer, Robert M. Rauscher, Shayden R. Fritz, Yayin Fang, Eugene J. Billiot, Fereshteh H. Billiot and Kevin F. Morris
Colloids Interfaces 2024, 8(3), 38; https://doi.org/10.3390/colloids8030038 - 11 Jun 2024
Cited by 7 | Viewed by 4810
Abstract
NMR spectroscopy, molecular modeling, and conductivity experiments were used to investigate micelle formation by the amino acid-based surfactant tridecanoic L-glutamic acid. Amino acid-based biosurfactants are green alternatives to surfactants derived from petroleum. NMR titrations were used to measure the monomeric surfactant’s primary and [...] Read more.
NMR spectroscopy, molecular modeling, and conductivity experiments were used to investigate micelle formation by the amino acid-based surfactant tridecanoic L-glutamic acid. Amino acid-based biosurfactants are green alternatives to surfactants derived from petroleum. NMR titrations were used to measure the monomeric surfactant’s primary and gamma (γ) carboxylic acid pKa values. Intramolecular hydrogen bonding within the surfactant’s headgroup caused the primary carboxylic acid to be less acidic than the corresponding functional group in free L-glutamic acid. Likewise, intermolecular hydrogen bonding caused the micellar surfactant’s γ carboxylic functional group to be less acidic than the corresponding monomer value. The binding of four positive counterions to the anionic micelles was also investigated. At pH levels below 7.0 when the surfactant headgroup charge was −1, the micelle hydrodynamic radii were larger (~30 Å) and the mole fraction of micelle-bound counterions was in the 0.4–0.7 range. In the pH range of 7.0–10.5, the micelle radii decreased with increasing pH and the mole fraction of micelle bound counterions increased. These observations were attributed to changes in the surfactant headgroup charge with pH. Above pH 10.5, the counterions deprotonated and the mole fraction of micelle-bound counterions decreased further. Finally, critical micelle concentration measurements showed that the micelles formed at lower concentrations at pH 6 when the headgroup charge was predominately −1 and at higher concentrations at pH 7 where headgroups had a mixture of −1 and −2 charges in solution. Full article
Show Figures

Graphical abstract

16 pages, 5826 KB  
Article
Heavy Metal Removal from Wastewater Using Poly(Gamma-Glutamic Acid)-Based Hydrogel
by Fujie Chen, Yanbin Zhao, Hang Zhao, Xuan Zhou and Xiuying Liu
Gels 2024, 10(4), 259; https://doi.org/10.3390/gels10040259 - 11 Apr 2024
Cited by 11 | Viewed by 3578
Abstract
The removal of toxic heavy metal ions from wastewater is of great significance in the protection of the environment and human health. Poly(gamma-glutamic acid) (PGA) is a non-toxic, biodegradable, and highly water-soluble polymer possessing carboxyl and imino functional groups. Herein, water-insoluble PGA-based hydrogels [...] Read more.
The removal of toxic heavy metal ions from wastewater is of great significance in the protection of the environment and human health. Poly(gamma-glutamic acid) (PGA) is a non-toxic, biodegradable, and highly water-soluble polymer possessing carboxyl and imino functional groups. Herein, water-insoluble PGA-based hydrogels were prepared, characterized, and investigated as heavy metal adsorbents. The prepared hydrogels were recyclable and exhibited good adsorption effects on heavy metal ions including Cu2+, Cr6+, and Zn2+. The effects of adsorption parameters including temperature, solution pH, initial concentration of metal ions, and contact time on the adsorption capacity of the hydrogel for Cu2+ were investigated. The adsorption was a spontaneous and exothermic process. The process followed the pseudo-first-order kinetic model and Langmuir isotherm model, implying a physical and monolayer adsorption. The adsorption mechanisms investigation exhibited that Cu2+ adsorbed on the hydrogel via electrostatic interactions with anionic carboxylate groups of PGA in addition to the coordination interactions with the –NH groups. Importantly, the PGA hydrogel exhibited good reusability and the adsorption capability for Cu2+ remained high after five consecutive cycles. The properties of PGA hydrogel make it a potential candidate material for heavy metal ion removal in wastewater treatment. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Figure 1

14 pages, 2493 KB  
Article
Evaluating the Cytotoxicity of Functionalized MWCNT and Microbial Biofilm Formation on PHBV Composites
by Thaís Larissa do Amaral Montanheiro, Vanessa Modelski Schatkoski, Denisse Esther Mallaupoma Camarena, Thais Cardoso de Oliveira, Diego Morais da Silva, Mariana Raquel da Cruz Vegian, Luiz Henrique Catalani, Cristiane Yumi Koga-Ito and Gilmar Patrocínio Thim
C 2024, 10(2), 33; https://doi.org/10.3390/c10020033 - 31 Mar 2024
Cited by 1 | Viewed by 2790
Abstract
This study focuses on the cytotoxic evaluation of functionalized multi-walled carbon nanotubes (MWCNT) and microbial biofilm formation on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanocomposites incorporating MWCNTs functionalized with gamma-aminobutyric acid (GABA) and carboxyl groups. The materials were characterized for cytotoxicity to fibroblasts and antimicrobial [...] Read more.
This study focuses on the cytotoxic evaluation of functionalized multi-walled carbon nanotubes (MWCNT) and microbial biofilm formation on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanocomposites incorporating MWCNTs functionalized with gamma-aminobutyric acid (GABA) and carboxyl groups. The materials were characterized for cytotoxicity to fibroblasts and antimicrobial effects against Escherichia coli, Staphylococcus aureus and Candida albicans. The functionalization of MWCNTs was performed through oxidation (CNT-Ox) and GABA attachment (CNT-GB). The PHBV/CNT nanocomposites were produced via melt mixing. All MWCNT suspensions showed non-toxic behaviors after 24 h of incubation (viability higher than 70%); however, prolonged incubation and higher concentrations led to increased cytotoxicity. The antibacterial potential of PHBV/CNT nanocomposites against S. aureus showed a reduction in biofilm formation of 64% for PHBV/CNT-GB and 20% for PHBV/CNT-Ox, compared to neat PHBV. Against C. albicans, no reduction was observed. The results indicate promising applications for PHBV/CNT nanocomposites in managing bacterial infections, with GABA-functionalized CNTs showing enhanced performance. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications)
Show Figures

Graphical abstract

24 pages, 1717 KB  
Review
Extrahepatic Vitamin K-Dependent Gla-Proteins–Potential Cardiometabolic Biomarkers
by Bistra Galunska, Yoto Yotov, Miglena Nikolova and Atanas Angelov
Int. J. Mol. Sci. 2024, 25(6), 3517; https://doi.org/10.3390/ijms25063517 - 20 Mar 2024
Cited by 5 | Viewed by 4496
Abstract
One mechanism to regulate pathological vascular calcification (VC) is its active inhibition. Loss or inactivation of endogenic inhibitors is a major inductor of VC. Such inhibitors are proteins rich in gamma-glutamyl residues (Gla-proteins), whose function strongly depends on vitamin K. The current narrative [...] Read more.
One mechanism to regulate pathological vascular calcification (VC) is its active inhibition. Loss or inactivation of endogenic inhibitors is a major inductor of VC. Such inhibitors are proteins rich in gamma-glutamyl residues (Gla-proteins), whose function strongly depends on vitamin K. The current narrative review is focused on discussing the role of extrahepatic vitamin K-dependent Gla-proteins (osteocalcin, OC; matrix Gla-protein, MGP; Gla-rich protein, GRP) in cardio-vascular pathology. Gla-proteins possess several functionally active forms whose role in the pathogenesis of VC is still unclear. It is assumed that low circulating non-phosphorylated MGP is an indicator of active calcification and could be a novel biomarker of prevalent VC. High circulating completely inactive MGP is proposed as a novel risk factor for cardio-vascular events, disease progression, mortality, and vitamin K deficiency. The ratio between uncarboxylated (ucOC) and carboxylated (cOC) OC is considered as an indicator of vitamin K status indirectly reflecting arterial calcium. Despite the evidence that OC is an important energy metabolic regulator, its role on global cardio-vascular risk remains unclear. GRP acts as a molecular mediator between inflammation and calcification and may emerge as a novel biomarker playing a key role in these processes. Gla-proteins benefit clinical practice as inhibitors of VC, modifiable by dietary factors. Full article
Show Figures

Figure 1

16 pages, 2750 KB  
Article
Structure–Chiral Selectivity Relationships of Various Mandelic Acid Derivatives on Octakis 2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl-gamma-cyclodextrin Containing Gas Chromatographic Stationary
by Levente Repassy, Zoltan Juvancz, Rita Bodane-Kendrovics, Zoltan Kaleta, Csaba Hunyadi and Gergo Riszter
Int. J. Mol. Sci. 2023, 24(20), 15051; https://doi.org/10.3390/ijms242015051 - 10 Oct 2023
Cited by 5 | Viewed by 2800
Abstract
Frequently, a good chiral separation is the result of long trial and error processes. The three-point interaction mechanisms require the fair geometrical fitting and functional group compatibility of the interacting groups. Structure–chiral selectivity correlations are guidelines that can be established via trough systematic [...] Read more.
Frequently, a good chiral separation is the result of long trial and error processes. The three-point interaction mechanisms require the fair geometrical fitting and functional group compatibility of the interacting groups. Structure–chiral selectivity correlations are guidelines that can be established via trough systematic studies using model compounds. The enantiorecognition of the test compounds was studied on an octakis 2,3-Di-O-acetyl-6-O-tert-butyldimethylsilyl-gamma-cyclodextrin (TBDMSDAGCD) chiral selector. In our work, mandelic acid and its variously substituted compounds were used as model compounds to establish adaptable rules for other enantiomeric pairs. The mandelic acid and its modified compounds were altered at both their carboxyl and hydroxyl positions to test the key interaction forces of the chiral recognition processes. Ring- and alkyl-substituted mandelic acid derivatives were also used in our experiments. The chiral selectivity values of 20 test compounds were measured and extrapolated to 100 °C. The hydrogen donor abilities of test compounds improved their chiral selectivities. The inclusion phenomenon also played a role in chiral recognition processes in several cases. Enantiomer elution reversals were observed for different derivatives of hydroxyl groups, providing evidence for the multimodal character of the selector. The results of our research can serve as guidelines to achieve appropriate chiral separation for other enantiomeric pairs. Full article
(This article belongs to the Special Issue Current Uses and Applications of Cyclodextrins)
Show Figures

Figure 1

27 pages, 5546 KB  
Article
Inhibition of Adherence and Biofilm Formation of Pseudomonas aeruginosa by Immobilized ZnO Nanoparticles on Silicone Urinary Catheter Grafted by Gamma Irradiation
by Dalia A. Elzahaby, Hala A. Farrag, Rana R. Haikal, Mohamed H. Alkordi, Nourtan F. Abdeltawab and Mohammed A. Ramadan
Microorganisms 2023, 11(4), 913; https://doi.org/10.3390/microorganisms11040913 - 31 Mar 2023
Cited by 16 | Viewed by 4130
Abstract
Nosocomial infections caused by microbial biofilm formation on biomaterial surfaces such as urinary catheters are complicated by antibiotic resistance, representing a common problem in hospitalized patients. Therefore, we aimed to modify silicone catheters to resist microbial adherence and biofilm formation by the tested [...] Read more.
Nosocomial infections caused by microbial biofilm formation on biomaterial surfaces such as urinary catheters are complicated by antibiotic resistance, representing a common problem in hospitalized patients. Therefore, we aimed to modify silicone catheters to resist microbial adherence and biofilm formation by the tested microorganisms. This study used a simple direct method to graft poly-acrylic acid onto silicone rubber films using gamma irradiation to endow the silicone surface with hydrophilic carboxylic acid functional groups. This modification allowed the silicone to immobilize ZnO nanoparticles (ZnO NPs) as an anti-biofilm. The modified silicone films were characterized by FT-IR, SEM, and TGA. The anti-adherence ability of the modified silicone films was evidenced by the inhibition of biofilm formation by otherwise strong biofilm-producing Gram-positive, Gram-negative, and yeast clinical isolates. The modified ZnO NPs grafted silicone showed good cytocompatibility with the human epithelial cell line. Moreover, studying the molecular basis of the inhibitory effect of the modified silicone surface on biofilm-associated genes in a selected Pseudomonas aeruginosa isolate showed that anti-adherence activity might be due to the significant downregulation of the expression of lasR, lasI, and lecB genes by 2, 2, and 3.3-fold, respectively. In conclusion, the modified silicone catheters were low-cost, offering broad-spectrum anti-biofilm activity with possible future applications in hospital settings. Full article
(This article belongs to the Special Issue New Antimicrobial Strategies for Medical Implantation)
Show Figures

Figure 1

11 pages, 4820 KB  
Article
Evaluation of Microleakage of a New Bioactive Material for Restoration of Posterior Teeth: An In Vitro Radioactive Model
by Pedro Neves, Salomé Pires, Carlos Miguel Marto, Inês Amaro, Ana Coelho, José Sousa, Manuel Marques Ferreira, Maria Filomena Botelho, Eunice Carrilho, Ana Margarida Abrantes and Anabela Baptista Paula
Appl. Sci. 2022, 12(22), 11827; https://doi.org/10.3390/app122211827 - 21 Nov 2022
Cited by 8 | Viewed by 3728
Abstract
Hybrid bioactive composite resins combine the benefits of glass ionomer cements with composite resins. Its self-adhesiveness is achieved through functional polyacrylic acids and carboxylic groups, hybridizing the smear layer and establishing ionic interactions between calcium and dentin. These materials are defined as having [...] Read more.
Hybrid bioactive composite resins combine the benefits of glass ionomer cements with composite resins. Its self-adhesiveness is achieved through functional polyacrylic acids and carboxylic groups, hybridizing the smear layer and establishing ionic interactions between calcium and dentin. These materials are defined as having good aesthetics, moisture tolerance, durability, simplicity in technique and handling and are able to maintain a low microfiltration rate while releasing calcium, phosphate and fluorine. The aim of the present study was to evaluate microleakage in restorations using Surefill One™ bioactive resin. The null hypothesis is that this type of resin does not obtain a lower microleakage rate when compared to other materials. An in vitro study was carried out using thirty-six premolars and molars extracted for orthodontic reasons. Identical preparations were thus performed in all of them (Class V with 4 mm mesio-distal, 3 mm occluso-gingival and 3 mm in depth) and divided into different experimental groups: one positive control, one negative control and two tests with bioactive composite resin and conventional composite resin (Surefill One™ and Spectra™ ST HV, respectively). Through quantitative techniques using nuclear medicine, it was possible to evaluate microleakage through the use of a radioactive isotope, technetium. Radioactivity emitted by the specimens was detected by a gamma camera. The different groups were compared using the Kruskal–Wallis test and the Games–Howell test for multiple comparisons. The results of the experimental study point to statistically significant differences between the test groups (p = 0.002) with increased microleakage in the bioactive composite resin group. Based on the present microleakage study, it was possible to conclude that the bioactive composite resin (Surefill One™) does not reduce the microleakage rate when compared to a conventional nanohybrid composite resin (Spectra™ ST HV). However, Surefill One™ can be used in temporary restorations, primary teeth and in cases of tissue remineralization, thus avoiding more invasive procedures. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

17 pages, 2140 KB  
Article
The Effect of Supplemental Concentrate Feeding on the Morphological and Functional Development of the Pancreas in Early Weaned Yak Calves
by Yang Jiao, Shujie Liu, Yanan Zhou, Deyu Yang, Jilan Li and Zhanhong Cui
Animals 2022, 12(19), 2563; https://doi.org/10.3390/ani12192563 - 26 Sep 2022
Cited by 5 | Viewed by 2711
Abstract
This experiment was conducted to investigate the effect of supplemental concentrate feeding on the pancreatic development of yak calves. Twenty one-month-old yak calves with healthy body condition and similar body weight were selected as experimental animals and randomly divided into two groups, five [...] Read more.
This experiment was conducted to investigate the effect of supplemental concentrate feeding on the pancreatic development of yak calves. Twenty one-month-old yak calves with healthy body condition and similar body weight were selected as experimental animals and randomly divided into two groups, five replicates in each group. The control group yak calves were fed milk replacer and alfalfa hay, the experimental group yak calves were fed milk replacer, alfalfa hay and concentrate. The pre-feeding period of this experiment was thirty days, the trial period was one hundred days. At the end of feeding trail, five yak calves from each group were selected and slaughtered and the pancreas tissues of yak calves were collected and determined. The results showed that: (1) Dry matter and body weight of yak calves in the test group were significantly higher than those of the control group. (2) The apparent nutrient digestibility of crude protein, crude fat, calcium and phosphorus in the test group of yak calves was significantly higher than that of the control group, while the apparent nutrient digestibility of neutral detergent fiber and acid detergent fiber in the test group was significantly lower than that of the control group. (3) Pancreatic weight, organ index, total ratio of exocrine part area and total ratio of endocrine area of yak calves in the test group were significantly higher than those in the control group, while the ratio of exocrine area was significantly lower in the test group than that of the control group. (4) The activities of the main pancreatic digestive enzymes: pancreatic amylase, pancreatic lipase, pancreatic protease and chymotrypsin were significantly higher in the test group than those of the control group, as were the hormonal contents of glucagon, insulin and pancreatic polypeptide. (5) The main differential metabolites of the pancreas in the test group were significantly higher than those of the control group, such as D-proline, hypoxanthine, acetylcysteine, gamma-glutamylcysteine, thiazolidine-4-carboxylic acid, piperidinic acid, ellagic acid, nicotinamide, tropolone, D-serine, ribulose-5-phosphate, (+/-)5(6)-epoxyeicosatrienoic acid(EET), 2-hydroxycinnamic acid, L-phenylalanine, creatinine, tetrahydrocorticosterone, pyridoxamine, xanthine, 5-oxoproline, asparagine, DL-tryptophan, in-dole-3-acrylic acid, thymine, trehalose, docosapentaenoic acid, docosahexaenoic acid, fatty acid esters of hydroxy fatty acids(FAHFA) (18:1/20:3), fatty acid esters of hydroxy fatty acids(FAHFA) (18:2/20:4), adrenic acid and xanthosine. In conclusion, supplemental concentrate feeding promoted the good development of morphological and functional properties of the pancreas in early weaned yak calves to improve the digestion and absorption of feed nutrients, so as to enhance the growth and development quality of early weaned yak calves. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

18 pages, 1752 KB  
Article
Characterization of Microbial Communities and Naturally Occurring Radionuclides in Soilless Growth Media Amended with Different Concentrations of Biochar
by George K. Osei, Michael Abazinge, Lucy Ngatia, Ashvini Chauhan, Alejandro Bolques, Charles Jagoe and Ashish Pathak
Appl. Microbiol. 2022, 2(3), 662-679; https://doi.org/10.3390/applmicrobiol2030051 - 5 Sep 2022
Cited by 2 | Viewed by 2470
Abstract
Biochar, derived from the pyrolysis of plant materials has the potential to enhance plant growth in soilless media. Howevetar, little is known about the impact of biochar amendments to soilless growth media, microbial community composition, and fate of chemical constituents in the media. [...] Read more.
Biochar, derived from the pyrolysis of plant materials has the potential to enhance plant growth in soilless media. Howevetar, little is known about the impact of biochar amendments to soilless growth media, microbial community composition, and fate of chemical constituents in the media. In this study, different concentrations of biochar were added to soilless media and microbial composition, and chemical constituents were analyzed using metagenomics and gamma spectroscopy techniques, respectively. Across treatments, carboxyl-C, phenolic-C, and aromatic-C were the main carbon sources that influenced microbial community composition. Flavobacterium (39.7%), was the predominantly bacteria genus, followed by Acidibacter (12.2%), Terrimonas (10.1%), Cytophaga (7.5%), Ferruginibacter (6.0%), Lacunisphaera (5.9%), Cellvibrio (5.8%), Opitutus (4.8%), Mucilaginibacter (4.0%) and Bryobacter (4.0%). Negative relationships were found between Cytophaga and 226Ra (r = −0.84, p = 0.0047), 40K (r = −0.82, p = 0.0069) and 137Cs (r = −0.93, p = 0.0002). Similarly, Mucilaginibacter was negatively correlated with 226Ra (r = −0.83, p = 0.0054) and 137Cs (r = −0.87, p = 0.0021). Overall, the data suggest that high % biochar amended samples have high radioactivity concentration levels. Some microorganisms have less presence in high radioactivity concentration levels. Full article
Show Figures

Figure 1

13 pages, 5897 KB  
Article
Phytochemical Discrimination, Biological Activity and Molecular Docking of Water-Soluble Inhibitors from Saussurea costus Herb against Main Protease of SARS-CoV-2
by Hajo Idriss, Babeker Siddig, Pamela González Maldonado, H. M. Elkhair, A. I. Alakhras, Emad M. Abdallah, Pablo Hernán Sotelo Torres and Amin O. Elzupir
Molecules 2022, 27(15), 4908; https://doi.org/10.3390/molecules27154908 - 1 Aug 2022
Cited by 14 | Viewed by 3895
Abstract
Siddha medicine is one of the oldest medical systems in the world and is believed to have originated more than 10,000 years ago and is prevalent across ancient Tamil land. It is undeniable that inhibitor preferences rise with increasing solubility in water due [...] Read more.
Siddha medicine is one of the oldest medical systems in the world and is believed to have originated more than 10,000 years ago and is prevalent across ancient Tamil land. It is undeniable that inhibitor preferences rise with increasing solubility in water due to the considerations pertaining to the bioavailability and the ease of which unabsorbed residues can be disposed of. In this study, we showed the phytochemical discrimination of Saussurea costus extracted with water at room temperature as a green extraction procedure. A total of 48 compounds were identified using gas chromatography-mass spectrometry (GC-MS). The fatty acids had a high phytochemical abundance at 73.8%, followed by tannins at 8.2%, carbohydrates at 6.9%, terpenoids at 4.3%, carboxylic acids at 2.5%, hydrocarbons at 2.4%, phenolic compounds at 0.2%, and sterols at 1.5%. Of these compounds, 22 were docked on the active side and on the catalytic dyad of His41 and Cys145 of the main protease of SARS-CoV-2 (Mpro). Eight active inhibitors were carbohydrates, five were fatty acids, three were terpenoids, two were carboxylic acids, one was a tannin, one was a phenolic compound, and one was a sterol. The best inhibitors were 4,8,13-Cyclotetradecatriene-1,3-diol, 1,5,9-trimethyl-12-(1-methylethyl), Andrographolide, and delta.4-Androstene-3.beta.,17.beta.-diol, with a binding affinity that ranged from −6.1 kcal/mol to −6.5 kcal/mol. The inhibitory effect of Saussurea costus of SARS-CoV-2 entry into the cell was studied using a pseudovirus with Spike proteins from the D614G variant and the VOC variants Gamma and Delta. Based on the viral cycle of SARS-CoV-2, our results suggest that the Saussurea costus aqueous extract has no virucidal effect and inhibits the virus in the events after cell entry. Furthermore, the biological activity of the aqueous extract was investigated against HSV-1 virus and two bacterial strains, namely Staphylococcus aureus ATCC BAA 1026 and Escherichia coli ATCC 9637. According to this study, an enormous number of water-soluble inhibitors were identified from Saussurea costus against the Mpro, and this is unprecedented as far as we know. Full article
(This article belongs to the Special Issue A Feasible Approach for Natural Products to Treatment of Diseases)
Show Figures

Figure 1

15 pages, 5730 KB  
Article
Effects of Annealing on the Properties of Gamma-Irradiated Sago Starch
by Jau-Shya Lee, Jahurul Haque Akanda, Soon Loong Fong, Chee Kiong Siew and Ai Ling Ho
Molecules 2022, 27(15), 4838; https://doi.org/10.3390/molecules27154838 - 28 Jul 2022
Cited by 6 | Viewed by 2521
Abstract
The increase in health and safety concerns regarding chemical modification in recent years has caused a growing research interest in the modification of starch by physical techniques. There has been a growing trend toward using a combination of treatments in starch modification in [...] Read more.
The increase in health and safety concerns regarding chemical modification in recent years has caused a growing research interest in the modification of starch by physical techniques. There has been a growing trend toward using a combination of treatments in starch modification in producing desirable functional properties to widen the application of a specific starch. In this study, a novel combination of gamma irradiation and annealing (ANN) was used to modify sago starch (Metroxylon sagu). The starch was subjected to gamma irradiation (5, 10, 25, 50 kGy) prior to ANN at 5 °C (To-5) and 10 °C (To-10) below the gelatinization temperature. Determination of amylose content, pH, carboxyl content, FTIR (Fourier Transform Infrared) intensity ratio (R1047/1022), swelling power and solubility, thermal behavior, pasting properties, and morphology were carried out. Annealing irradiated starch at To-5 promoted more crystalline perfection as compared to To-10, particularly when combined with 25 and 50 kGy, whereby a synergistic effect was observed. Dual-modified sago starch exhibited lower swelling power, improved gel firmness, and thermal stability with an intact granular structure. Results suggested the potential of gamma irradiation and annealing to induce some novel characteristics in sago starch for extended applications. Full article
(This article belongs to the Special Issue Production and Properties of Starch—Current Research)
Show Figures

Figure 1

19 pages, 2170 KB  
Review
Vitamin K-Dependent Protein Activation: Normal Gamma-Glutamyl Carboxylation and Disruption in Disease
by Kathleen L. Berkner and Kurt W. Runge
Int. J. Mol. Sci. 2022, 23(10), 5759; https://doi.org/10.3390/ijms23105759 - 20 May 2022
Cited by 33 | Viewed by 13608
Abstract
Vitamin K-dependent (VKD) proteins undergo an unusual post-translational modification, which is the conversion of specific Glu residues to carboxylated Glu (Gla). Gla generation is required for the activation of VKD proteins, and occurs in the endoplasmic reticulum during their secretion to either the [...] Read more.
Vitamin K-dependent (VKD) proteins undergo an unusual post-translational modification, which is the conversion of specific Glu residues to carboxylated Glu (Gla). Gla generation is required for the activation of VKD proteins, and occurs in the endoplasmic reticulum during their secretion to either the cell surface or from the cell. The gamma-glutamyl carboxylase produces Gla using reduced vitamin K, which becomes oxygenated to vitamin K epoxide. Reduced vitamin K is then regenerated by a vitamin K oxidoreductase (VKORC1), and this interconversion of oxygenated and reduced vitamin K is referred to as the vitamin K cycle. Many of the VKD proteins support hemostasis, which is suppressed during therapy with warfarin that inhibits VKORC1 activity. VKD proteins also impact a broad range of physiologies beyond hemostasis, which includes regulation of calcification, apoptosis, complement, growth control, signal transduction and angiogenesis. The review covers the roles of VKD proteins, how they become activated, and how disruption of carboxylation can lead to disease. VKD proteins contain clusters of Gla residues that form a calcium-binding module important for activity, and carboxylase processivity allows the generation of multiple Glas. The review discusses how impaired carboxylase processivity results in the pseudoxanthoma elasticum-like disease. Full article
Show Figures

Figure 1

Back to TopTop