Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = fungal microbiota

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 1970 KiB  
Review
Periodontal Microbial Profiles Across Periodontal Conditions in Pediatric Subjects: A Narrative Review
by Federica Di Spirito, Maria Pia Di Palo, Giuseppina De Benedetto, Federica Piedepalumbo, Marzio Galdi, Davide Cannatà, Noemi Cafà and Maria Contaldo
Microorganisms 2025, 13(8), 1813; https://doi.org/10.3390/microorganisms13081813 - 3 Aug 2025
Viewed by 152
Abstract
Periodontal diseases in pediatric subjects represent a challenging and relatively underexplored area compared to the extensive data available about periodontal diseases in adults. The present narrative review aims to explore the periodontal status and the related subgingival and/or salivary microbial profiles in pediatric [...] Read more.
Periodontal diseases in pediatric subjects represent a challenging and relatively underexplored area compared to the extensive data available about periodontal diseases in adults. The present narrative review aims to explore the periodontal status and the related subgingival and/or salivary microbial profiles in pediatric subjects (≤18 years), focusing also on the state of health or systemic diseases. In healthy periodontium, early colonizers, such as Streptococcus and Actinomyces spp., dominate the subgingival microbiota, supporting an eubiosis state. Low levels of Candida albicans and latent Herpesviridae may be detected. In gingivitis, the microbial profile shifts towards more pathogenic species, including Prevotella intermedia and Fusobacterium nucleatum. In necrotizing gingivitis, typically affecting systemically compromised children, the microbial profile is characterized by spirochetes, Fusobacterium, and Prevotella intermedia. Viral coinfections—especially with HSV, CMV, and EBV—are more frequently detected. In periodontitis, the microbiota was dominated by red complex pathogens along with Aggregatibacter actinomycetemcomitans in the aggressive forms, especially in systemically compromised children, as Herpesviridae reactivation and co-infections. Fungal involvement is less well characterized; Candida albicans may be present, particularly in cases of severe immune suppression. Nevertheless, the lack of pediatric longitudinal studies investigating periodontal disease progression after periodontal treatment and related changes in microbiological composition limited the understanding and exploration of the oral microbiota over time. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

13 pages, 982 KiB  
Article
Salivary pH Modulation and Antimicrobial Properties of Oregano-Oil Jelly in Relation to Menstrual and Menopausal Status
by Georgiana Ioana Potra Cicalău, Gabriela Ciavoi, Ioana Scrobota, Ionut Daniel Venter, Madalin Florin Ganea, Marc Cristian Ghitea, Evelin Claudia Ghitea, Maria Flavia Gîtea, Timea Claudia Ghitea, Csaba Nagy, Diana Constanta Pelea, Luciana Dobjanschi, Octavia Gligor, Corina Moisa and Mariana Ganea
Nutrients 2025, 17(15), 2480; https://doi.org/10.3390/nu17152480 - 29 Jul 2025
Viewed by 235
Abstract
Background: Salivary pH plays a critical role in oral health by influencing enamel demineralization, buffering capacity, and the ecology of oral microbiota. Essential oils such as Origanum vulgare (oregano) possess well-documented antimicrobial properties that may reduce acidogenic bacterial activity. However, the effects of [...] Read more.
Background: Salivary pH plays a critical role in oral health by influencing enamel demineralization, buffering capacity, and the ecology of oral microbiota. Essential oils such as Origanum vulgare (oregano) possess well-documented antimicrobial properties that may reduce acidogenic bacterial activity. However, the effects of edible delivery systems like jellies on salivary pH modulation and their potential interactions with hormonal states remain poorly understood. Methods: This study evaluated the in vitro antimicrobial activity of an oregano-oil-based jelly formulation against standard bacterial (Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli) and fungal (Candida albicans) strains using the Kirby–Bauer disc diffusion method. Additionally, a human trial (n = 91) measured salivary pH before and after administration of the oregano-oil jelly. Participants were characterized by age, smoking status, menopausal status, and presence of menstruation. Multiple linear regression was used to identify predictors of final salivary pH. Results: The oregano-oil jelly demonstrated strong in vitro antimicrobial activity, with inhibition zones up to 8 mm for E. coli and C. albicans. In vivo, mean unstimulated salivary pH increased from 6.94 to 7.07 overall, indicating a mild alkalinizing effect. However, menstruating participants showed a significant decrease in final pH (from 7.03 to 6.78). Multiple regression identified menstruation as a significant negative predictor (β = −0.377, p < 0.001) and initial pH as a positive predictor (β = +0.275, p = 0.002). Menopausal status was not a significant predictor, likely due to the small sample size. Conclusions: Oregano-oil jellies may represent a promising natural approach to support oral health by increasing salivary pH and providing strong antimicrobial activity. However, physiological states such as menstruation can significantly modulate this response, underscoring the importance of personalized or phase-aware oral care strategies. Further studies with larger, diverse cohorts and controlled hormonal assessments are needed to validate these findings and optimize product formulations. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

13 pages, 513 KiB  
Review
Alternatives Integrating Omics Approaches for the Advancement of Human Skin Models: A Focus on Metagenomics, Metatranscriptomics, and Metaproteomics
by Estibaliz Fernández-Carro, Sophia Letsiou, Stella Tsironi, Dimitrios Chaniotis, Jesús Ciriza and Apostolos Beloukas
Microorganisms 2025, 13(8), 1771; https://doi.org/10.3390/microorganisms13081771 - 29 Jul 2025
Viewed by 369
Abstract
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, [...] Read more.
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, and atopic dermatitis. This review, for the first time, provides recent advancements in all four layers of omic technologies—metagenomics, metatranscriptomics, metaproteomics, and metabolomics—offering comprehensive insights into microbial diversity, in the context of functional skin modeling. Thus, this review explores the application of these omic tools to in vitro skin models, providing an integrated framework for understanding the molecular mechanisms underlying skin–microbiota interactions in both healthy and pathological contexts. We highlight the importance of developing advanced in vitro skin models, including the integration of immune components and endothelial cells, to accurately replicate the cutaneous microenvironment. Moreover, we discuss the potential of these models to identify novel therapeutic targets, enabling the design of personalized treatments aimed at restoring microbial balance, reinforcing the skin barrier, and modulating inflammation. As the field progresses, the incorporation of multi-omic approaches into skin-microbiome research will be pivotal in unraveling the complex interactions between host and microbiota, ultimately advancing therapeutic strategies for skin-related diseases. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

26 pages, 1300 KiB  
Review
The Human Mycobiome: Composition, Immune Interactions, and Impact on Disease
by Laura Carrillo-Serradell, Jade Liu-Tindall, Violeta Planells-Romeo, Lucía Aragón-Serrano, Marcos Isamat, Toni Gabaldón, Francisco Lozano and María Velasco-de Andrés
Int. J. Mol. Sci. 2025, 26(15), 7281; https://doi.org/10.3390/ijms26157281 - 28 Jul 2025
Viewed by 724
Abstract
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat [...] Read more.
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat elusive due to its sparsity, variability, susceptibility to environmental factors (e.g., early life colonization, diet, or pharmacological treatments), and the specific in vitro culture challenges. Functionally, the mycobiome is known to play a role in modulating innate and adaptive immune responses by interacting with microorganisms and immune cells. The latter elicits anti-fungal responses via the recognition of specific fungal cell-wall components (e.g., β-1,3-glucan, mannan, and chitin) by immune system receptors. These receptors then regulate the activation and differentiation of many innate and adaptive immune cells including mucocutaneous cell barriers, macrophages, neutrophils, dendritic cells, natural killer cells, innate-like lymphoid cells, and T and B lymphocytes. Mycobiome disruptions have been correlated with various diseases affecting mostly the brain, lungs, liver and pancreas. This work reviews our current knowledge on the mycobiome, focusing on its composition, research challenges, conditioning factors, interactions with the bacteriome and the immune system, and the known mycobiome alterations associated with disease. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 1009 KiB  
Review
Mycotoxin-Caused Intestinal Toxicity: Underlying Molecular Mechanisms and Further Directions
by Tian Li, Weidong Qiao, Jiehong Zhou, Zhihui Hao, Gea Oliveri Conti, Tony Velkov, Shusheng Tang, Jianzhong Shen and Chongshan Dai
Toxics 2025, 13(8), 625; https://doi.org/10.3390/toxics13080625 - 26 Jul 2025
Viewed by 457
Abstract
Mycotoxins represent a group of highly toxic secondary metabolites produced by diverse fungal pathogens. Mycotoxin contaminations frequently occur in foods and feed and pose significant risks to human and animal health due to their carcinogenic, mutagenic, and immunosuppressive properties. Notably, deoxynivalenol, zearalenone, fumonisins [...] Read more.
Mycotoxins represent a group of highly toxic secondary metabolites produced by diverse fungal pathogens. Mycotoxin contaminations frequently occur in foods and feed and pose significant risks to human and animal health due to their carcinogenic, mutagenic, and immunosuppressive properties. Notably, deoxynivalenol, zearalenone, fumonisins (mainly including fumonisins B1, B2, and FB3), aflatoxin B1 (AFB1), and T-2/HT-2 toxins are the major mycotoxin contaminants in foods and feed. Undoubtedly, exposure to these mycotoxins can disrupt gut health, particularly damaging the intestinal epithelium in humans and animals. In this review, we summarized the detrimental effects caused by these mycotoxins on the intestinal health of humans and animals. The fundamental molecular mechanisms, which cover the induction of inflammatory reaction and immune dysfunction, the breakdown of the intestinal barrier, the triggering of oxidative stress, and the intestinal microbiota imbalance, were explored. These signaling pathways, such as MAPK, Akt/mTOR, TNF, TGF-β, Wnt/β-catenin, PKA, NF-kB, NLRP3, AHR, TLR2, TLR4, IRE1/XBP1, Nrf2, and MLCK pathways, are implicated. The abnormal expression of micro-RNA also plays a critical role. Finally, we anticipate that this review can offer new perspectives and theoretical foundations for controlling intestinal health issues caused by mycotoxin contamination and promote the development of prevention and control products. Full article
(This article belongs to the Topic Recent Advances in Veterinary Pharmacology and Toxicology)
Show Figures

Figure 1

11 pages, 971 KiB  
Case Report
Gastric Candidiasis in Five Horses: A Case Series
by Patricia Neira-Egea, Clara Alamar Malvoisin, María de la Cuesta-Torrado, Claudia Bautista-Erler, Valentina Vitale, Sandra Jolly and Carla Cesarini
Microorganisms 2025, 13(8), 1746; https://doi.org/10.3390/microorganisms13081746 - 25 Jul 2025
Viewed by 303
Abstract
Candida spp. are ubiquitous yeasts that are part of most mammals’ microbiota and can become opportunistic pathogens under predisposing conditions. Interestingly, recent studies in human medicine report an increased abundance of Candida spp. in association with inflammatory bowel disease (IBD). Gastrointestinal candidiasis has [...] Read more.
Candida spp. are ubiquitous yeasts that are part of most mammals’ microbiota and can become opportunistic pathogens under predisposing conditions. Interestingly, recent studies in human medicine report an increased abundance of Candida spp. in association with inflammatory bowel disease (IBD). Gastrointestinal candidiasis has been primarily reported in neonatal foals, but not in adult horses. The aim of this study is to describe the morphological, histopathological, and microbiological features of gastric lesions associated with Candida infiltration in five horses referred to two tertiary hospitals for different reasons. Clinical features, findings from gastroscopy, gastric, and duodenal biopsies, as well as fungal and bacterial cultures obtained from gastric lesions will be reported. Macroscopically, gastric lesions showed a characteristic yellow/white pseudo-membranous appearance, similar to lesions reported in foals. The presence of Candida spp. was confirmed by positive culture and/or histopathological evidence of fungal infiltration on the gastric epithelium. Three out of five horses showed histopathological changes in duodenal biopsies, potentially suggesting IBD. These results demonstrate that gastric candidiasis can occur in adult horses. Further research is needed to elucidate the pathogenesis, predisposing factors, and clinical relevance of Candida spp. infections in the equine stomach, as well as their potential impact on gastrointestinal health and overall performance. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

29 pages, 2022 KiB  
Article
The Natural Fermentation of Greek Tsounati Olives: Microbiome Analysis
by Marina Georgalaki, Ilario Ferrocino, Davide Buzzanca, Rania Anastasiou, Georgia Zoumpopoulou, Despoina Giabasakou, Danai Ziova, Alexandra Kokkali, George Paraskevakos and Effie Tsakalidou
Foods 2025, 14(15), 2568; https://doi.org/10.3390/foods14152568 - 22 Jul 2025
Viewed by 415
Abstract
The comprehensive analysis of microbial communities reveals the unique microbial identity of different olive varieties, paving the way for new strategies in their development and commercial exploitation. In this context, the present study aimed to explore the microbial diversity and functional characteristics of [...] Read more.
The comprehensive analysis of microbial communities reveals the unique microbial identity of different olive varieties, paving the way for new strategies in their development and commercial exploitation. In this context, the present study aimed to explore the microbial diversity and functional characteristics of Tsounati variety olives from the Monemvasia region of Peloponnese, Greece, that were naturally fermented for three months. The bacterial and fungal microbiota of both olives and brines were fingerprinted throughout the fermentation through classical microbiological analysis combined with molecular techniques. Among the 148 isolated bacteria, 85 were lactic acid bacteria (LAB), and 63 belonged to the Enterobacteriaceae family, while the 178 fungal isolates comprised 136 yeasts and 42 non-yeast or yeast-like fungi. Metataxonomic analysis confirmed the dominance of the bacterial genera Lactiplantibacillus, Leuconostoc, along with the Enterobacteriaceae family, and it revealed the presence of Coleofasciculaceae cyanobacteria mostly in olives. The dominant fungal genera were yeasts, namely Saccharomyces, Nakazawaea, and Cyberlindnera. Using the Folin–Ciocalteu assay, the average total polyphenol content of Tsounati fermented olive samples was 761.80 ± 128.87 mg gallic acid equivalents kg−1 after 90 days of fermentation. The concentrations of the triterpenic, maslinic, and oleanolic acids, as determined by HPLC, remained stable throughout fermentation, with average values of 4764 and 1807 mg kg−1, respectively. Finally, sensory analysis revealed the rich aromatic character of Tsounati variety, highlighting its potential to be used for Greek-style table olive production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

18 pages, 2134 KiB  
Article
Determination of Geosmin and 2-Methylisoborneol and Associated Microbial Composition in Rainbow Trout Aquaculture Systems for Human Consumption
by Juan José Córdoba-Granados, Almudena V. Merchán, Carlos Moraga, Paula Tejero, Alberto Martín and María José Benito
Foods 2025, 14(14), 2517; https://doi.org/10.3390/foods14142517 - 18 Jul 2025
Viewed by 338
Abstract
This study investigated the seasonal and spatial dynamics of off-flavour compounds—geosmin and 2-methylisoborneol (2-MIB)—in an intensive rainbow trout (Oncorhynchus mykiss) aquaculture system for human consumption in western Spain. Weekly water and fish flesh samples were collected over a 12-month period from [...] Read more.
This study investigated the seasonal and spatial dynamics of off-flavour compounds—geosmin and 2-methylisoborneol (2-MIB)—in an intensive rainbow trout (Oncorhynchus mykiss) aquaculture system for human consumption in western Spain. Weekly water and fish flesh samples were collected over a 12-month period from three farms supplied by the River Tormes. Physicochemical parameters, determination of geosmin and 2-MIB by SPME-GC-MS, microbial counts, and microbial community composition were assessed alongside volatile compound concentrations. Geosmin and 2-MIB showed marked seasonal variation, with peak levels in water and fish flesh during spring and summer, correlating positively with temperature. Geosmin accumulation in fish was highest in the downstream farm, suggesting cumulative exposure effects. In contrast, 2-MIB was detected only in water and at lower concentrations. Microbial analyses revealed high bacterial and fungal diversity, including cyanobacterial taxa such as Phormidium setchellianum and Pseudoanabaena minima, known producers of geosmin and 2-MIB. These findings highlight the importance of water microbiota and environmental conditions in off-flavour development. Managing cyanobacterial populations and monitoring spatial-temporal variability are essential to mitigate the development of earthy or musty flavours and economic losses in aquaculture systems. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 2550 KiB  
Article
The Association Between Supragingival Plaque Microbial Profiles and the Clinical Severity of Oral Lichen Planus Subtypes: A Cross-Sectional Case–Control Study
by Soo-Min Ok, Hye-Min Ju, Sung-Hee Jeong, Yong-Woo Ahn, Ji-Young Joo, Jung Hwa Park, Si Yeong Kim, Jin Chung and Hee Sam Na
J. Clin. Med. 2025, 14(14), 5078; https://doi.org/10.3390/jcm14145078 - 17 Jul 2025
Viewed by 266
Abstract
Background/Objective: Oral lichen planus (OLP) is a chronic inflammatory disorder of the oral mucosa with unclear etiology. Increasing evidence implicates oral microbial dysbiosis in its pathogenesis, but little is known about supragingival plaque communities in relation to clinical subtypes. This cross-sectional case–control [...] Read more.
Background/Objective: Oral lichen planus (OLP) is a chronic inflammatory disorder of the oral mucosa with unclear etiology. Increasing evidence implicates oral microbial dysbiosis in its pathogenesis, but little is known about supragingival plaque communities in relation to clinical subtypes. This cross-sectional case–control study aimed to characterize the supragingival plaque microbiota and microbial interaction networks in erosive OLP (E-OLP), non-erosive OLP (NE-OLP), and healthy controls (HCs), to elucidate microbial patterns associated with disease severity. Methods: Supragingival plaque samples were collected from 90 participants (30 per group) and analyzed using 16S rRNA gene sequencing. Alpha and beta diversity metrics, differential abundance, and co-occurrence network analyses were performed. Results: E-OLP exhibited pronounced dysbiosis, including the enrichment of pro-inflammatory taxa (e.g., Prevotella, Parvimonas) and depletion of health-associated commensals (e.g., Rothia, Capnocytophaga). Network analysis revealed the stepwise disintegration of microbial community structure from HC to NE-OLP to E-OLP, with reduced connectivity and increased dominance of pathogenic clusters in E-OLP. These microbial alterations aligned with clinical findings, as E-OLP patients showed significantly higher Reticulation/keratosis, Erythema, and Ulceration (REU) scores for erythema and ulceration compared to NE-OLP. Conclusions: Supragingival plaque dysbiosis and ecological disruption are strongly associated with OLP severity and subtype. This study highlights the utility of plaque-based microbial profiling in capturing lesion-proximal dysbiotic signals, which may complement mucosal and salivary analyses in future diagnostic frameworks. Multi-omics approaches incorporating fungal, viral, and metabolic profiling are warranted to fully elucidate host–microbe interactions in OLP. Full article
Show Figures

Figure 1

39 pages, 1423 KiB  
Review
Sourdough Microbiota for Improving Bread Preservation and Safety: Main Directions and New Strategies
by Yelena Oleinikova, Alma Amangeldi, Aizada Zhaksylyk, Margarita Saubenova and Amankeldy Sadanov
Foods 2025, 14(14), 2443; https://doi.org/10.3390/foods14142443 - 11 Jul 2025
Viewed by 614
Abstract
Bread is consumed daily throughout the world as an important source of nutrients. However, bakery products are highly susceptible to spoilage, especially fungal, which is a source of bread losses and a threat to food security and consumer health. The use of sourdough [...] Read more.
Bread is consumed daily throughout the world as an important source of nutrients. However, bakery products are highly susceptible to spoilage, especially fungal, which is a source of bread losses and a threat to food security and consumer health. The use of sourdough is the best alternative to chemical preservatives, while providing a number of advantages to baked bread. This review highlights the main areas in the field of bread protection and covers the principal representatives of sourdough microbiota and their contribution to protecting bread from spoilage. The review is mainly based on publications in the field of research over the last five years, identifying new directions and strategies for bread protection related to the use of sourdoughs. A list of the main compounds produced by lactic acid bacteria of the sourdough, which contribute to the protection of bread from fungal spoilage, is presented. The contribution of other microorganisms to the antifungal effect is also considered. Finally, some prospects for the development of research in the field of sourdoughs are determined. Full article
Show Figures

Figure 1

20 pages, 5984 KiB  
Article
Potassium Fulvate Alleviates Salinity and Boosts Oat Productivity by Modifying Soil Properties and Rhizosphere Microbial Communities in the Saline–Alkali Soils of the Qaidam Basin
by Jie Wang, Xin Jin, Xinyue Liu, Yunjie Fu, Kui Bao, Zhixiu Quan, Chengti Xu, Wei Wang, Guangxin Lu and Haijuan Zhang
Agronomy 2025, 15(7), 1673; https://doi.org/10.3390/agronomy15071673 - 10 Jul 2025
Viewed by 409
Abstract
Soil salinization severely limits global agricultural sustainability, particularly across the saline–alkaline landscapes of the Qinghai–Tibet Plateau. We examined how potassium fulvate (PF) modulates oat (Avena sativa L.) performance, soil chemistry, and rhizospheric microbiota in the saline–alkaline soils of the Qaidam Basin. PF [...] Read more.
Soil salinization severely limits global agricultural sustainability, particularly across the saline–alkaline landscapes of the Qinghai–Tibet Plateau. We examined how potassium fulvate (PF) modulates oat (Avena sativa L.) performance, soil chemistry, and rhizospheric microbiota in the saline–alkaline soils of the Qaidam Basin. PF markedly boosted shoot and root biomass, with the greatest response observed at 150 kg hm−2. At the same time, it enhanced soil fertility by increasing organic matter, nitrate-N, ammonium-N, and available potassium, and improved ionic balance by lowering Na+ concentrations and the sodium adsorption ratio (SAR), while increasing Ca2+ levels and soil moisture content. Under the high-dose treatment (F2), endogenous fungal contributions declined sharply, exogenous replacements increased, and fungal α-diversity fell; multivariate ordinations confirmed that PF reshaped both bacterial and fungal communities, with fungi exhibiting the stronger response. We integrated three machine learning algorithms—least absolute shrinkage and selection operator (LASSO), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost)—to minimize the bias inherent in any single method. We identified microbial β-diversity, organic matter, and Na+ and Ca2+ concentrations as the most robust predictors of the Soil Salinization and Alkalization Index (SSAI). Structural equation modeling further showed that PF mitigates salinity chiefly by improving soil physicochemical properties (path coefficient = −0.77; p < 0.001), with microbial assemblages acting as key intermediaries. These findings provide compelling theoretical and empirical support for deploying PF to rehabilitate saline–alkaline soils in alpine environments and offer practical guidance for sustainable land management in the Qaidam Basin. Full article
Show Figures

Figure 1

15 pages, 1865 KiB  
Systematic Review
Complexities of Candida Colonization and Oral Microbiome in Oral Lichen Planus: A Systematic Review and Meta-Analysis
by Israyani, Christine Anastasia Rovani, Erni Marlina and Chung-Ming Liu
Dent. J. 2025, 13(7), 310; https://doi.org/10.3390/dj13070310 - 10 Jul 2025
Viewed by 348
Abstract
Background/objectives: Oral lichen planus (OLP) is a chronic autoimmune disorder affecting various age groups and is associated with multiple factors. Conventional therapies often encounter complications from opportunistic infections, particularly oral candidiasis. This study examines the relationships between Candida colonization and oral microbiome composition [...] Read more.
Background/objectives: Oral lichen planus (OLP) is a chronic autoimmune disorder affecting various age groups and is associated with multiple factors. Conventional therapies often encounter complications from opportunistic infections, particularly oral candidiasis. This study examines the relationships between Candida colonization and oral microbiome composition in OLP patients. Through meta-analysis, we clarify these interactions and their implications for OLP progression. Methods: The PICOS is a systematic research strategy, following PRISMA 2020 and MeSH descriptors: oral lichen planus, oral microbiome, oral fungal, and non-Candida oral fungal. Results: A search of CINAHL, EMBASE, PubMed, Science Direct, and Web of Science identified 313 studies. Twelve studies were suitable for a systematic review, with four appropriate for meta-analysis. Findings showed a significant association between OLP and oral microbiota, with an OR of 4.155 (95% CI: 1.278–13.511, p = 0.024). Although analyses of C. albicans and non-albicans species lacked significance, particular non-albicans species were noted. The subgroup analysis of oral microbiota approached significance, indicated by an OR of 11.739 (95% CI: 0.654–210.713, p = 0.059). Conclusions: This study highlights the roles of Candida species and the oral microbiota in OLP, revealing a complex interaction between Candida colonization and the oral microbiome. Full article
Show Figures

Figure 1

21 pages, 6314 KiB  
Article
Metagenomic and Metabolomic Perspectives on the Drought Tolerance of Broomcorn Millet (Panicum miliaceum L.)
by Yuhan Liu, Jiangling Ren, Binhong Yu, Sichen Liu and Xiaoning Cao
Microorganisms 2025, 13(7), 1593; https://doi.org/10.3390/microorganisms13071593 - 6 Jul 2025
Viewed by 452
Abstract
Drought stress is an important abiotic stress factor restricting crop production. Broomcorn millet (Panicum miliaceum L.) has become an ideal material for analyzing the stress adaptation mechanisms of crops due to its strong stress resistance. However, the functional characteristics of its rhizosphere [...] Read more.
Drought stress is an important abiotic stress factor restricting crop production. Broomcorn millet (Panicum miliaceum L.) has become an ideal material for analyzing the stress adaptation mechanisms of crops due to its strong stress resistance. However, the functional characteristics of its rhizosphere microorganisms in response to drought remain unclear. In this study, metagenomics and metabolomics techniques were employed to systematically analyze the compositional characteristics of the microbial community, functional properties, and changes in metabolites in the rhizosphere soil of broomcorn millet under drought stress. On this basis, an analysis was conducted in combination with the differences in functional pathways. The results showed that the drought treatment during the flowering stage significantly altered the species composition of the rhizosphere microorganisms of broomcorn millet. Among them, the relative abundances of beneficial microorganisms such as Nitrosospira, Coniochaeta, Diversispora, Gigaspora, Glomus, and Rhizophagus increased significantly. Drought stress significantly affects the metabolic pathways of rhizosphere microorganisms. The relative abundances of genes associated with prokaryotes, glycolysis/gluconeogenesis, and other metabolic process (e.g., ribosome biosynthesis, amino sugar and nucleotide sugar metabolism, and fructose and mannose metabolism) increased significantly. Additionally, the expression levels of functional genes involved in the phosphorus cycle were markedly upregulated. Drought stress also significantly alters the content of specific rhizosphere soil metabolites (e.g., trehalose, proline). Under drought conditions, broomcorn millet may stabilize the rhizosphere microbial community by inducing its restructuring and recruiting beneficial fungal groups. These community-level changes can enhance element cycling efficiency, optimize symbiotic interactions between broomcorn millet and rhizosphere microorganisms, and ultimately improve the crop’s drought adaptability. Furthermore, the soil metabolome (e.g., trehalose and proline) functions as a pivotal interfacial mediator, orchestrating the interaction network between broomcorn millet and rhizosphere microorganisms, thereby enhancing plant stress tolerance. This study sheds new light on the functional traits of rhizosphere microbiota under drought stress and their mechanistic interactions with host plants. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

20 pages, 1381 KiB  
Article
Microbial and Biochemical Analyses of High-Quality, Long-Ripened, Blue-Veined Cabrales Cheese
by Javier Rodríguez, Paula Rosa Suárez, Souvik Das, Lucía Vázquez, Sonam Lama, Ana Belén Flórez, Jyoti Prakash Tamang and Baltasar Mayo
Foods 2025, 14(13), 2366; https://doi.org/10.3390/foods14132366 - 3 Jul 2025
Viewed by 285
Abstract
Sixteen long-ripened, high-quality Cabrales cheeses from independent producers underwent a comprehensive biochemical and microbiological characterisation. Significant variations in total microbial counts and specific microbial groups were observed among the cheeses. A metataxonomic analysis identified 249 prokaryotic amplicon sequence variants (ASVs) and 99 eukaryotic [...] Read more.
Sixteen long-ripened, high-quality Cabrales cheeses from independent producers underwent a comprehensive biochemical and microbiological characterisation. Significant variations in total microbial counts and specific microbial groups were observed among the cheeses. A metataxonomic analysis identified 249 prokaryotic amplicon sequence variants (ASVs) and 99 eukaryotic ASVs, respectively, which were classified into 52 prokaryotic and 43 eukaryotic species. The predominant species included bacteria of the genera Tetragenococcus, Lactococcus (of which Lactococcus lactis was used as a starter), and Staphylococcus, followed by Brevibacterium and Corynebacterium species. The starter mould Penicillium roqueforti was highly abundant in all cheeses; Debaryomyces hansenii, Geotrichum candidum, and Kluyveromyces spp. constituted the subdominant fungal populations. Glutamic acid (≈20 mg g−1) was the most abundant free amino acid in all samples, followed by lysine, leucine, and valine (≈10–13 mg g−1). Moderate-to-high amounts of the biogenic amines tyramine and ornithine were detected. A large variation between cheeses of the main organic acids (lactic, acetic, or butyric) was detected. Differences between samples were also observed for the majority volatile compounds, which included organic acids, alcohols, esters, and ketones. Positive and negative correlations between bacterial and fungal species were detected, as well as between microbial populations and key biochemical markers. Among the latter, Tetragenococcus halophilus correlated positively with ethyl caprylate and hexanoic acid, and Loigolactobacillus rennini correlated positively with γ-aminobutyric acid. Conversely, Staphylococcus equorum showed a strong negative correlation with ethyl caprylate and capric acid. These microbial and biochemical insights enabled us to propose a microbiota-based starter culture comprising prokaryotic and eukaryotic components to enhance Cabrales cheese quality. Full article
(This article belongs to the Special Issue Microbiota and Cheese Quality)
Show Figures

Graphical abstract

20 pages, 6718 KiB  
Article
Genetic Diversification of Tomato and Agricultural Soil Management Shaped the Rhizospheric Microbiome of Tomato (Solanum lycopersicum)
by Máximo González, Juan Pablo Araya-Angel, Ashlie Muñoz, Adalid Alfaro-Flores, Massimiliano Cardinale and Alexandra Stoll
Microorganisms 2025, 13(7), 1550; https://doi.org/10.3390/microorganisms13071550 - 1 Jul 2025
Viewed by 454
Abstract
The domestication process not only reduced the allelic diversity of tomato genotypes but also affected the genetic traits associated to microbial recruitment, their composition, and their diversity in different compartments of the plant host. Additionally, this process included the transition from natural to [...] Read more.
The domestication process not only reduced the allelic diversity of tomato genotypes but also affected the genetic traits associated to microbial recruitment, their composition, and their diversity in different compartments of the plant host. Additionally, this process included the transition from natural to agricultural soils, which differ in nutrient availability, physicochemical properties, and agricultural practices. Therefore, modern cultivars may fail to recruit microbial taxa beneficial to their wild relatives, potentially losing important ecological functions. In this study, we analyzed the phylogenetic relationship and the rhizosphere microbiota of four tomato genotypes, Solanum chilense (wild species), S. lycopersicum var. cerasiforme (Cherry tomato), and the S. lycopersicum landrace ‘Poncho Negro’ and the modern cultivar ‘Cal Ace’, grown in both natural and agricultural soils. Microbial communities were identified using 16S rRNA (bacteria) and ITS2 (fungi) amplicon sequencing, allowing cross-domain taxonomic characterization. While the soil type was the main driver of overall microbial diversity, the host genotype influenced the recruitment of specific microbial taxa, which exhibited different recruitment patterns according to the genetic diversification of Solanum genotypes and soil types. Additionally, co-occurrence network analysis identified two main clusters: first, taxa did not show any preferential associations to particular genotypes or soil types, while the second cluster revealed specific microbial patterns associated to fungal taxa in natural soil and bacterial taxa in agricultural soil. Finally, the functional analysis suggested the loss of specific functions through tomato domestication independently of soil type. These findings highlight the role of the plant genotype as a fine-tuning factor in microbiome assembly, with implications for breeding strategies aimed at restoring beneficial plant–microbe interactions. Full article
Show Figures

Figure 1

Back to TopTop