Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (800)

Search Parameters:
Keywords = functional-electrical stimulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 949 KB  
Article
Multi-Field Functional Electrical Stimulation with Fesia Grasp for Hand Rehabilitation in Multiple Sclerosis: A Randomized, Controlled Trial
by Olalla Saiz-Vázquez, Montserrat Santamaría-Vázquez, Aitor Martín-Odriozola, Tamara Martín-Pérez and Hilario Ortiz-Huerta
Technologies 2025, 13(10), 468; https://doi.org/10.3390/technologies13100468 - 15 Oct 2025
Viewed by 361
Abstract
This study investigates the use of multi-field electrostimulation with the Fesia Grasp device for hand rehabilitation in patients with Multiple Sclerosis (MS). This research aims to evaluate the effectiveness of this novel approach in improving hand function and dexterity in MS patients. A [...] Read more.
This study investigates the use of multi-field electrostimulation with the Fesia Grasp device for hand rehabilitation in patients with Multiple Sclerosis (MS). This research aims to evaluate the effectiveness of this novel approach in improving hand function and dexterity in MS patients. A cohort of MS patients with varying degrees of hand impairment underwent a structured rehabilitation program using the Fesia Grasp device, which delivers targeted electrical stimulation to specific muscle groups. Outcome measures assessed multiple aspects of hand function, including gross and fine motor skills, strength, and functional independence, at baseline, post-intervention, and 1-month follow-up. The main finding was a sustained between-group improvement in gross manual dexterity, measured by the Box and Block Test, at 1-month follow-up (p = 0.008, η2 = 0.429). Secondary analyses showed task-specific gains in the experimental group, with significant intragroup improvements in Jebsen–Taylor Hand Function Test items related to simulated feeding (p = 0.012) and lifting light objects (p = 0.036), and a trend toward better performance in stacking checkers (p = 0.069) and faster page-turning (p = 0.046) after the intervention. Other outcomes showed non-significant changes favoring the experimental group. This research contributes to the growing body of evidence supporting the use of advanced electrostimulation techniques in neurological rehabilitation and offers promising implications for enhancing the quality of life for individuals with MS-related hand dysfunction. Full article
Show Figures

Figure 1

16 pages, 5190 KB  
Article
Terminalia chebula Fruit Extract Ameliorates Peripheral Edema by Inhibiting NF-κB and MAPK Signaling Pathways
by Sang-Hyup Lee, Sang-Yoon Kim, Yun-Gu Gwon, Su-Ha Lee, Ji-Soo Jeong, Je-Won Ko, Tae-Won Kim and Bong-Keun Choi
Int. J. Mol. Sci. 2025, 26(20), 9965; https://doi.org/10.3390/ijms26209965 - 13 Oct 2025
Viewed by 244
Abstract
Peripheral edema is a pathological condition caused by abnormal fluid accumulation in the interstitial space due to elevated vascular permeability and inflammation. This study evaluated the therapeutic efficacy of Terminalia chebula fruit extract (TCE) in inflammation-induced peripheral edema and clarified its molecular mechanisms. [...] Read more.
Peripheral edema is a pathological condition caused by abnormal fluid accumulation in the interstitial space due to elevated vascular permeability and inflammation. This study evaluated the therapeutic efficacy of Terminalia chebula fruit extract (TCE) in inflammation-induced peripheral edema and clarified its molecular mechanisms. Using hydrogen peroxide (H2O2)-stimulated human umbilical vein endothelial cells (HUVECs), TCE was tested for effects on cell viability, inflammatory gene expression, intracellular reactive oxygen species, endothelial barrier integrity, and vascular endothelial growth factor (VEGF)-induced migration. Its influence on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling was examined. In vivo, TCE was assessed in acetic acid-induced peritoneal vascular permeability and carrageenan-induced paw edema models, followed by histological analysis and serum tumor necrosis factor-α (TNF-α) measurement. TCE restored cell viability (76.2% to 94.8%), reduced TNF, IL6, and PTGS2 mRNA expression, and decreased reactive oxygen species by 27.2%. It enhanced barrier integrity, increased transendothelial electrical resistance, and inhibited VEGF-induced migration. TCE suppressed NF-κB and MAPK activation. In vivo, TCE reduced Evans blue extravasation by 41.6% and paw edema by 67.5%. Histology showed reduced dermal thickening and inflammatory infiltration, and serum TNF-α levels were lowered. TCE attenuates peripheral edema by preserving endothelial barrier function and suppressing inflammatory signaling, supporting its potential as a therapeutic agent for inflammation-associated vascular dysfunction and edema. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

14 pages, 1927 KB  
Article
Effects of Transcranial Electrical Stimulation on Intermuscular Coherence in WuShu Sprint and KAN-Based EMG–Performance Function Fitting
by Lan Li, Haojie Li and Qianqian Fan
Sensors 2025, 25(19), 6241; https://doi.org/10.3390/s25196241 - 9 Oct 2025
Viewed by 558
Abstract
Objective: The aim of this study was to examine how transcranial electrical stimulation (tES) modulates intermuscular coherence (IMC) in sprinters and develop an interpretable neural network model for performance prediction. Methods: Thirty elite sprinters completed a randomized crossover trial involving three tES conditions: [...] Read more.
Objective: The aim of this study was to examine how transcranial electrical stimulation (tES) modulates intermuscular coherence (IMC) in sprinters and develop an interpretable neural network model for performance prediction. Methods: Thirty elite sprinters completed a randomized crossover trial involving three tES conditions: motor cortex stimulation (C1/C2), prefrontal stimulation (F3), and sham. Sprint performance metrics (0–100 m phase analysis) and lower-limb sEMG signals were collected. A Kolmogorov–Arnold Network (KAN) was trained to decode neuromuscular coordination–sprint performance relationships using IMC and time–frequency sEMG features. Results: Motor cortex tDCS increased 30–60 m sprint velocity by 2.2% versus sham (p < 0.05, η2 = 0.25). γ-band IMC in key muscle pairs (rectus femoris–biceps femoris, tibialis anterior–gastrocnemius) significantly heightened under motor cortex stimulation (F > 4.2, p < 0.03). The KAN model achieved high predictive accuracy (R2 = 0.83) through cross-validation, with derived symbolic equations mapping neuromuscular features to performance. Conclusions: Targeted tDCS enhances neuromuscular coordination and sprint velocity, while KAN provides a transparent framework for performance modeling in elite sports. Full article
(This article belongs to the Special Issue Biosignal Sensing Analysis (EEG, EMG, ECG, PPG) (2nd Edition))
Show Figures

Figure 1

19 pages, 1928 KB  
Review
Deep Brain Stimulation for Parkinson’s Disease—A Narrative Review
by Rafał Wójcik, Anna Dębska, Karol Zaczkowski, Bartosz Szmyd, Małgorzata Podstawka, Ernest J. Bobeff, Michał Piotrowski, Paweł Ratajczyk, Dariusz J. Jaskólski and Karol Wiśniewski
Biomedicines 2025, 13(10), 2430; https://doi.org/10.3390/biomedicines13102430 - 5 Oct 2025
Viewed by 939
Abstract
Deep brain stimulation (DBS) is an established neurosurgical treatment for Parkinson’s disease (PD), mainly targeting motor symptoms resistant to pharmacological therapy. This review examines strategies to optimize DBS using advanced anatomical, functional, and imaging approaches. The subthalamic nucleus (STN) remains the principal target [...] Read more.
Deep brain stimulation (DBS) is an established neurosurgical treatment for Parkinson’s disease (PD), mainly targeting motor symptoms resistant to pharmacological therapy. This review examines strategies to optimize DBS using advanced anatomical, functional, and imaging approaches. The subthalamic nucleus (STN) remains the principal target for alleviating bradykinesia and rigidity, while recent evidence highlights the dentato-rubro-thalamic tract (DRTt) as an additional promising target, especially for tremor control. Clinical data demonstrate that co-stimulation of both STN and DRTt via electrode electric fields results in superior motor outcomes, including greater reductions in UPDRS-III scores and lower levodopa requirements. The review highlights the use of high-resolution MRI and diffusion tensor imaging tractography in visualizing STN and DRTt with high precision. These methods support accurate targeting and individualized treatment planning. Electric field modelling is discussed as a tool to quantify stimulation overlap with target structures and predict clinical efficacy. Anatomical variability in DRTt positioning relative to the STN is emphasized, supporting the need for patient-specific DBS approaches. Alternative and emerging DBS targets—including the pedunculopontine nucleus, zona incerta, globus pallidus internus, and nucleus basalis of Meynert—are discussed for their potential in treating axial and cognitive symptoms. The review concludes with a forward-looking discussion on network-based DBS paradigms, the integration of adaptive stimulation technologies, and the potential of multimodal imaging and electrophysiological biomarkers to guide therapy. Together, these advances support a paradigm shift from focal to network-based neuromodulation in PD management. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

21 pages, 7383 KB  
Article
Detailed Kinematic Analysis Reveals Subtleties of Recovery from Contusion Injury in the Rat Model with DREADDs Afferent Neuromodulation
by Gavin Thomas Koma, Kathleen M. Keefe, George Moukarzel, Hannah Sobotka-Briner, Bradley C. Rauscher, Julia Capaldi, Jie Chen, Thomas J. Campion, Jacquelynn Rajavong, Kaitlyn Rauscher, Benjamin D. Robertson, George M. Smith and Andrew J. Spence
Bioengineering 2025, 12(10), 1080; https://doi.org/10.3390/bioengineering12101080 - 4 Oct 2025
Viewed by 480
Abstract
Spinal cord injury (SCI) often results in long-term locomotor impairments, and strategies to enhance functional recovery remain limited. While epidural electrical stimulation (EES) has shown clinical promise, our understanding of the mechanisms by which it improves function remains incomplete. Here, we use genetic [...] Read more.
Spinal cord injury (SCI) often results in long-term locomotor impairments, and strategies to enhance functional recovery remain limited. While epidural electrical stimulation (EES) has shown clinical promise, our understanding of the mechanisms by which it improves function remains incomplete. Here, we use genetic tools in an animal model to perform neuromodulation and treadmill rehabilitation in a manner similar to EES, but with the benefit of the genetic tools and animal model allowing for targeted manipulation, precise quantification of the cells and circuits that were manipulated, and the gathering of extensive kinematic data. We used a viral construct that selectively transduces large diameter afferent fibers (LDAFs) with a designer receptor exclusively activated by a designer drug (hM3Dq DREADD; a chemogenetic construct) to increase the excitability of large fibers specifically, in the rat contusion SCI model. As changes in locomotion with afferent stimulation can be subtle, we carried out a detailed characterization of the kinematics of locomotor recovery over time. Adult Long-Evans rats received contusion injuries and direct intraganglionic injections containing AAV2-hSyn-hM3Dq-mCherry, a viral vector that has been shown to preferentially transduce LDAFs, or a control with tracer only (AAV2-hSyn-mCherry). These neurons then had their activity increased by application of the designer drug Clozapine-N-oxide (CNO), inducing tonic excitation during treadmill training in the recovery phase. Kinematic data were collected during treadmill locomotion across a range of speeds over nine weeks post-injury. Data were analyzed using a mixed effects model chosen from amongst several models using information criteria. That model included fixed effects for treatment (DREADDs vs. control injection), time (weeks post injury), and speed, with random intercepts for rat and time point nested within rat. Significant effects of treatment and treatment interactions were found in many parameters, with a sometimes complicated dependence on speed. Generally, DREADDs activation resulted in shorter stance duration, but less reduction in swing duration with speed, yielding lower duty factors. Interestingly, our finding of shorter stance durations with DREADDs activation mimics a past study in the hemi-section injury model, but other changes, including the variability of anterior superior iliac spine (ASIS) height, showed an opposite trend. These may reflect differences in injury severity and laterality (i.e., in the hemi-section injury the contralateral limb is expected to be largely functional). Furthermore, as with that study, withdrawal of DREADDs activation in week seven did not cause significant changes in kinematics, suggesting that activation may have dwindling effects at this later stage. This study highlights the utility of high-resolution kinematics for detecting subtle changes during recovery, and will enable the refinement of neuromechanical models that predict how locomotion changes with afferent neuromodulation, injury, and recovery, suggesting new directions for treatment of SCI. Full article
(This article belongs to the Special Issue Regenerative Rehabilitation for Spinal Cord Injury)
Show Figures

Figure 1

22 pages, 8178 KB  
Article
Vibration Control and Energy Harvesting of a Two-Degree-of-Freedom Nonlinear Energy Sink to Primary Structure Under Transient Excitation
by Xiqi Lin, Xiaochun Nie, Junjie Fu, Yangdong Qin, Lingzhi Wang and Zhitao Yan
Buildings 2025, 15(19), 3561; https://doi.org/10.3390/buildings15193561 - 2 Oct 2025
Viewed by 301
Abstract
Environmental vibrations may affect the functional use of engineering structures and even lead to disastrous consequences. Vibration suppression and energy harvesting based on Nonlinear Energy Sink (NES) and the piezoelectric effect have gained significant attention in recent years. The harvested electrical energy can [...] Read more.
Environmental vibrations may affect the functional use of engineering structures and even lead to disastrous consequences. Vibration suppression and energy harvesting based on Nonlinear Energy Sink (NES) and the piezoelectric effect have gained significant attention in recent years. The harvested electrical energy can supply power to the structural health monitoring sensor device. In this work, the electromechanical-coupled governing equations of the primary structure coupled with the series-connected 2-degree-of-freedom NES (2-DOF NES) integrated by a piezoelectric energy harvester are derived. The absorption and dissipation performances of the system under varying transient excitation intensities are investigated. Additionally, the targeted energy transfer mechanism between the primary structure and the two NESs oscillators is investigated using the wavelet analysis. The reduced slow flow of the dynamical system is explored through the complex-variable averaging method, and the primary factors for triggering the target energy transfer phenomenon are revealed. Furthermore, a comparison is made between the vibration suppression performance of the single-degree-of-freedom NES (S-DOF NES) system and the 2-DOF NES system as a function of external excitation velocity. The results indicate that the vibration suppression performance of the first-level NES (NES1) oscillator is first stimulated. As the external excitation intensity gradually increases, the vibration suppression performance of the second-level NES (NES2) oscillator is also triggered. The 1:1:1, high-frequency, and low-frequency transient resonance captures are observed between the primary structure and NES1 and NES2 oscillators over a wide frequency range. The 2-DOF NES demonstrates superior efficiency in suppressing vibrations of the primary structure and exhibits enhanced robustness to varying external excitation intensities. This provides a new strategy for structural vibration suppression and online power supply for health monitoring devices. Full article
Show Figures

Figure 1

13 pages, 1029 KB  
Article
Topography of Cortical Activation with Mirror Visual Feedback and Electromyography-Triggered Electrical Stimulation: A Functional Near-Infrared Spectroscopy Study in Healthy Older Adults
by Yuji Inagaki, Miku Nakatsuka, Yumene Naito and Daisuke Sawamura
Brain Sci. 2025, 15(10), 1074; https://doi.org/10.3390/brainsci15101074 - 2 Oct 2025
Viewed by 442
Abstract
Background/Objectives: Stroke often results in lasting upper limb deficits. Mirror visual feedback (MVF) supports motor recovery, and electromyography-triggered electrical stimulation (ES) could enhance engagement. However, the effects in healthy older adults, age-matched to typical patient cohorts, remain insufficiently understood. We tested MVF and [...] Read more.
Background/Objectives: Stroke often results in lasting upper limb deficits. Mirror visual feedback (MVF) supports motor recovery, and electromyography-triggered electrical stimulation (ES) could enhance engagement. However, the effects in healthy older adults, age-matched to typical patient cohorts, remain insufficiently understood. We tested MVF and MVF + ES using functional near-infrared spectroscopy. Methods: Seventeen right-handed older adults performed left-wrist flexion under three visual conditions: circle fixation, viewing the right hand at rest, and mirror viewing, with/without electrical stimulation to the right-wrist flexors time-locked to left-forearm electromyography. Oxygenated hemoglobin (oxy-Hb) was recorded over the bilateral inferior frontal gyrus (IFG), precentral gyrus (PrG), postcentral gyrus (PoG), supramarginal gyrus (SMG), superior parietal lobule (SPL), and supplementary motor area. Effects were assessed with linear mixed-effects models (stimulation × visual condition); pairwise comparisons of estimated marginal means used Fisher’s least significant difference. Left-forearm electromyography verified comparable effort across conditions. Results: Linear mixed-effects models revealed left-lateralized increases in oxy-Hb, most prominently under mirror viewing with stimulation. Post hoc tests showed high oxy-Hb in the left IFG, PrG, PoG, SMG, and SMA. The left EMG did not differ. Conclusions: In healthy older adults, MVF paired with EMG-triggered ES enhances frontoparietal–motor engagement beyond MVF alone, with recruitment shaped by visuo–proprioceptive congruence. These findings support mechanistic plausibility and motivate dose–response optimization and patient-focused trials testing behavioral transfer in stroke. Full article
(This article belongs to the Section Neurorehabilitation)
Show Figures

Figure 1

11 pages, 660 KB  
Article
Recovery Time of Electrical Sensory, Motor, and Pain Thresholds: A Pilot Study Towards Standardization of Quantitative Sensory Testing in Healthy Population
by Izarbe Ríos-Asín, Miguel Malo-Urriés, Jorge Pérez-Rey, Marta García-Díez, Lucía Burgos-Garlito and Elena Bueno-Gracia
Healthcare 2025, 13(19), 2492; https://doi.org/10.3390/healthcare13192492 - 1 Oct 2025
Viewed by 398
Abstract
Background/Objectives: Electrical threshold testing (ETT) offers a promising method for assessing somatosensory function. Despite its growing use, fundamental aspects such as the physiological recovery time required between repeated threshold measurements remain poorly understood. This gap is critical when evaluating sensory, motor, or pain [...] Read more.
Background/Objectives: Electrical threshold testing (ETT) offers a promising method for assessing somatosensory function. Despite its growing use, fundamental aspects such as the physiological recovery time required between repeated threshold measurements remain poorly understood. This gap is critical when evaluating sensory, motor, or pain thresholds (EST, EMT, EPT) in pre–post designs or rapid intra-session protocols. The aim is to investigate the short-term recovery dynamics of electrical thresholds following electrical threshold testing, and to determine the minimum interval required for values to return to a stable baseline. Methods: In this pilot, repeated-measures study, 10 healthy adults (20 upper limbs) underwent three progressive stimulation trials (sensory, motor, and pain). Electrical thresholds were assessed at fixed recovery intervals (0–120 s), with duplicate measurements at each time point. Stability was defined as the absence of significant differences between repeated measures. Results: EST stabilized rapidly after sensory or motor stimulation, showing no significant differences beyond 0 and 15 s, respectively. Within pain stimulation, EST recovered at 60 s. EMT showed immediate recovery with motor stimulation and required longer recovery with pain stimulation, with stabilization observed at 90 s. EPT exhibited the highest variability, with the smallest time-dependent differences observed immediately after the first assessment. Conclusion: Recovery time after electrical stimulation varies by threshold type and intensity of the stimuli. EST and EMT can be reliably reassessed immediately after sensory and motor stimulation, respectively. However, when stimulation reaches EPT level, EST requires 60 s to recover and EMT needs 90 s. EPT demonstrates higher variability, indicating the need for further investigation. These findings support the implementation of standardized recovery intervals in ETT and underscore the importance of interpreting EPT results with caution during rapid assessments. Full article
Show Figures

Figure 1

15 pages, 3871 KB  
Review
Comparative Effectiveness of Treatments for Shoulder Subluxation After Stroke: A Systematic Review and Network Meta-Analysis
by Jong-Mi Park, Hee-Jae Park, Seo-Yeon Yoon, Yong-Wook Kim, Jae-Il Shin and Sang-Chul Lee
J. Clin. Med. 2025, 14(19), 6913; https://doi.org/10.3390/jcm14196913 - 29 Sep 2025
Viewed by 1034
Abstract
Background: Shoulder subluxation and pain are common complications of stroke that impair upper limb function. Objectives: This study conducted a systematic review and network meta-analysis to compare multiple therapeutic interventions for post-stroke shoulder subluxation, establishing an evidence-based hierarchy of treatment efficacy [...] Read more.
Background: Shoulder subluxation and pain are common complications of stroke that impair upper limb function. Objectives: This study conducted a systematic review and network meta-analysis to compare multiple therapeutic interventions for post-stroke shoulder subluxation, establishing an evidence-based hierarchy of treatment efficacy to optimize rehabilitation strategies and guide clinical practice. Methods: A comprehensive search was conducted using the MEDLINE, EMBASE, Cochrane, Scopus, and Web of Science databases until 8 August 2025. Randomized controlled trials evaluating treatments for shoulder subluxation, including neuromuscular electrical stimulation (NMES), Kinesio taping, corticosteroid injections, slings, repetitive peripheral magnetic stimulation, and electroacupuncture, were included. The follow-up duration in the included trials ranged from 1 to 12 weeks. Effect sizes were calculated using standardized mean differences with a random-effects model, and treatment rankings were determined using surface under the cumulative ranking curve (SUCRA). Results: Thirteen studies including 402 patients were analyzed. NMES was the most effective intervention for reducing subluxation distance (SUCRA: 84.9), while corticosteroid injections provided the greatest pain relief at rest (SUCRA: 73.6). Kinesio taping was most effective for functional recovery, as measured by the Fugl–Meyer Assessment (SUCRA: 98.5), and for pain relief during activity (SUCRA: 87.7). Conclusions: Our network meta-analysis suggests that different interventions are optimal for specific aspects of post-stroke shoulder impairment. NMES most effectively reduces subluxation distance, whereas corticosteroid injections are most effective for alleviating pain at rest. Kinesio taping appears superior for enhancing functional recovery and reducing pain during movement. These findings, based on short-term follow-up durations (1–12 weeks), provide an evidence-based ranking of interventions to support multimodal rehabilitation and inform clinical decision-making. The observed heterogeneity across studies underscores the need for standardized treatment protocols and rigorous long-term investigations. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

19 pages, 1122 KB  
Review
Collagen Fibril Orientation In Vitro: From Formation to Advanced Biomaterial Development
by Yuliya Nashchekina and Alexey Nashchekin
Biomimetics 2025, 10(10), 644; https://doi.org/10.3390/biomimetics10100644 - 24 Sep 2025
Viewed by 794
Abstract
Extracellular matrix proteins have a complex assembly in tissue and it is believed that not only the chemical structure, but also their location, plays an important role in cellular functions. Collagen is one of the main components of the extracellular matrix and the [...] Read more.
Extracellular matrix proteins have a complex assembly in tissue and it is believed that not only the chemical structure, but also their location, plays an important role in cellular functions. Collagen is one of the main components of the extracellular matrix and the oriented arrangement of collagen fibrils in tissues such as bone, cartilage, tendons, and cornea has a significant impact on various tissue functions. In the body, the orientation of extracellular matrix proteins is determined by cells. Oriented collagen fibrils can not only promote directed cell migration, but also stimulate cells to secrete an extracellular matrix with an oriented structure. However, the creation of collagen fibrils with an oriented structure in vitro is still associated with a number of limitations. Such limitations are primarily because the mechanisms regulating cellular functions in the orientation of extracellular matrix proteins, including collagen, are still unknown. Currently, only physical ways of organizing collagen fibrils in a certain direction are known. We hope that the description of the orientation of collagen fibrils in this review will allow readers to better understand the processes that occur with molecules. The study of methods and conditions for obtaining oriented collagen fibrils can help to obtain tissue biomimetic materials with complex properties identical to native tissues. Therefore, we discuss here various methods and conditions for obtaining oriented collagen fibrils in vitro using mechanical, electric, magnetic, and other fields. The prospects of application in tissue engineering and scientific problems of oriented collagen fibrils are also described. Full article
Show Figures

Figure 1

21 pages, 2533 KB  
Systematic Review
Effectiveness of Electrical Stimulation on Upper Limb Function in Children and Young People with Hemiplegic Cerebral Palsy: A Systematic Review
by Omar Nahhas, Sarah L. Astill, Samit Chakrabarty, Joanna Burdon and Antonio Capozio
J. Clin. Med. 2025, 14(19), 6718; https://doi.org/10.3390/jcm14196718 - 23 Sep 2025
Viewed by 715
Abstract
Objectives: This review seeks to evaluate the effectiveness of electrical stimulation (ES) in improving upper limb function in children and young people (CYP) with hemiplegic cerebral palsy (HCP). Methods: A systematic literature search from inception until May 2025 was conducted. Various [...] Read more.
Objectives: This review seeks to evaluate the effectiveness of electrical stimulation (ES) in improving upper limb function in children and young people (CYP) with hemiplegic cerebral palsy (HCP). Methods: A systematic literature search from inception until May 2025 was conducted. Various study designs comparing the effect of different ES techniques such as functional electrical stimulation (FES), transcutaneous electrical nerve stimulation (TENS), neuromuscular electrical stimulation (NMES), transcutaneous spinal cord stimulation (TSCS), and transcranial direct current stimulation (tDCS) on upper limb function in CYP with HCP were included. Results: Eighteen studies were selected for review and quality assessment, comprising twelve randomised controlled trials (RCTs) and six non-RCTs. FES was shown to improve upper limb function, though more rigorous and controlled research is needed. Both TENS and NMES demonstrate potential to improve upper limb function, particularly when combined with other interventions. The analysis suggests that variability in reporting tDCS outcomes hinders assessment of its potential benefits for improving upper limb function. Conclusions: Current research suggests ES may support upper limb rehabilitation in CYP with HCP, though the overall evidence remains limited. Most studies are small, underpowered, and lack long-term follow-up, limiting confident conclusions. ES should therefore be applied cautiously and only as part of a comprehensive rehabilitation plan. Full article
(This article belongs to the Special Issue Cerebral Palsy: Clinical Rehabilitation and Treatment)
Show Figures

Figure 1

29 pages, 2911 KB  
Review
Polymeric Nanocarrier-Based Drug Formulations for Enhancing Nose-to-Brain Delivery
by Tobeka Naki, Sijongesonke Peter and Sibusiso Alven
Pharmaceutics 2025, 17(10), 1242; https://doi.org/10.3390/pharmaceutics17101242 - 23 Sep 2025
Viewed by 580
Abstract
Neurological-related diseases are among the most debilitating and difficult to manage. Many possible pharmacological treatments for neurological diseases struggle to cross the blood–brain barrier (BBB) to achieve concentrations that can produce a therapeutic benefit. This is primarily because of the existence of the [...] Read more.
Neurological-related diseases are among the most debilitating and difficult to manage. Many possible pharmacological treatments for neurological diseases struggle to cross the blood–brain barrier (BBB) to achieve concentrations that can produce a therapeutic benefit. This is primarily because of the existence of the BBB, which poses significant hurdles for both therapeutic and diagnostic efforts by restricting the entry of most medications. Nasal-to-brain drug transportation has surfaced as an encouraging approach to tackle the difficulties linked with conventional drug administration techniques for neurological disorders. In response, innovative methods for improving drug delivery focus on breaking down the BBB via physical techniques, including optical and photothermal therapy, electrical stimulation, and acoustic or mechanical stimulation. Nanocarriers represent a promising approach for facilitating nasal systemic and brain delivery of active compounds. Hence, the achievement of therapeutically relevant concentrations of exogenous molecules within the body is significantly contingent upon the nanocarriers’ capability to surpass biological barriers. Polymers in nanocarrier formulations can result in significantly enhanced nose-to-brain drug delivery by protecting drugs from premature biodegradation, increasing permeability, improving mucoadhesion, and targeting specific cells in the brain. Polymeric nanocarriers are frequently functionalized with cell-penetrating peptides to further improve the specificity of the loaded therapeutic molecules. This review focuses on the use of nanocarrier-based therapeutic agents to enhance the efficacy of nose-to-brain delivery systems. Full article
Show Figures

Figure 1

16 pages, 4641 KB  
Article
Electric Field-Coupled Micro/Nano Aeration Biofilter for Rural Sewage Treatment: Performance and Bacterial Community Analysis
by Tongxuan Zhu, Jinlei Li, Yungen Liu, Silin Yang, Junlin Zhu, Pengcheng Guo and Qi Wang
Sustainability 2025, 17(18), 8489; https://doi.org/10.3390/su17188489 - 22 Sep 2025
Viewed by 399
Abstract
The escalating demand for rural domestic wastewater treatment necessitates environmentally sustainable and cost-effective technologies. This study investigated the enhancement of a micro/nano aeration biofilter (MABF) through electric field coupling (E-MABF), evaluating pollutant removal efficacy and associated bacterial community dynamics. The results showed that [...] Read more.
The escalating demand for rural domestic wastewater treatment necessitates environmentally sustainable and cost-effective technologies. This study investigated the enhancement of a micro/nano aeration biofilter (MABF) through electric field coupling (E-MABF), evaluating pollutant removal efficacy and associated bacterial community dynamics. The results showed that the electric field significantly enhanced removal efficiency with respect to total phosphorus (TP), phosphate (PO43−-P), ammonium nitrogen (NH4+-N), and chemical oxygen demand (COD) (p < 0.05). The TP, PO43−-P, NH4+-N, and COD removal efficiencies for E-MABF reached 89.79%, 88.69%, 57.29%, and 57.96%, significantly exceeding those of MABF (26.50%,33.41%, 35.49%, and 45.75%). Electric field application markedly altered bacterial diversity and community composition. Core phyla, including Pseudomonadota, Chloroflexota, and Cyanobacteriota, exhibited significant positive correlations with pollutant removal efficiencies, indicating electric field facilitation of functional bacterial enrichment. KEGG pathway analysis suggested that electric field stimulation potentially enhanced metabolic functions, particularly in terpenoid and polyketide metabolism, and xenobiotics biodegradation. The Mantel’s test and structural equation model identified dominant bacterial composition as the primary factor influencing pollutant removal, followed by microenvironmental indicators and bacterial diversity. These findings elucidate the mechanisms underpinning the electric field augmentation of micro/nano aeration biofilter performance and provide a foundation for future research. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

18 pages, 711 KB  
Review
Exploring Imagined Movement for Brain–Computer Interface Control: An fNIRS and EEG Review
by Robert Finnis, Adeel Mehmood, Henning Holle and Jamshed Iqbal
Brain Sci. 2025, 15(9), 1013; https://doi.org/10.3390/brainsci15091013 - 19 Sep 2025
Viewed by 1004
Abstract
Brain–Computer Interfaces (BCIs) offer a non-invasive pathway for restoring motor function, particularly for individuals with limb loss. This review explored the effectiveness of Electroencephalography (EEG) and function Near-Infrared Spectroscopy (fNIRS) in decoding Motor Imagery (MI) movements for both offline and online BCI systems. [...] Read more.
Brain–Computer Interfaces (BCIs) offer a non-invasive pathway for restoring motor function, particularly for individuals with limb loss. This review explored the effectiveness of Electroencephalography (EEG) and function Near-Infrared Spectroscopy (fNIRS) in decoding Motor Imagery (MI) movements for both offline and online BCI systems. EEG has been the dominant non-invasive neuroimaging modality due to its high temporal resolution and accessibility; however, it is limited by high susceptibility to electrical noise and motion artifacts, particularly in real-world settings. fNIRS offers improved robustness to electrical and motion noise, making it increasingly viable in prosthetic control tasks; however, it has an inherent physiological delay. The review categorizes experimental approaches based on modality, paradigm, and study type, highlighting the methods used for signal acquisition, feature extraction, and classification. Results show that while offline studies achieve higher classification accuracy due to fewer time constraints and richer data processing, recent advancements in machine learning—particularly deep learning—have improved the feasibility of online MI decoding. Hybrid EEG–fNIRS systems further enhance performance by combining the temporal precision of EEG with the spatial specificity of fNIRS. Overall, the review finds that predicting online imagined movement is feasible, though still less reliable than motor execution, and continued improvements in neuroimaging integration and classification methods are essential for real-world BCI applications. Broader dissemination of recent advancements in MI-based BCI research is expected to stimulate further interdisciplinary collaboration among roboticists, neuroscientists, and clinicians, accelerating progress toward practical and transformative neuroprosthetic technologies. Full article
(This article belongs to the Special Issue Exploring the Neurobiology of the Sensory-Motor System)
Show Figures

Figure 1

38 pages, 2356 KB  
Review
Non-Thermal Technologies in Food Fermentation: Mechanisms, Benefits, and Industrial Perspectives for Sustainable Development
by Fernanda Elaine Barros Souza, Sueli Rodrigues and Thatyane Vidal Fonteles
Processes 2025, 13(9), 2988; https://doi.org/10.3390/pr13092988 - 18 Sep 2025
Cited by 1 | Viewed by 655
Abstract
Non-thermal technologies (NTTs) such as ultrasound (US), pulsed electric fields (PEF), high-pressure processing (HPP), cold plasma (CP), and pulsed light (PL) are emerging as versatile tools in food fermentation, offering microbial control and process enhancement without the detrimental heat effects of conventional methods. [...] Read more.
Non-thermal technologies (NTTs) such as ultrasound (US), pulsed electric fields (PEF), high-pressure processing (HPP), cold plasma (CP), and pulsed light (PL) are emerging as versatile tools in food fermentation, offering microbial control and process enhancement without the detrimental heat effects of conventional methods. Operating at ambient low temperatures, these techniques preserve heat-sensitive compounds, modulate microbial activity, and improve mass transfer, enabling both quality retention and functional enrichment. Recent studies highlight their potential to stimulate metabolic pathways and enhance the release of bioactive compounds, opening new opportunities for fermented food production. The bibliometric analysis of the recent literature further reveals a growing interest in NTT applications in fermentation, with HPP and PEF showing the highest industrial maturity. Each technology exhibits distinct mechanisms and optimal niches across upstream, midstream, and downstream stages: HPP for uniform volumetric treatment, US for fermentation intensification, CP for surface-selective oxidative chemistry, PEF for membrane permeability control, and PL for rapid, residue-free decontamination. While the degree of industrial readiness varies, critical barriers such as scale-up limitations, high capital costs, energy distribution uniformity, process standardization, and techno-economic feasibility remain to be overcome. Beyond technical aspects, the successful commercialization of NTTs will also depend on addressing regulatory approval pathways, ensuring consumer trust and acceptance, and demonstrating their contribution to sustainability goals through lower energy use, reduced food waste, and environmentally responsible processing. Strategic, stand-alone, or hybrid applications of NTTs can therefore act not only as technological alternatives but also as enablers of a more sustainable, consumer-centered, and innovation-driven food system. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

Back to TopTop