Exploring Imagined Movement for Brain–Computer Interface Control: An fNIRS and EEG Review
Abstract
1. Introduction
2. Methods
3. Background
3.1. EEG
3.2. fNIRS
3.3. Motor Imagery
3.4. Motor Execution
3.5. Offline/Online Experiments
3.6. Summary of Modalities and Motor Imagery Viability
4. Overview of BCI Experiments
4.1. EEG-Based BCI Experiments
Study | Paradigm | Brain Area | Features | Classifier | Type of Study |
---|---|---|---|---|---|
Kansal et al. [55] | Motor Execution | Sensorimotor Cortex | Time-domain, Min–Max scaled | Genetic Algorithm optimized Long Short-Term Memory | Offline |
Mikson et al. [69] | Motor Execution + Facial | Frontal/Temporal | FFT, ICA | Thresholding | Online |
Staffa et al. [52] | Motor Imagery | FC, C, Cz channels | Wavelet-based decomposition | WiSARD (Weightless Neural Network) | Offline training; Online execution |
Carnio-Escobar et al. [23] | Motor Imagery | F3-P4 (16 channels) | CSP | LDA | Online |
Xu et al. [28] | Motor Execution | Frontal and Parietal | MRCP | LDA | Offline |
Xu et al. [70] | Motor Execution | Frontal and Parietal | MRCP | LDA | Offline |
Cho et al. [32] | Motor Execution + Motor Imagery | Sensorimotor Cortex | LDA | SVM | Offline |
Faiz & Al-Hamadani [53] | Motor Execution + Motor Imagery | Frontal, Parietal, and Temporal lobes | Autoregressive + CSP | PCA + SVM | Online |
Gayathri et al. [11] | Motor Imagery | Fontal, Parietal and Temporal lobes | ICA | LDA | Offline |
Shantala & Rashmi [73] | Motor Imagery | Frontal, Parietal and Temporal lobes | Wavelet Transform | LDA, SVM, kNN | Offline |
Alazrai et al. [45] | Motor Imagery | Sensorimotor Cortex | Convolutional Neural Network | Convolutional Neural Network | Offline |
4.2. fNIRS-Based BCI Experiments
4.3. Hybrid BCI-Based EEG & fNIRS
4.4. Summary of Experimental Findings and Predictive Performance
5. Conclusions
Funding
Conflicts of Interest
References
- Kocejko, T.; Weglerski, R.; Zubowicz, T.; Ruminski, J.; Wtorek, J.; Arminski, K. Design aspects of a low-cost prosthetic arm for people with severe movement disabilities. In Proceedings of the 2020 13th International Conference on Human System Interaction (HSI), Tokyo, Japan, 6–8 June 2020. [Google Scholar] [CrossRef]
- Suma, D.; Meng, J.; Edelman, B.J.; He, B. Spatial-temporal aspects of continuous EEG-based neurorobotic control. J. Neural Eng. 2020, 17, 066006. [Google Scholar] [CrossRef]
- Li, G.; Jiang, S.; Xu, Y.; Wu, Z.; Chen, L.; Zhang, D. A preliminary study towards prosthetic hand control using human stereo-electroencephalography (SEEG) signals. In Proceedings of the 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 25–28 May 2017; pp. 375–378. [Google Scholar] [CrossRef]
- Batula, A.M.; Kim, Y.E.; Ayaz, H. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface. BioMed Res. Int. 2017, 2017, 1463512. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, S.; Shi, F.Y.; Guan, Y.; Wu, Y.; Zhang, L.L.; Shen, C.; Zeng, Y.W.; Wang, D.H.; Zhang, J. The effect of motor imagery with specific implement in expert badminton player. Neuroscience 2014, 275, 102–112. [Google Scholar] [CrossRef]
- Meng, H.J.; Pi, Y.L.; Liu, K.; Cao, N.; Wang, Y.Q.; Wu, Y.; Zhang, J. Differences between motor execution and motor imagery of grasping movements in the motor cortical excitatory circuit. PeerJ 2018, 6, e5588. [Google Scholar] [CrossRef]
- Ruhunage, I.; Perera, C.J.; Nisal, K.; Subodha, J.; Lalitharatne, T.D. EMG signal controlled transhumerai prosthetic with EEG-SSVEP based approch for hand open/close. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Cambridge, MA, USA, 14–17 November 2017; pp. 3169–3174. [Google Scholar] [CrossRef]
- Sattar, N.Y.; Kausar, Z.; Usama, S.A.; Naseer, N.; Farooq, U.; Abdullah, A.; Hussain, S.Z.; Khan, U.S.; Khan, H.; Mirtaheri, P. Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach. IEEE Access 2021, 9, 113246–113257. [Google Scholar] [CrossRef]
- Sattar, N.Y.; Kausar, Z.; Usama, S.A.; Farooq, U.; Shah, M.F.; Muhammad, S.; Khan, R.; Badran, M. fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees. Sensors 2022, 22, 726. [Google Scholar] [CrossRef]
- Kumarasinghe, K.; Owen, M.; Taylor, D.; Kasabov, N.; Kit, C. FaNeuRobot: A Framework for Robot and Prosthetics Control Using the NeuCube Spiking Neural Network Architecture and Finite Automata Theory. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 4465–4472. [Google Scholar] [CrossRef]
- Gayathri, G.; Udupa, G.; Nair, G.J. Control of bionic arm using ICA-EEG. In Proceedings of the 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 6–7 July 2017; pp. 1254–1259. [Google Scholar] [CrossRef]
- Parr, J.V.V.; Vine, S.J.; Wilson, M.R.; Harrison, N.R.; Wood, G. Visual attention, EEG alpha power and T7-Fz connectivity are implicated in prosthetic hand control and can be optimized through gaze training. J. Neuroeng. Rehabil. 2019, 16, 52. [Google Scholar] [CrossRef]
- Kasim, M.A.A.; Low, C.Y.; Ayub, M.A.; Zakaria, N.A.C.; Salleh, M.H.M.; Johar, K.; Hamli, H. User-Friendly LabVIEW GUI for Prosthetic Hand Control Using Emotiv EEG Headset. In Proceedings of the 2016 IEEE International Symposium on Robotics and Intelligent Sensors, IRIS 2016, Tokyo, Japan, 17–20 December 2016; Volume 105, pp. 276–281. [Google Scholar] [CrossRef]
- Cho, J.-H.; Jeong, J.-H.; Shim, K.-H.; Kim, D.-J.; Lee, S.-W. Classification of Hand Motions within EEG Signals for Non-Invasive BCI-Based Robot Hand Control. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 515–518. [Google Scholar] [CrossRef]
- Xu, B.; Li, W.; He, X.; Wei, Z.; Zhang, D.; Wu, C.; Song, A. Motor Imagery Based Continuous Teleoperation Robot Control with Tactile Feedback. Electronics 2020, 9, 174. [Google Scholar] [CrossRef]
- Yun, Y.-D.; Jeong, J.-H.; Cho, J.-H.; Kim, D.-J.; Lee, S.-W. Reconstructing Degree of Forearm Rotation from Imagined movements for BCI-based Robot Hand Control. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 3014–3017. [Google Scholar] [CrossRef]
- Zhu, G.; Li, R.; Zhang, T.; Lou, D.; Wang, R.; Zhang, Y. A simplified hybrid EEG-fNIRS Brain-Computer Interface for motor task classification. In Proceedings of the 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 25–28 May 2017; pp. 134–137. [Google Scholar] [CrossRef]
- Sosnik, R.; Ben Zur, O. Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG slow cortical potentials. J. Neural Eng. 2020, 17, 016065. [Google Scholar] [CrossRef]
- Sreeja, S.R.; Himanshu; Samanta, D. Distance-based weighted sparse representation to classify motor imagery EEG signals for BCI applications. Multimed. Tools Appl. 2020, 79, 13775–13793. [Google Scholar] [CrossRef]
- Murphy, D.P.; Bai, O.; Gorgey, A.S.; Fox, J.; Lovegreen, W.T.; Burkhardt, B.W.; Atri, R.; Marquez, J.S.; Li, Q.; Fei, D.Y. Electroencephalogram-Based Brain-Computer Interface and Lower-Limb Prosthesis Control: A Case Study. Front. Neurol. 2017, 8, 696. [Google Scholar] [CrossRef]
- Ali, H.; Popescu, D.; Hadar, A.; Vasilateanu, A.; Popa, R.; Goga, N.; Hussam, H. EEG-based Brain Computer Interface Prosthetic Hand using Raspberry Pi 4. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 44–49. [Google Scholar] [CrossRef]
- Tang, C.; Gao, T.; Li, Y.; Chen, B. EEG channel selection based on sequential backward floating search for motor imagery classification. Front. Neurosci. 2022, 16, 1045851. [Google Scholar] [CrossRef]
- Carino-Escobar, R.I.; Rodríguez-García, M.E.; Carrillo-Mora, P.; Valdés-Cristerna, R.; Cantillo-Negrete, J. Continuous versus discrete robotic feedback for brain-computer interfaces aimed for neurorehabilitation. Front. Neurorobotics 2023, 17, 1015464. [Google Scholar] [CrossRef]
- Yu, G.; Wang, J.; Chen, W.; Zhang, J. EEG-based brain-controlled lower extremity exoskeleton rehabilitation robot. In Proceedings of the 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Ningbo, China, 19–21 November 2017; pp. 763–767. [Google Scholar] [CrossRef]
- Naveed, K.; Iqbal, J.; ur Rehman, H. Brain controlled human robot interface. In Proceedings of the 2012 International Conference of Robotics and Artificial Intelligence, Islamabad, Pakistan, 22–23 October 2012; pp. 55–60. [Google Scholar] [CrossRef]
- Tayeb, Z.; Waniek, N.; Fedjaev, J.; Ghaboosi, N.; Rychly, L.; Widderich, C.; Richter, C.; Braun, J.; Saveriano, M.; Cheng, G.; et al. Gumpy: A Python toolbox suitable for hybrid brain-computer interfaces. J. Neural Eng. 2018, 15, 065003. [Google Scholar] [CrossRef]
- Sh, T.; Pirouzi, S.; Zamani, A.; Motealleh, A.; Bagheri, Z. Does Muscle Fatigue Alter EEG Bands of Brain Hemispheres? J. Biomed. Phys. Eng. 2020, 10, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wang, Y.; Deng, L.; Wu, C.; Zhang, W.; Li, H.; Song, A. Decoding Hand Movement Types and Kinematic Information From Electroencephalogram. IEEE Trans. Neural Syst. Rehabil. Eng. A Publ. IEEE Eng. Med. Biol. Soc. 2021, 29, 1744–1755. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, Y.; Miyakoshi, M.; Stapornchaisit, S.; Yoshimura, N.; Koike, Y. Brain Activity Reflects Subjective Response to Delayed Input When Using an Electromyography-Controlled Robot. Front. Syst. Neurosci. 2021, 15, 767477. [Google Scholar] [CrossRef]
- Herbert, J. Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 370–375. [Google Scholar] [CrossRef]
- Xygonakis, I.; Athanasiou, A.; Pandria, N.; Kugiumtzis, D.; Bamidis, P.D. Decoding Motor Imagery through Common Spatial Pattern Filters at the EEG Source Space. Comput. Intell. Neurosci. 2018, 2018, 7957408. [Google Scholar] [CrossRef]
- Cho, J.H.; Kwon, B.H.; Lee, B.H. Decoding Multi-class Motor-related Intentions with User-optimized and Robust BCI System Based on Multimodal Dataset. In Proceedings of the 2023 11th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 20–22 February 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]
- Ding, Y.; Udompanyawit, C.; Zhang, Y.; He, B. EEG-based brain-computer interface enables real-time robotic hand control at individual finger level. Nat. Commun. 2025, 16, 5401. [Google Scholar] [CrossRef]
- Akmal, M.; Zubair, S.; Alquhayz, H. Classification Analysis of Tensor-Based Recovered Missing EEG Data. IEEE Access 2021, 9, 41745–41756. [Google Scholar] [CrossRef]
- Asgher, U.; Khan, M.J.; Asif Nizami, M.H.; Khalil, K.; Ahmad, R.; Ayaz, Y.; Naseer, N. Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain–Machine Interface (BMI). Front. Neurorobotics 2021, 15, 605751. [Google Scholar] [CrossRef] [PubMed]
- Bandara, D.S.V.; Arata, J.; Kiguchi, K. Towards Control of a Transhumeral Prosthesis with EEG Signals. Bioengineering 2018, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Helmich, I.; Holle, H.; Rein, R.; Lausberg, H. Brain oxygenation patterns during the execution of tool use demonstration, tool use pantomime, and body-part-as-object tool use. Int. J. Psychophysiol. 2015, 96, 1–7. [Google Scholar] [CrossRef]
- Mizuochi, C.; Yabuki, Y.; Mouri, Y.; Togo, S.; Morishita, S.; Jiang, Y.; Kato, R.; Yokoi, H. Real-time cortical adaptation monitoring system for prosthetic rehabilitation based on functional near-infrared spectroscopy. In Proceedings of the 2017 IEEE International Conference on Cyborg and Bionic Systems (CBS), Beijing, China, 17–19 October 2017; pp. 130–135. [Google Scholar] [CrossRef]
- Paleari, M.; Luciani, R.; Ariano, P. Towards NIRS-based hand movement recognition. IEEE Int. Conf. Rehabil. Robot. 2017, 2017, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.V.; Safaie, J.; Moghaddam, H.A.; Wallois, F.; Grebe, R. Experimental investigation of NIRS spatial sensitivity. Biomed. Opt. Express 2011, 2, 1478–1493. [Google Scholar] [CrossRef]
- Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.W. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 2020, 1464, 5–29. [Google Scholar] [CrossRef]
- Scherer, R.; Vidaurre, C. Chapter 8—Motor imagery based brain–computer interfaces. In Smart Wheelchairs and Brain-Computer Interfaces; Diez, P., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 171–195. [Google Scholar] [CrossRef]
- Abiri, R.; Borhani, S.; Zhao, X.; Jiang, Y. Real-Time Brain Machine Interaction via Social Robot Gesture Control. In Proceedings of the DSCC2017, Volume 1: Aerospace Applications; Advances in Control Design Methods; Bio Engineering Applications; Advances in Non-Linear Control; Adaptive and Intelligent Systems Control; Advances in Wind Energy Systems; Advances in Robotics; Assistive and Rehabilitation Robotics; Biomedical and Neural Systems Modeling, Diagnostics, and Control; Bio-Mechatronics and Physical Human Robot; Advanced Driver Assistance Systems and Autonomous Vehicles; Automotive Systems, 2017. V001T37A002. Available online: https://asmedigitalcollection.asme.org/DSCC/DSCC2017/volume/58271 (accessed on 16 September 2024).
- Khan, M.J.; Zafar, A.; Hong, K.-S. Comparison of brain areas for executed and imagined movements after motor training: An fNIRS study. In Proceedings of the 2017 10th International Conference on Human System Interactions (HSI), Ulsan, Republic of Korea, 17–19 July 2017; pp. 125–130. [Google Scholar] [CrossRef]
- Alazrai, R.; Abuhijleh, M.; Alwanni, H.; Daoud, M.I. A Deep Learning Framework for Decoding Motor Imagery Tasks of the Same Hand Using EEG Signals. IEEE Access 2019, 7, 109612–109627. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Wolpaw, E.W. Brain-Computer Interfaces: Principles and Practice, 1st ed.; Oxford Press: New York, NY, USA, 2012. [Google Scholar]
- Li, C.; Yang, H.; Wu, X.; Zhang, Y. Improving EEG-Based Motor Imagery Classification Using Hybrid Neural Network. In Proceedings of the 2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN), Xi’an, China, 25–28 November 2021; pp. 486–489. [Google Scholar] [CrossRef]
- Reust, A.; Desai, J.; Gomez, L. Extracting Motor Imagery Features to Control Two Robotic Hands. In Proceedings of the 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Louisville, KY, USA, 6–8 December 2018; pp. 118–122. [Google Scholar] [CrossRef]
- Xi, X.; Pi, S.; Zhao, Y.B.; Wang, H.; Luo, Z. Effect of muscle fatigue on the cortical-muscle network: A combined electroencephalogram and electromyogram study. Brain Res. 2021, 1752, 147221. [Google Scholar] [CrossRef]
- Guggenberger, R.; Heringhaus, M.; Gharabaghi, A. Brain-Machine Neurofeedback: Robotics or Electrical Stimulation? Front. Bioeng. Biotechnol. 2020, 8, 639. [Google Scholar] [CrossRef]
- Idowu, O.P.; Fang, P.; Li, X.; Xia, Z.; Xiong, J.; Li, G. Towards Control of EEG-Based Robotic Arm Using Deep Learning via Stacked Sparse Autoencoder. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 1053–1057. [Google Scholar] [CrossRef]
- Staffa, M.; Giordano, M.; Ficuciello, F. A WiSARD Network Approach for a BCI-Based Robotic Prosthetic Control. Int. J. Soc. Robot. 2020, 12, 749–764. [Google Scholar] [CrossRef]
- Faiz, M.Z.A.; Al-Hamadani, A.A. Online Brain Computer Interface Based Five Classes EEG To Control Humanoid Robotic Hand. In Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 1–3 July 2019; pp. 406–410. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, Z.; Yu, T.; He, S.; Li, Y. An EEG-/EOG-Based Hybrid Brain-Computer Interface: Application on Controlling an Integrated Wheelchair Robotic Arm System. Front. Neurosci. 2019, 13, 1243. [Google Scholar] [CrossRef]
- Kansal, S.; Garg, D.; Upadhyay, A.; Mittal, S.; Talwar, G.S. A novel deep learning approach to predict subject arm movements from EEG-based signals. Neural Comput. Appl. 2023, 35, 11669–11679. [Google Scholar] [CrossRef]
- Yavuz, E.; Eyupoglu, C. A cepstrum analysis-based classification method for hand movement surface EMG signals. Med. Biol. Eng. Comput. 2019, 57, 2179–2201, Place: United States. [Google Scholar] [CrossRef] [PubMed]
- Kansal, S.; Garg, D.; Upadhyay, A.; Mittal, S.; Talwar, G.S. DL-AMPUT-EEG: Design and development of the low-cost prosthesis for rehabilitation of upper limb amputees using deep-learning-based techniques. Eng. Appl. Artif. Intell. 2023, 126, 106990. [Google Scholar] [CrossRef]
- Copeland, C.; Mukherjee, M.; Wang, Y.; Fraser, K.; Zuniga, J.M. Changes in Sensorimotor Cortical Activation in Children Using Prostheses and Prosthetic Simulators. Brain Sci. 2021, 11, 991. [Google Scholar] [CrossRef]
- Araujo, R.S.; Silva, C.R.; Netto, S.P.N.; Morya, E.; Brasil, F.L. Development of a Low-Cost EEG-Controlled Hand Exoskeleton 3D Printed on Textiles. Front. Neurosci. 2021, 15, 661569. [Google Scholar] [CrossRef]
- Norman, S.L.; McFarland, D.J.; Miner, A.; Cramer, S.C.; Wolbrecht, E.T.; Wolpaw, J.R.; Reinkensmeyer, D.J. Controlling pre-movement sensorimotor rhythm can improve finger extension after stroke. J. Neural Eng. 2018, 15, 056026. [Google Scholar] [CrossRef]
- Pawan; Dhiman, R. Machine learning techniques for electroencephalogram based brain-computer interface: A systematic literature review. Meas. Sens. 2023, 28, 100823. [Google Scholar] [CrossRef]
- Park, J.; Berman, J.; Dodson, A.; Liu, Y.; Armstrong, M.; Huang, H.; Kaber, D.; Ruiz, J.; Zahabi, M. Assessing workload in using electromyography (EMG)-based prostheses. Ergonomics 2024, 67, 257–273. [Google Scholar] [CrossRef]
- Wang, X.; Lu, H.; Shen, X.; Ma, L.; Wang, Y. Prosthetic control system based on motor imagery. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 764–771. [Google Scholar] [CrossRef]
- Mondini, V.; Kobler, R.J.; Sburlea, A.I.; Müller-Putz, G.R. Continuous low-frequency EEG decoding of arm movement for closed-loop, natural control of a robotic arm. J. Neural Eng. 2020, 17, 046031. [Google Scholar] [CrossRef]
- Shafiul Hasan, S.M.; Siddiquee, M.R.; Atri, R.; Ramon, R.; Marquez, J.S.; Bai, O. Prediction of gait intention from pre-movement EEG signals: A feasibility study. J. Neuroeng. Rehabil. 2020, 17, 50. [Google Scholar] [CrossRef]
- Vadivelan D, S.; Sethuramalingam, P. A hybrid approach for EEG motor imagery classification using adaptive margin disparity and knowledge transfer in convolutional neural networks. Comput. Biol. Med. 2025, 195, 110675. [Google Scholar] [CrossRef]
- Holle, H.; Gunter, T.C. The Role of Iconic Gestures in Speech Disambiguation: ERP Evidence. J. Cogn. Neurosci. 2007, 19, 1175–1192. [Google Scholar] [CrossRef]
- Sessle, B.J. Chapter 1—The Biological Basis of a Functional Occlusion: The Neural Framework. In Functional Occlusion in Restorative Dentistry and Prosthodontics; Klineberg, I., Eckert, S.E., Eds.; Mosby: Maryland, MO, USA, 2016; pp. 3–22. [Google Scholar] [CrossRef]
- Miskon, A.; Djonhari, A.; Azhar, S.; Thanakodi, S.; Mohd Tawil, S.N. Identification of Raw EEG Signal for Prosthetic Hand Application. In Proceedings of the ICBRA ’19: Proceedings of the 6th International Conference on Bioinformatics Research and Applications; Seoul, Republic of Korea, 19–21 June 2019, p. 83. [CrossRef]
- Xu, B.; Zhang, D.; Wang, Y.; Deng, L.; Wang, X.; Wu, C.; Song, A. Decoding Different Reach-and-Grasp Movements Using Noninvasive Electroencephalogram. Front. Neurosci. 2021, 15, 684547. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.K.; Aharonson, V. Four-class BCI discrimination of right and left wrist and finger movements. In Proceedings of the Control Conference 663 Africa CCA 2021, Chengdu, China, 7–8 December 2021; Volume 54, pp. 91–96. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Q.; Zeng, S.; Zhang, B.; Fang, L. Latent Linear Discriminant Analysis for feature extraction via Isometric Structural Learning. Pattern Recognit. 2024, 149, 110218. [Google Scholar] [CrossRef]
- Shantala, C.P.; Rashmi, C.R. Mind Controlled Wireless Robotic Arm Using Brain Computer Interface. In Proceedings of the 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Coimbatore, India, 14–16 December 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Shafiei, S.B.; Durrani, M.; Jing, Z.; Mostowy, M.; Doherty, P.; Hussein, A.A.; Elsayed, A.S.; Iqbal, U.; Guru, K. Surgical Hand Gesture Recognition Utilizing Electroencephalogram as Input to the Machine Learning and Network Neuroscience Algorithms. Sensors 2021, 21, 1733. [Google Scholar] [CrossRef]
- Chen, W.; Wang, S.; Zhang, X.; Yao, L.; Yue, L.; Qian, B.; Li, X. EEG-based Motion Intention Recognition via Multi-task RNNs. In Proceedings of the 2018 SIAM International Conference on Data Mining (SDM), San Diego, CA, USA, 3–5 May 2018; Proceedings. Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2018; pp. 279–287. [Google Scholar] [CrossRef]
- Buerkle, A.; Eaton, W.; Lohse, N.; Bamber, T.; Ferreira, P. EEG based arm movement intention recognition towards enhanced safety in symbiotic Human-Robot Collaboration. Robot. -Comput.-Integr. Manuf. 2021, 70, 102137. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, B.; Zhang, C.; Xiao, Y.; Wang, M.Y. An EEG/EMG/EOG-Based Multimodal Human-Machine Interface to Real-Time Control of a Soft Robot Hand. Front. Neurorobotics 2019, 13, 7. [Google Scholar] [CrossRef]
- Ofner, P.; Schwarz, A.; Pereira, J.; Müller-Putz, G.R. Upper limb movements can be decoded from the time-domain of low-frequency EEG. PLoS ONE 2017, 12, e0182578. [Google Scholar] [CrossRef]
- Lee, J.; Mukae, N.; Arata, J.; Iwata, H.; Iramina, K.; Iihara, K.; Hashizume, M. A multichannel-near-infrared-spectroscopy-triggered robotic hand rehabilitation system for stroke patients. IEEE Int. Conf. Rehabil. Robot. 2017, 2017, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Ortega, P.; Faisal, A.A. Deep learning multimodal fNIRS and EEG signals for bimanual grip force decoding. J. Neural Eng. 2021, 18. [Google Scholar] [CrossRef] [PubMed]
- Nazeer, H.; Naseer, N.; Mehboob, A.; Khan, M.J.; Khan, R.A.; Khan, U.S.; Ayaz, Y. Enhancing Classification Performance of fNIRS-BCI by Identifying Cortically Active Channels Using the z-Score Method. Sensors 2020, 20, 6995. [Google Scholar] [CrossRef]
- Rieke, J.D.; Matarasso, A.K.; Yusufali, M.M.; Ravindran, A.; Alcantara, J.; White, K.D.; Daly, J.J. Development of a combined, sequential real-time fMRI and fNIRS neurofeedback system to enhance motor learning after stroke. J. Neurosci. Methods 2020, 341, 108719. [Google Scholar] [CrossRef]
- Syed, A.U.; Sattar, N.Y.; Ganiyu, I.; Sanjay, C.; Alkhatib, S.; Salah, B. Deep learning-based framework for real-time upper limb motion intention classification using combined bio-signals. Front. Neurorobot. 2023, 17, 1174613. [Google Scholar] [CrossRef]
- Li, C.; Xu, Y.; He, L.; Zhu, Y.; Kuang, S.; Sun, L. Research on fNIRS Recognition Method of Upper Limb Movement Intention. Electronics 2021, 10, 1239. [Google Scholar] [CrossRef]
- Qin, K.; Liu, Y.; Liu, S.; Li, Y.; Li, Y.; You, X. Neural mechanisms for integrating time and visual velocity cues in a prediction motion task: An fNIRS study. Psychophysiology 2024, 61, e14425. [Google Scholar] [CrossRef] [PubMed]
- Saadati, M.; Nelson, J.; Ayaz, H. Multimodal fNIRS-EEG Classification Using Deep Learning Algorithms for Brain-Computer Interfaces Purposes. In Proceedings of the Advances in Neuroergonomics and Cognitive Engineering; Ayaz, H., Ed.; Springer: Cham, Switzerland, 2020; pp. 209–220. [Google Scholar]
- Kim, S.; Shin, D.Y.; Kim, T.; Lee, S.; Hyun, J.K.; Park, S.M. Enhanced Recognition of Amputated Wrist and Hand Movements by Deep Learning Method Using Multimodal Fusion of Electromyography and Electroencephalography. Sensors 2022, 22, 680. [Google Scholar] [CrossRef]
- Mavridis, C.N.; Baras, J.S.; Kyriakopoulos, K.J. A Human-Robot Interface based on Surface Electroencephalographic Sensors. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 10927–10932. [Google Scholar] [CrossRef]
- Shiman, F.; López-Larraz, E.; Sarasola-Sanz, A.; Irastorza-Landa, N.; Spüler, M.; Birbaumer, N.; Ramos-Murguialday, A. Classification of different reaching movements from the same limb using EEG. J. Neural Eng. 2017, 14, 046018. [Google Scholar] [CrossRef]
- Darmakusuma, R.; Prihatmanto, A.; Indrayanto, A.; Mengko, T. Hybrid Brain-Computer Interface: A Novel Method on the Integration of EEG and sEMG Signal for Active Prosthetic Control. Makara J. Technol. 2018, 22, 28–36. [Google Scholar] [CrossRef]
- Radha, H.; Hassan, A.; Al-Timemy, A. Enhancing Upper Limb Prosthetic Control in Amputees Using Non-invasive EEG and EMG Signals with Machine Learning Techniques. Aro-Sci. J. Koya Univ. 2023, 11, 99–108. [Google Scholar] [CrossRef]
- Aly, H.I.; Youssef, S.; Fathy, C. Hybrid Brain Computer Interface for Movement Control of Upper Limb Prostheses. In Proceedings of the 2018 International Conference on Biomedical Engineering and Applications (ICBEA), Funchal, Portugal, 9–12 July 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Keihani, A.; Mohammadi, A.M.; Marzbani, H.; Nafissi, S.; Haidari, M.R.; Jafari, A.H. Sparse representation of brain signals offers effective computation of cortico-muscular coupling value to predict the task-related and non-task sEMG channels: A joint hdEEG-sEMG study. PLoS ONE 2022, 17, e0270757. [Google Scholar] [CrossRef] [PubMed]
- Schreiter, J.; Mielke, T.; Schott, D.; Thormann, M.; Omari, J.; Pech, M.; Hansen, C. A multimodal user interface for touchless control of robotic ultrasound. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 1429–1436. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, S.; Wang, Z.; Ji, F.; Ming, D. A Novel Modular and Wearable Supernumerary Robotic Finger via EEG-EMG Control with 4-week Training Assessment. In Proceedings of the Intelligent Robotics and Applications, Yantai, China, 22–25 October 2021; Liu, X.J., Nie, Z., Yu, J., Xie, F., Song, R., Eds.; Springer: Cham, Switzerland, 2021; pp. 748–758. [Google Scholar]
- Soto-Florido, M.; Garcia-Cifuentes, E.; Irragorri, A.M.; Mondragon, I.F.; Mendez, D.; Colorado, J.D.; Alvarado-Rojas, C. Identification of Neuromotor Patterns Associated with Hand Rehabilitation Movements from EMG and EEG Signals. In Proceedings of the 2025 International Conference on Rehabilitation Robotics (ICORR), Chicago, IL, USA, 12–16 May 2025; pp. 1307–1312. [Google Scholar] [CrossRef]
Study | Paradigm | Brain Area | Features | Classifier | Type of Study |
---|---|---|---|---|---|
Batula et al. [4] | Motor Imagery | Motor and Supplementary Motor Cortex | Mean, Median, Max, Slope | LDA | Online |
Lee et al. [79] | Motor Execution | Motor Cortex | Mean and Slope | LDA, SVM | Online |
Nazeer et al. [81] | Motor Imagery | Frontal, Motor, and Visual Cortex | z-score channel selection | LDA | Offline |
Sattar et al. [9] | Motor Imagery | Prefrontal Cortex | Signal Peak and Mean, Signal Dip | LDA | Offline |
Asgher et al. [35] | Motor Execution | Prefrontal Cortex | Signal Mean, Slope, Variance, Skewness, Kurtosis, Peak | SVM | Offline |
Ortega & Faisal. [80] | Motor Execution | Sensorimotor Cortex | Modified Beer–Lambert law | LSTM, CNN | Offline |
Study | Paradigm | Brain Area | Features | Classifier | Type of Study |
---|---|---|---|---|---|
Tang et al. [22] | Motor Imagery | Motor Cortex | Channel selection, ERD/ERS | SVM | Offline |
Kim et al. [87] | Motor Execution | Sensorimotor Cortex | ERD/ERS + 2D CNN input | CNN | Offline |
G. Zhu et al. [17] | Motor Execution | Frontal, Motor Areas | Temporal + HbO/HbR features | LDA | Online |
Ortega & Faissal [80] | Motor Execution | Sensorimotor Cortex | Modified Beer–Lambert law | LSTM, CNN | Offline |
Bandara et al. [36] | Motor Execution | Frontal + Parietal | EEG/fNIRS fusion features | Naive Bayes | Offline |
Mavridis et al. [88] | Motor Execution | Frontal/Occipital | EEG error signals | Regression Model | Online |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finnis, R.; Mehmood, A.; Holle, H.; Iqbal, J. Exploring Imagined Movement for Brain–Computer Interface Control: An fNIRS and EEG Review. Brain Sci. 2025, 15, 1013. https://doi.org/10.3390/brainsci15091013
Finnis R, Mehmood A, Holle H, Iqbal J. Exploring Imagined Movement for Brain–Computer Interface Control: An fNIRS and EEG Review. Brain Sciences. 2025; 15(9):1013. https://doi.org/10.3390/brainsci15091013
Chicago/Turabian StyleFinnis, Robert, Adeel Mehmood, Henning Holle, and Jamshed Iqbal. 2025. "Exploring Imagined Movement for Brain–Computer Interface Control: An fNIRS and EEG Review" Brain Sciences 15, no. 9: 1013. https://doi.org/10.3390/brainsci15091013
APA StyleFinnis, R., Mehmood, A., Holle, H., & Iqbal, J. (2025). Exploring Imagined Movement for Brain–Computer Interface Control: An fNIRS and EEG Review. Brain Sciences, 15(9), 1013. https://doi.org/10.3390/brainsci15091013