Electric Field-Coupled Micro/Nano Aeration Biofilter for Rural Sewage Treatment: Performance and Bacterial Community Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Apparatus Setup and Operation
2.2. Water Sample Collection and Analysis Method
2.3. Microbiological Analytical Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Overall Pollutant Removal Performance
3.1.1. Phosphorus Removal Performance
3.1.2. Nitrogen Removal Performance
3.1.3. Organic Matter Removal Performance
3.1.4. Changes in Microenvironmental Indicators
3.2. Analysis of Community Abundance and Diversity
3.3. Composition of Bacterial Community Structure
3.4. Bacterial Communities with Significant Differences
3.5. Potential Functions of Microbial Communities
3.6. Path Analysis of Impacts on Pollutant Removal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Lu, M.-Y.; Yang, S.-S.; Yu, X.-L.; Sun, H.-J.; Pang, J.-W.; Ren, N.-Q.; Ding, J. Decision support framework adapted to local conditions to select technologies for rural domestic sewage treatment in the Yangtze River Economic Belt. J. Clean. Prod. 2023, 426, 139067. [Google Scholar] [CrossRef]
- Cheng, F.; Dai, Z.; Shen, S.; Wang, S.; Lu, X. Characteristics of rural domestic wastewater with source separation. Water Sci. Technol. 2021, 83, 233–246. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G.; Lu, H.; He, L. Planning of water resources management and pollution control for Heshui River watershed, China: A full credibility-constrained programming approach. Sci. Total. Environ. 2015, 524, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, X.; Liang, R.; Xie, J.; Zhou, M. A pilot scale of electrochemical integrated treatment technology and equipment driven by solar energy for decentralized domestic sewage treatment. Chemosphere 2023, 340, 139991. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Liu, Y.; Yu, G.; Zhong, S.; Xia, S.; Sun, Y.; Zou, D. Suitability evaluation of rural domestic sewage treatment processes in cold areas of Northeast China: Regional differences analysis and engineering application. Environ. Manag. 2024, 371, 123213. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zeng, W.; Liu, H.; Zhan, M.; Miao, H.; Hao, X. Achieving deep autotrophic nitrogen removal from low strength ammonia nitrogen wastewater in aeration sponge iron biofilter: Simultaneous nitrification, Feammox, NDFO and Anammox. Chem. Eng. J. 2023, 460, 141755. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Dong, W.; Chang, Y.; Yan, G.; Chu, Z.; Ling, Y.; Wang, Z.; Fan, T.; Li, C. Nitrogen removal and microbial community for the treatment of rural domestic sewage with low C/N ratio by A/O biofilter with Arundo donax as carbon source and filter media. J. Water Process. Eng. 2020, 37, 101509. [Google Scholar] [CrossRef]
- Li, S.; Li, L.; Tang, F.; Sui, T.; Chang, Z.; Li, K.; Mu, J. Performances and mechanisms of full-scale operation of deep nitrogen removal from domestic sewage in Zn-layered double hydroxides modified denitrification biofilter system. J. Environ. Chem. Eng. 2024, 12, 113559. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, M.; Chen, B.; Sun, L.; Lu, H. Microbubble-and nanobubble-aeration for upgrading conventional activated sludge process: A review. Bioresour. Technol. 2022, 362, 127826. [Google Scholar] [CrossRef]
- Herrmann-Heber, R.; Reinecke, S.; Hampel, U. Dynamic aeration for improved oxygen mass transfer in the wastewater treatment process. Chem. Eng. J. 2020, 386, 122068. [Google Scholar] [CrossRef]
- Xiao, W.; Xu, G.; Li, G. Role of shear stress in biological aerated filter with nanobubble aeration: Performance, biofilm structure and microbial community. Bioresour. Technol. 2021, 325, 124714. [Google Scholar] [CrossRef]
- ElNaker, N.A.; Hasan, S.W.; Yousef, A.F. Impact of current density on the function and microbial community structure in electro-bioreactors. J. Hazard. Mater. 2019, 368, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Huang, Z.; Liu, L.; Feng, H.; Lan, R.; Hong, J. Electrocatalytic coupled biofilter for treating cyclohexanone-containing wastewater: Degradation, mechanism and optimization. Environ. Pollut. 2024, 358, 124533. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Su, J.; Liu, S.; Wei, H.; Zhang, P.; Qi, S. Biofilter constructed of iron–carbon, ceramsite and biochar to synchronous removal of nitrate and phosphate: Treatment optimization and analysis of microbial community difference. J. Water Process. Eng. 2024, 68, 106309. [Google Scholar] [CrossRef]
- Lin, H.; Huang, X.; Chang, J.; Li, B.; Bai, Y.; Su, B.; Shi, L.; Dong, Y. Improving sludge settling performance of secondary settling tank and simultaneously adsorbing nitrate and phosphate with surfactant modified zeolite (SMZ) ballasted flocculation. J. Environ. Chem. Eng. 2023, 11, 109650. [Google Scholar] [CrossRef]
- Samadikun, B.P.; Oktiawan, W.; Rais, A.K.; Taqiyya, T.A.; Amrullah, M.R.; Basyar, C. Effect of electrode configuration and voltage variations on electrocoagulation process in phosphate removal of laundry wastewater. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 3rd International Conference on Environment, Sustainability Issues, and Community Development, Semarang, Indonesia, 9 September 2021; IOP Publishing: Bristol, UK, 2021; Volume 896, p. 12025. [Google Scholar]
- Xu, Y.; Li, Q.; Tang, Y.; Huang, H.; Ren, H. Electrocatalytic denitrification biofilter for advanced purification of chlorophenols via ceramsite-based Ti/SnO2–Sb particle electrode: Performance, microbial community structure and mechanism. Environ. Pollut. 2024, 346, 123594. [Google Scholar] [CrossRef]
- Zhang, P.; Reti, H.; Dongkai, Z.; Yiqun, H.E.; Zhiyuan, B.A.I. Synergism of novel sequence bio-ecological process and biological aerated filter for sewage treatment in cold climate. Chin. J. Chem. Eng. 2011, 19, 881–890. [Google Scholar] [CrossRef]
- Zhang, R.; Hao, L.; Cheng, K.; Xin, B.; Sun, J.; Guo, J. Research progress of electrically-enhanced membrane bioreactor (EMBR) in pollutants removal and membrane fouling alleviation. Chemosphere 2023, 331, 138791. [Google Scholar] [CrossRef]
- Cao, K.; Huang, X.; Wang, C.-D.; Yu, J.-H.; Gui, W.-J.; Zhang, S. Refractory degradable dissolved organic matter (R-DOM) driving nitrogen removal by the electric field coupled iron-carbon biofilter (E-ICBF): Performance and microbial mechanisms. Sci. Total. Environ. 2024, 936, 173374. [Google Scholar] [CrossRef]
- Li, J.; Zheng, L.; Ye, C.; Zhou, Z.; Ni, B.; Zhang, X.; Liu, H. Unveiling organic loading shock-resistant mechanism in a pilot-scale moving bed biofilm reactor-assisted dual-anaerobic-anoxic/oxic system for effective municipal wastewater treatment. Bioresour. Technol. 2022, 347, 126339. [Google Scholar] [CrossRef]
- Bai, M.; Jia, Y.; Liu, Z.; Yu, H.; Gao, C.; Liu, Z. Degradation mechanism of organic contaminants in complex contaminated groundwater in landfill sites with oxygen micro-nano-bubbles aeration. J. Water Process. Eng. 2025, 69, 106635. [Google Scholar] [CrossRef]
- Zhang, R.; Li, M.; Ma, H.; Wang, Y.; Xin, B.; Guo, J. Performance of a novel annular electric field membrane bioreactor and its membrane fouling control in treating catering wastewater. Chemosphere 2024, 368, 143756. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, L.; Yang, F. High flux carbon fiber cloth membrane with thin catalyst coating integrates bio-electricity generation in wastewater treatment. J. Membr. Sci. 2016, 505, 130–137. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Y.; Liu, Y.; Xue, X.; Fu, C.; Xiong, L.; Peng, L.; Yang, S.; Ma, R. Electromagnetic field coupled vertical flow constructed wetlands for rural sewage treatment: Performance, microbial community characteristics and metabolic pathways. J. Environ. Manag. 2025, 373, 123596. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, Y.W.; Zhang, Q.; Yu, Y.X.; Yang, L.Y. High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter. Water Sci. Technol. 2016, 74, 714–721. [Google Scholar] [CrossRef]
- Mei, J.; Zhou, W.; Wang, X.; Gao, Y.; Zhu, Z. Study on the enhanced phosphorus removal by electrolysis coupled with biochar biofilter. J. Water Process. Eng. 2025, 69, 106819. [Google Scholar] [CrossRef]
- Li, S.; Guo, Y.; Zhang, X.; Feng, L.; Yong, X.; Xu, J.; Liu, Y.; Huang, X. Advanced nitrogen and phosphorus removal by the symbiosis of PAOs, DPAOs and DGAOs in a pilot-scale A2O/A+ MBR process with a low C/N ratio of influent. Water Res. 2023, 229, 119459. [Google Scholar] [CrossRef]
- Gong, B.; Wang, Y.; Wang, J.; Huang, W.; Zhou, J.; He, Q. Intensified nitrogen and phosphorus removal by embedding electrolysis in an anaerobic–anoxic–oxic reactor treating low carbon/nitrogen wastewater. Bioresour. Technol. 2018, 256, 562–565. [Google Scholar] [CrossRef]
- Gao, Y.; Zeng, D.; Liu, C.; Huang, X. Simultaneous nitrogen and phosphorus removal in water supply sludge biofilter: Focus on the impact of backwashing and microbial community analysis. Process. Saf. Environ. Prot. 2024, 189, 1323–1332. [Google Scholar] [CrossRef]
- Ao, Q.; Ni, Z.; Su, L.; Zhao, H.; Zhao, X. Effect of iron-carbon microelectrolysis and magnetite on biological nitrogen removal: Analysis of microbial communities, functional genes, and mechanisms. Environ. Res. 2025, 274, 121229. [Google Scholar] [CrossRef]
- Cai, Z.; Nong, R.; Dong, S.; Zhou, G.; He, Y.; Wang, F.; Gao, S.; Tang, Q.; Su, C. Understanding the potential role of microbial electrolysis cells in promoting electron transfer and microbial metabolism during the drying period in treating metformin-containing wastewater with an adsorption-biological coupling system. J. Environ. Manag. 2025, 380, 125027. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Li, Y.; Li, X.; Li, L.; Yuan, S.; Dai, X. Enhancing simultaneous nitrogen and phosphorus removal from municipal wastewater using micron zeolite powder carrier and hydrocyclone separator: Microbial distribution and correlation analysis. Bioresour. Technol. 2025, 431, 132598. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, Y.; Wu, W.; Wang, J. Application of pilot-scale two-stage ZVI-based biofilter for advanced nitrogen and phosphorus removal from the actual secondary effluent under high DO conditions: Focusing on the effect of DO on electron transfer and Fe cycle. J. Clean. Prod. 2025, 492, 144892. [Google Scholar] [CrossRef]
- Burns, M.; Qin, M. Ammonia recovery from organic nitrogen in synthetic dairy manure with a microbial fuel cell. Chemosphere 2023, 325, 138388. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhou, Y.; Huang, Z.; Su, C.; Wan, X.; Xu, Y.; Lu, M.; Lin, X. Effects of sulfate concentration and external voltage on operation efficiency, sludge characteristics, and microbial community of a bioelectrochemical system. Biochem. Eng. J. 2023, 198, 109011. [Google Scholar] [CrossRef]
- Zhou, Y.; Tan, W.; Ye, J.; Xiao, Y.; Liu, Y.; Liu, C.; Feng, Q.; Xu, L. Nickel-doped porous carbon anode microbial fuel cell to enhance the performance in wastewater treatment. J. Water Process. Eng. 2025, 69, 106592. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Z.; Xu, Y.; He, F.; Zhang, J.; Li, T. MgFe-LDHs/Vallisneria natans combined system for simultaneous elimination of endogenous N and P pollution in eutrophic water: Performance, synergetic mechanism, and metagenomics analysis. Environ. Res. 2025, 279, 121798. [Google Scholar] [CrossRef]
- Xing, X.; Zhu, J.; Li, Z.; Zhang, G.; Li, W.; Tan, H.; Xie, B.; Yang, Y.; Zhao, S.; Ding, Y.; et al. Increasing the light–dark ratio enhances nitrogen removal performance by altering the mechanism in photogranules. Bioresour. Technol. 2025, 427, 132400. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Wang, F.; Su, T.; Yang, S.; Ai, S.; Bian, D.; Huo, H. Study on the effect and regularity of plating parts cleaning wastewater by enhanced aerobic process with high-density bacterial flora. J. Environ. Manag. 2024, 357, 120653. [Google Scholar] [CrossRef]
- Tang, L.; Gao, M.; Liang, S.; Wang, S.; Wang, X. Enhanced biological phosphorus removal sustained by aeration-free filamentous microalgal-bacterial granular sludge. Water Res. 2024, 253, 121315. [Google Scholar] [CrossRef]
- Yu, G.; Shen, G.; Zhao, L.; Liu, W.; Zhao, W.; Wang, F.; Ai, S.; Bian, D.; Zou, D. Sewage treatment effect of MPSRs under different influent NH4+-N concentrations and its mechanism of nitrogen removal. J. Environ. Chem. Eng. 2025, 13, 115521. [Google Scholar] [CrossRef]
- Donato, M.A.; Souza, A.d.O.; Pacheco, A.; Silva, L.d.C.; Svenar, S.; Nagalli, A.; Passig, F.H.; Bernardelli, J.K.B.; de Carvalho, K.Q. Intensifying intermittent aeration for optimizing nutrient and hormone removal in vertical-flow constructed wetlands filled with aerated concrete. Chemosphere 2025, 370, 143941. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Yu, Y.; Liu, T.; Xi, H.; Zhou, Y. Performance of microaeration hydrolytic acidification process in the pretreatment of 2-butenal manufacture wastewater. J. Hazard. Mater. 2019, 369, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yuan, J.; Bi, G.; Song, R.; Chen, H.; Chen, B.; Yang, F.; Wang, Y.; Wang, L. Fe (II)/Fe (III) cycle actuating a novel process to remove organics in waste pit mud from Maotai: Performance and mechanism. J. Water Process. Eng. 2024, 62, 105365. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, W.; Thi, N.T.; Di, H.J.; Lian, Y.; Yang, J.; A, D.; Qiu, R. Exploring the efficiency of tide flow constructed wetlands for treating mariculture wastewater: A comprehensive study on antibiotic removal mechanism under salinity stress. Water Res. 2024, 258, 121738. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, Y.; Dong, H.; Min, J.; Xu, H.; Sun, D.; Liu, X.; Dang, Y.; Qiu, B.; Mennella, T.; et al. Evidence of autotrophic direct electron transfer denitrification (DETD) by Thiobacillus species enriched on biocathodes during deep polishing of effluent from a municipal wastewater treatment plant. Chem. Eng. J. 2024, 495, 153389. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Y.; Li, X. Removal of pollutants and accumulation of high-value cell inclusions in a batch reactor containing Rhodopseudomonas for treating real heavy oil refinery wastewater. J. Environ. Manag. 2023, 345, 118834. [Google Scholar] [CrossRef]
- Zou, L.; Zhou, M.; Luo, Z.; Zhang, H.; Yang, Z.; Cheng, H.; Li, R.; He, Q.; Ai, H. Selection and synthesization of multi–carbon source composites to enhance simultaneous nitrification–denitrification in treating low C/N wastewater. Chemosphere 2022, 288, 132567. [Google Scholar] [CrossRef]
- Xie, J.; Zou, X.; Chang, Y.; Chen, C.; Ma, J.; Liu, H.; Cui, M.-H.; Zhang, T.C. Bioelectrochemical systems with a cathode of stainless-steel electrode for treatment of refractory wastewater: Influence of electrode material on system performance and microbial community. Bioresour. Technol. 2021, 342, 125959. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, Y.; Li, W.; Zhang, Q. Low-carbon and high-ammonia nitrogen dispersed wastewater treatment: From “normal-sludge” to “low-sludge” to “no-sludge” modes. Environ. Res. 2023, 233, 116498. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, Y.; Feng, Y.; Wang, X.; Li, X.; Yu, Y. Hydraulic regulation of electrocatalytic bio-coupled technology for advanced electroplating wastewater treatment: Degradation, microbial communities and bio-promoting mechanisms. J. Water Process. Eng. 2025, 71, 107400. [Google Scholar] [CrossRef]
- Ren, Z.; Ma, J.; Ding, P.; Zhao, C.; Xiong, F.; Li, E.; Zhou, X.; Zhang, Y.; Chu, H. Autotrophic denitrification in coking wastewater treatment systems: Comprehensive comparative study of full-scale systems in China. Bioresour. Technol. 2025, 427, 132442. [Google Scholar] [CrossRef]
OTUs | Chao | ACE | Shannon | Simpson | |
---|---|---|---|---|---|
MABF | 4575 | 3705.68 | 3996.68 | 6.42 | 0.99 |
E-MABF | 6275 | 4893.09 | 5351.28 | 6.91 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, T.; Li, J.; Liu, Y.; Yang, S.; Zhu, J.; Guo, P.; Wang, Q. Electric Field-Coupled Micro/Nano Aeration Biofilter for Rural Sewage Treatment: Performance and Bacterial Community Analysis. Sustainability 2025, 17, 8489. https://doi.org/10.3390/su17188489
Zhu T, Li J, Liu Y, Yang S, Zhu J, Guo P, Wang Q. Electric Field-Coupled Micro/Nano Aeration Biofilter for Rural Sewage Treatment: Performance and Bacterial Community Analysis. Sustainability. 2025; 17(18):8489. https://doi.org/10.3390/su17188489
Chicago/Turabian StyleZhu, Tongxuan, Jinlei Li, Yungen Liu, Silin Yang, Junlin Zhu, Pengcheng Guo, and Qi Wang. 2025. "Electric Field-Coupled Micro/Nano Aeration Biofilter for Rural Sewage Treatment: Performance and Bacterial Community Analysis" Sustainability 17, no. 18: 8489. https://doi.org/10.3390/su17188489
APA StyleZhu, T., Li, J., Liu, Y., Yang, S., Zhu, J., Guo, P., & Wang, Q. (2025). Electric Field-Coupled Micro/Nano Aeration Biofilter for Rural Sewage Treatment: Performance and Bacterial Community Analysis. Sustainability, 17(18), 8489. https://doi.org/10.3390/su17188489