Comparative Effectiveness of Treatments for Shoulder Subluxation After Stroke: A Systematic Review and Network Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Quality Assessment
2.4. Data Synthesis and Statistical Analysis
3. Results
3.1. Study Identification and Characteristics
3.2. Risk of Bias and Publication Bias Assessment
3.3. Evaluation of Inconsistency
3.4. Effects of Shoulder Subluxation Distance
3.5. Effects of Shoulder Pain
3.6. Effects of Functional Recovery Measured by FMA
3.7. Effects of Passive Range of Motion of the Shoulder
3.8. Safety/Adverse Events
3.9. Grading of Evidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NMES | Neuromuscular electrical stimulation |
rPMS | Repetitive peripheral magnetic stimulation |
PROM | Passive range of motion |
FMA | Fugl–Meyer assessment |
FMA-UE | Fugl–Meyer Assessment for Upper Extremity |
VAS | Visual Analog Scale |
NRS | Numerical Rating Scale |
SUCRA | Surface under the cumulative ranking curve |
RCT | Randomized controlled trial |
RoB2 | Revised Cochrane Risk of Bias Tool for Randomized Trials |
CINeMA | Confidence in Network Meta-Analysis |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
CI | Confidence interval |
SMD | Standardized mean difference |
References
- Paci, M.; Nannetti, L.; Rinaldi, L.A. Glenohumeral subluxation in hemiplegia: An overview. J. Rehabil. Res. Dev. 2005, 42, 557–568. [Google Scholar] [CrossRef]
- Kumar, P.; Swinkels, A. A critical review of shoulder subluxation and its association with other post-stroke complications. Phys. Ther. Rev. 2009, 14, 13–25. [Google Scholar] [CrossRef]
- Nadler, M.; Pauls, M. Shoulder orthoses for the prevention and reduction of hemiplegic shoulder pain and subluxation: Systematic review. Clin. Rehabil. 2017, 31, 444–453. [Google Scholar] [CrossRef]
- Huang, Y.C.; Leong, C.P.; Wang, L.; Wang, L.Y.; Yang, Y.C.; Chuang, C.Y.; Hsin, Y.J. Effect of kinesiology taping on hemiplegic shoulder pain and functional outcomes in subacute stroke patients: A randomized controlled study. Eur. J. Phys. Rehabil. Med. 2016, 52, 774–781. [Google Scholar]
- Lee, J.H.; Baker, L.L.; Johnson, R.E.; Tilson, J.K. Effectiveness of neuromuscular electrical stimulation for management of shoulder subluxation post-stroke: A systematic review with meta-analysis. Clin. Rehabil. 2017, 31, 1431–1444. [Google Scholar] [CrossRef]
- Minn, Y.-K.; Cho, S.-J.; Kim, S.-G.; Kwon, K.-H.; Kim, J.-H.; Oh, M.-S.; Chu, M.-K.; Lee, J.-H.; Hwang, S.H.; Lee, B.-C. Long-term outcomes of acute ischemic stroke in patients aged 80 years and older. Yonsei Med. J. 2008, 49, 400–404. [Google Scholar] [CrossRef]
- Kumar, P.; Kassam, J.; Denton, C.; Taylor, E.; Chatterley, A. Risk factors for inferior shoulder subluxation in patients with stroke. Phys. Ther. Rev. 2010, 15, 3–11. [Google Scholar] [CrossRef]
- Dyer, S.; Mordaunt, D.A.; Adey-Wakeling, Z. Interventions for post-stroke shoulder pain: An overview of systematic reviews. Int. J. Gen. Med. 2020, 13, 1411–1426. [Google Scholar] [CrossRef] [PubMed]
- Arya, K.N.; Pandian, S.; Puri, V. Rehabilitation methods for reducing shoulder subluxation in post-stroke hemiparesis: A systematic review. Top. Stroke Rehabil. 2018, 25, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Chen, T.W.; Weng, M.C.; Wang, W.T.; Wang, Y.L.; Huang, M.H. The effect of electroacupuncture on shoulder subluxation for stroke patients. Kaohsiung J. Med. Sci. 2000, 16, 525–532. [Google Scholar]
- de Sire, A.; Moggio, L.; Demeco, A.; Fortunato, F.; Spanò, R.; Aiello, V.; Marotta, N.; Ammendolia, A. Efficacy of rehabilitative techniques in reducing hemiplegic shoulder pain in stroke: Systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2022, 65, 101602. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, K.; Kagaya, H.; Itoh, R.; Endo, C.; Tanikawa, H.; Maeda, H. Repetitive peripheral magnetic stimulation for preventing shoulder subluxation after stroke: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2024, 60, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Koo, M.J. Prisma 2020 statement and guidelines for systematic review and meta-analysis articles, and their underlying mathematics: Life cycle committee recommendations. Life Cycle 2022, 2, e9. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The prisma 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, n71. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M. Rob 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, 14898. [Google Scholar] [CrossRef]
- Nikolakopoulou, A.; Higgins, J.P.; Papakonstantinou, T.; Chaimani, A.; Del Giovane, C.; Egger, M.; Salanti, G. Cinema: An approach for assessing confidence in the results of a network meta-analysis. PLoS Med. 2020, 17, e1003082. [Google Scholar] [CrossRef]
- Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Dias, S.; Welton, N.J.; Caldwell, D.M.; Ades, A.E. Checking consistency in mixed treatment comparison meta-analysis. Stat. Med. 2010, 29, 932–944. [Google Scholar] [CrossRef]
- White, I.R.; Barrett, J.K.; Jackson, D.; Higgins, J.P. Consistency and inconsistency in network meta-analysis: Model estimation using multivariate meta-regression. Res. Synth. Methods 2012, 3, 111–125. [Google Scholar] [CrossRef]
- Mbuagbaw, L.; Rochwerg, B.; Jaeschke, R.; Heels-Andsell, D.; Alhazzani, W.; Thabane, L.; Guyatt, G.H. Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst. Rev. 2017, 6, 79. [Google Scholar] [CrossRef]
- Shim, S.; Yoon, B.H.; Shin, I.S.; Bae, J.M. Network meta-analysis: Application and practice using stata. Epidemiol. Health 2017, 39, e2017047. [Google Scholar] [CrossRef]
- van Bladel, A.; Lambrecht, G.; Oostra, K.M.; Vanderstraeten, G.; Cambier, D. A randomized controlled trial on the immediate and long-term effects of arm slings on shoulder subluxation in stroke patients. Eur. J. Phys. Rehabil. Med. 2017, 53, 400–409. [Google Scholar] [CrossRef]
- Koyuncu, E.; Nakipoğlu-Yüzer, G.F.; Doğan, A.; Ozgirgin, N. The effectiveness of functional electrical stimulation for the treatment of shoulder subluxation and shoulder pain in hemiplegic patients: A randomized controlled trial. Disabil. Rehabil. 2010, 32, 560–566. [Google Scholar] [CrossRef]
- Sui, M.; Jiang, N.; Yan, L.; Liu, J.; Luo, B.; Zhang, C.; Yan, T.; Xiang, Y.; Li, G. Effect of electroacupuncture on shoulder subluxation in poststroke patients with hemiplegic shoulder pain: A sham-controlled study using multidimensional musculoskeletal ultrasound assessment. Pain. Res. Manag. 2021, 2021, 5329881. [Google Scholar] [CrossRef] [PubMed]
- Lavi, C.; Elboim-Gabyzon, M.; Naveh, Y.; Kalichman, L. A combination of long-duration electrical stimulation with external shoulder support during routine daily activities in patients with post-hemiplegic shoulder subluxation: A randomized controlled study. Int. J. Env. Res. Public Health 2022, 19, 9765. [Google Scholar] [CrossRef] [PubMed]
- Linn, S.L.; Granat, M.H.; Lees, K.R. Prevention of shoulder subluxation after stroke with electrical stimulation. Stroke 1999, 30, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Yim, J.; Kim, B. Effectiveness of shoulder taping in treating hemiplegic shoulder subluxation: A randomized controlled study of 35 patients. Med. Sci. Monit. 2024, 30, e944222. [Google Scholar] [CrossRef]
- Chatterjee, S.; Hayner, K.A.; Arumugam, N.; Goyal, M.; Midha, D.; Arora, A.; Sharma, S.; Kumar, S.P. The california tri-pull taping method in the treatment of shoulder subluxation after stroke: A randomized clinical trial. N. Am. J. Med. Sci. 2016, 8, 175–182. [Google Scholar]
- Yang, L.; Yang, J.; He, C. The effect of kinesiology taping on the hemiplegic shoulder pain: A randomized controlled trial. J. Healthc. Eng. 2018, 2018, 8346432. [Google Scholar] [CrossRef]
- Faghri, P.D.; Rodgers, M.M.; Glaser, R.M.; Bors, J.G.; Ho, C.; Akuthota, P. The effects of functional electrical stimulation on shoulder subluxation, arm function recovery, and shoulder pain in hemiplegic stroke patients. Arch. Phys. Med. Rehabil. 1994, 75, 73–79. [Google Scholar] [CrossRef]
- Karaahmet, O.Z.; Gurcay, E.; Unal, Z.K.; Cankurtaran, D.; Cakci, A. Effects of functional electrical stimulation-cycling on shoulder pain and subluxation in patients with acute-subacute stroke: A pilot study. Int. J. Rehabil. Res. 2019, 42, 36–40. [Google Scholar] [CrossRef]
- Türkkan, C.; Öztürk, G.T.; Uğurlu, F.G.; Ersöz, M. Ultrasonographic assessment of neuromuscular electrical stimulation efficacy on glenohumeral subluxation in patients with hemiplegia: A randomized-controlled study. Turk. J. Phys. Med. Rehabil. 2017, 63, 287–292. [Google Scholar] [CrossRef]
- Lakse, E.; Gunduz, B.; Erhan, B.; Celik, E.C. The effect of local injections in hemiplegic shoulder pain: A prospective, randomized, controlled study. Am. J. Phys. Med. Rehabil. 2009, 88, 805–811, quiz 812–804, 851. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, X.; Bai, Y. Efficacy of functional electrical stimulation for hemiplegic shoulder pain: A systematic review and meta-analysis. Healthc. Rehabil. 2025, 1, 100025. [Google Scholar] [CrossRef]
- Ravichandran, H.; Janakiraman, B.; Sundaram, S.; Fisseha, B.; Gebreyesus, T.; Yitayeh Gelaw, A. Systematic review on effectiveness of shoulder taping in hemiplegia. J. Stroke Cerebrovasc. Dis. 2019, 28, 1463–1473. [Google Scholar] [CrossRef]
- Huang, Y.C.; Chang, K.H.; Liou, T.H.; Cheng, C.W.; Lin, L.F.; Huang, S.W. Effects of kinesio taping for stroke patients with hemiplegic shoulder pain: A double-blind, randomized, placebo-controlled study. J. Rehabil. Med. 2017, 49, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Zhao, Z.; Zhang, S.; Xiao, T.; Li, Y. Effect of kinesio taping on hemiplegic shoulder pain: A systematic review and meta-analysis of randomized controlled trials. Clin. Rehabil. 2021, 35, 317–331. [Google Scholar] [CrossRef]
- Cho, Y.H.; Cho, K.; Park, S.J. Effects of trunk rehabilitation with kinesio and placebo taping on static and dynamic sitting postural control in individuals with chronic stroke: A randomized controlled trial. Top. Stroke Rehabil. 2020, 27, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Rah, U.W.; Yoon, S.H.; Moon, D.J.; Kwack, K.S.; Hong, J.Y.; Lim, Y.C.; Joen, B. Subacromial corticosteroid injection on poststroke hemiplegic shoulder pain: A randomized, triple-blind, placebo-controlled trial. Arch. Phys. Med. Rehabil. 2012, 93, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.-S.; Lee, S.-J. Abduction motion analysis of hemiplegic shoulders with a fluoroscopic guide. Yonsei Med. J. 2007, 48, 247–254. [Google Scholar] [CrossRef]
- Jeon, W.H.; Park, G.W.; Jeong, H.J.; Sim, Y.J. The comparison of effects of suprascapular nerve block, intra-articular steroid injection, and a combination therapy on hemiplegic shoulder pain: Pilot study. Ann. Rehabil. Med. 2014, 38, 167–173. [Google Scholar] [CrossRef]
- Yasar, E.; Vural, D.; Safaz, I.; Balaban, B.; Yilmaz, B.; Goktepe, A.S.; Alaca, R. Which treatment approach is better for hemiplegic shoulder pain in stroke patients: Intra-articular steroid or suprascapular nerve block? A randomized controlled trial. Clin. Rehabil. 2011, 25, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Snels, I.A.; Beckerman, H.; Twisk, J.W.; Dekker, J.H.; Peter De, K.; Koppe, P.A.; Lankhorst, G.J.; Bouter, L.M. Effect of triamcinolone acetonide injections on hemiplegic shoulder pain: A randomized clinical trial. Stroke 2000, 31, 2396–2401. [Google Scholar] [CrossRef]
- Ratnasabapathy, Y.; Broad, J.; Baskett, J.; Pledger, M.; Marshall, J.; Bonita, R. Shoulder pain in people with a stroke: A population-based study. Clin. Rehabil. 2003, 17, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Zorowitz, R.D.; Hughes, M.B.; Idank, D.; Ikai, T.; Johnston, M.V. Shoulder pain and subluxation after stroke: Correlation or coincidence? Am. J. Occup. Ther. 1996, 50, 194–201. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Intervention | Frequency (Hz) | Pulse Width (µs) | Session Duration & Frequency | Target Muscles |
---|---|---|---|---|---|
Canan Turkkan (2017) [32] | NMES | 25 | 250 | 60 min/session, 5 days/wk, 4 wks (total 20 sessions) | Supraspinatus, upper trapezius, posterior deltoid |
Chen Lavi (2022) [25] | NMES | 35 | 250 | 30 min first week, gradually increasing by 10 min each week up to a max of 60 min/period from week 4), 5 days/wk, 6 wks (up to 3 h/day) | Supraspinatus, posterior deltoid |
Engin Koyuncu (2010) [23] | FES | 36 | 250 | 1 h/day, 5 times/wk, 4 wks (total 20 sessions) | Supraspinatus, posterior deltoid |
Pouran D. Faghri (1994) [30] | FES | 35 | NR | 1.5 to 6 h/day, 7 days/wk, 6 wks. Muscle contraction/relaxation ratio gradually increased (from 10/12 s ON-OFF to 30/2 s ON-OFF) | Posterior deltoid (active electrode), Supraspinatus (passive electrode) |
Sandra L. Linn (1999) [26] | ES | 30 | 300 | 30–60 min/session, 4 sessions/day, 4 wks (30 min week 1, 45 min weeks 2–3, 60 min week 4) | Supraspinatus, posterior deltoid |
Ozgur Z. Karaahmet (2018) [31] | FES-cycling | 20 | 300 | 30 min/day (5 min warm-up, 15 min FES-cycling, 5 min cool-down), 5 times/wk, 4 wks (total 20 sessions) | Anterior deltoid, posterior deltoid, biceps, triceps |
Kenta Fujimura (2024) [12] | rPMS | 30 | 350 | 20 min/day (2 s ON @30 Hz, 3 s OFF, total 6000 pulses/muscle), 6 wks | Supraspinatus, posterior deltoid/infraspinatus |
(A) Shoulder Subluxation Distance | ||||||
---|---|---|---|---|---|---|
rPMS | 1.64 (−2.01,5.29) | No data | −0.18 (−4.91,4.55) | −1.24 (−4.91,2.42) | 0.81 (−4.31,5.93) | 0.96 (−2.02,3.94) |
−1.64 (−5.29,2.01) | Taping | No data | −1.83 (−6.07,2.42) | −2.89 (−5.89,0.12) | −0.83 (−5.50,3.84) | −0.68 (−2.80,1.44) |
No data | No data | Steroid | No data | No data | No data | No data |
0.18 (−4.55,4.91) | 1.83 (−2.42,6.07) | No data | Sling | 1.06 (−1.93,4.05) | 1.00 (−4.56,6.55) | 1.15 (−2.53,4.82) |
1.24 (−2.42,4.91) | 2.89 (−0.12,5.89) | No data | −1.06 (−4.05,1.93) | NMES | 2.06 (−2.62,6.74) | 2.21 (0.08,4.34) * |
−0.81 (−5.93,4.31) | 0.83 (−3.84,5.50) | No data | −1.00 (−6.55,4.56) | −2.06 (−6.74,2.62) | Electroacupuncture | 0.15 (−4.02,4.32) |
−0.96 (−3.94,2.02) | 0.68 (−1.44,2.80) | No data | −1.15 (−4.82,2.53) | −2.21 (−4.34,−0.08) * | −0.15 (−4.32,4.02) | Standard |
(B) Pain at Rest | ||||||
rPMS | 0.35 (−1.96,2.65) | −0.74 (−3.02,1.53) | −0.11 (−2.37,2.14) | −0.14 (−2.15,1.87) | −0.39 (−3.18,2.41) | 0.06 (−1.54,1.66) |
−0.35 (−2.65,1.96) | Taping | −1.09 (−3.41,1.23) | −0.46 (−2.76,1.84) | −0.49 (−2.55,1.57) | −0.73 (−3.57,2.10) | −0.29 (−1.95,1.38) |
0.74 (−1.53,3.02) | 1.09 (−1.23,3.41) | Steroid | 0.63 (−1.64,2.89) | 0.60 (−1.42,2.62) | 0.36 (−2.45,3.16) | 0.80 (−0.82,2.42) |
0.11 (−2.14,2.37) | 0.46 (−1.84,2.76) | −0.63 (−2.89,1.64) | Sling | −0.03 (−1.45,1.39) | −0.27 (−3.06,2.52) | 0.17 (−1.42,1.76) |
0.14 (−1.87,2.15) | 0.49 (−1.57,2.55) | −0.60 (−2.62,1.42) | 0.03 (−1.39,1.45) | NMES | −0.24 (−2.84,2.35) | 0.20 (−1.02,1.42) |
0.39 (−2.41,3.18) | 0.73 (−2.10,3.57) | −0.36 (−3.16,2.45) | 0.27 (−2.52,3.06) | 0.24 (−2.35,2.84) | Electroacupuncture | 0.44 (−1.85,2.74) |
−0.06 (−1.66,1.54) | 0.29 (−1.38,1.95) | −0.80 (−2.42,0.82) | −0.17 (−1.76,1.42) | −0.20 (−1.42,1.02) | −0.44 (−2.74,1.85) | Standard |
(C) Pain During Activity | ||||||
rPMS | −1.25 (−2.30,−0.20) * | −1.01 (−1.64,−0.39) * | −0.52 (−1.54,0.49) | −0.45 (−0.98,0.09) | No data | −0.21 (−0.62,0.20) |
1.25 (0.20,2.30) * | Taping | 0.24 (−0.84,1.31) | 0.73 (−0.61,2.07) | 0.80 (−0.22,1.83) | No data | 1.04 (0.08,2.00) * |
1.01 (0.39,1.64) * | −0.24 (−1.31,0.84) | Steroid | 0.49 (−0.55,1.53) | 0.57 (−0.02,1.15) | No data | 0.81 (0.34,1.28) * |
0.52 (−0.49,1.54) | −0.73 (−2.07,0.61) | −0.49 (−1.53,0.55) | Sling | 0.08 (−0.92,1.07) | No data | 0.32 (−0.61,1.25) |
0.45 (−0.09,0.98) | −0.80 (−1.83,0.22) | −0.57 (−1.15,0.02) | −0.08 (−1.07,0.92) | NMES | No data | 0.24 (−0.11,0.59) |
No data | No data | No data | No data | No data | Electroacupuncture | No data |
0.21 (−0.20,0.62) | −1.04 (−2.00,−0.08) * | −0.81 (−1.28,−0.34) * | −0.32 (−1.25,0.61) | −0.24 (−0.59,0.11) | No data | Standard |
(D) Fugl–Meyer Assessment | ||||||
rPMS | No data | No data | No data | No data | No data | No data |
No data | Taping | No data | 1.75 (0.70,2.79) * | 1.08 (0.31,1.85) * | No data | 0.97 (−0.06,2.00) |
No data | No data | Steroid | No data | No data | No data | No data |
No data | −1.75 (−2.79,−0.70) * | No data | Sling | −0.67 (−1.37,0.04) | No data | −0.78 (−1.36,−0.20) * |
No data | −1.08 (−1.85,−0.31) * | No data | 0.67 (−0.04,1.37) | NMES | No data | 0.11 (−0.58,0.80) |
No data | No data | No data | No data | No data | Electroacupuncture | No data |
No data | −0.97 (−2.00,0.06) | No data | 0.78 (0.20,1.36) * | −0.11 (−0.80,0.58) | No data | Standard |
(E) Shoulder PROM | ||||||
rPMS | No data | No data | No data | No data | No data | No data |
No data | Taping | No data | No data | No data | No data | No data |
No data | No data | Steroid | 1.80 (1.15,2.46) * | 1.91 (0.77,3.04) * | No data | 2.48 (1.68,3.28) * |
No data | No data | −1.80 (−2.46,−1.15) * | Sling | 0.10 (−0.82,1.03) | No data | 0.68 (0.21,1.15) * |
No data | No data | −1.91 (−3.04,−0.77) * | −0.10 (−1.03,0.82) | NMES | No data | −0.58 (−1.61,0.46) |
No data | No data | No data | No data | No data | Electroacupuncture | No data |
No data | No data | −2.48 (−3.28,−1.68) * | −0.68 (−1.15,−0.21) * | 0.58 (−0.46,1.61) | No data | Standard |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-M.; Park, H.-J.; Yoon, S.-Y.; Kim, Y.-W.; Shin, J.-I.; Lee, S.-C. Comparative Effectiveness of Treatments for Shoulder Subluxation After Stroke: A Systematic Review and Network Meta-Analysis. J. Clin. Med. 2025, 14, 6913. https://doi.org/10.3390/jcm14196913
Park J-M, Park H-J, Yoon S-Y, Kim Y-W, Shin J-I, Lee S-C. Comparative Effectiveness of Treatments for Shoulder Subluxation After Stroke: A Systematic Review and Network Meta-Analysis. Journal of Clinical Medicine. 2025; 14(19):6913. https://doi.org/10.3390/jcm14196913
Chicago/Turabian StylePark, Jong-Mi, Hee-Jae Park, Seo-Yeon Yoon, Yong-Wook Kim, Jae-Il Shin, and Sang-Chul Lee. 2025. "Comparative Effectiveness of Treatments for Shoulder Subluxation After Stroke: A Systematic Review and Network Meta-Analysis" Journal of Clinical Medicine 14, no. 19: 6913. https://doi.org/10.3390/jcm14196913
APA StylePark, J.-M., Park, H.-J., Yoon, S.-Y., Kim, Y.-W., Shin, J.-I., & Lee, S.-C. (2025). Comparative Effectiveness of Treatments for Shoulder Subluxation After Stroke: A Systematic Review and Network Meta-Analysis. Journal of Clinical Medicine, 14(19), 6913. https://doi.org/10.3390/jcm14196913