Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (112)

Search Parameters:
Keywords = functional soil amendment fertilizer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1939 KiB  
Review
A Review on Anaerobic Digestate as a Biofertilizer: Characteristics, Production, and Environmental Impacts from a Life Cycle Assessment Perspective
by Carmen Martín-Sanz-Garrido, Marta Revuelta-Aramburu, Ana María Santos-Montes and Carlos Morales-Polo
Appl. Sci. 2025, 15(15), 8635; https://doi.org/10.3390/app15158635 - 4 Aug 2025
Cited by 1 | Viewed by 589
Abstract
Digestate valorization is essential for sustainable waste management and circular economy strategies, yet large-scale adoption faces technical, economic, and environmental challenges. Beyond waste-to-energy conversion, digestate is a valuable soil amendment, enhancing soil structure and reducing reliance on synthetic fertilizers. However, its agronomic benefits [...] Read more.
Digestate valorization is essential for sustainable waste management and circular economy strategies, yet large-scale adoption faces technical, economic, and environmental challenges. Beyond waste-to-energy conversion, digestate is a valuable soil amendment, enhancing soil structure and reducing reliance on synthetic fertilizers. However, its agronomic benefits depend on feedstock characteristics, treatment processes, and application methods. This study reviews digestate composition, treatment technologies, regulatory frameworks, and environmental impact assessment through Life Cycle Assessment. It analyzes the influence of functional unit selection and system boundary definitions on Life Cycle Assessment outcomes and the effects of feedstock selection, pretreatment, and post-processing on its environmental footprint and fertilization efficiency. A review of 28 JCR-indexed articles (2018–present) analyzed LCA studies on digestate, focusing on methodologies, system boundaries, and impact categories. The findings indicate that Life Cycle Assessment methodologies vary widely, complicating direct comparisons. Transportation distances, nutrient stability, and post-processing strategies significantly impact greenhouse gas emissions and nutrient retention efficiency. Techniques like solid–liquid separation and composting enhance digestate stability and agronomic performance. Digestate remains a promising alternative to synthetic fertilizers despite market uncertainty and regulatory inconsistencies. Standardized Life Cycle Assessment methodologies and policy incentives are needed to promote its adoption as a sustainable soil amendment within circular economy frameworks. Full article
(This article belongs to the Special Issue Novel Research on By-Products and Treatment of Waste)
Show Figures

Figure 1

28 pages, 6803 KiB  
Article
Structural Heterogeneity of Biochar Modulates’ Soil Hydraulic Properties and Nutrient Migration
by Guohui Li, Yayong Chen, Xiaopeng Chen, Beibei Zhou, Manli Duan, Hongyan Zhu and Guomin Shao
Agronomy 2025, 15(8), 1830; https://doi.org/10.3390/agronomy15081830 - 28 Jul 2025
Viewed by 480
Abstract
Biochar application is a well-recognized strategy to enhance agricultural soil fertility, but its structural heterogeneity leads to inconsistent outcomes in soil improvement, particularly in water and nutrient transport dynamics. In order to ensure the beneficial effects of biochar-amended agricultural soils in terms of [...] Read more.
Biochar application is a well-recognized strategy to enhance agricultural soil fertility, but its structural heterogeneity leads to inconsistent outcomes in soil improvement, particularly in water and nutrient transport dynamics. In order to ensure the beneficial effects of biochar-amended agricultural soils in terms of water retention and fertilizer fixation, in this paper, we aim to elucidate the effect of the structural heterogeneity of biochar on the hydraulic properties and nutrient transport of agricultural soils. This study compares biochars at millimeter (BMP), micrometer (BUP), and nanometer (BNP) scales using CT scanning, and investigates the effects of different application rates (0.0–2.0%) on soil’s hydraulic properties and nutrient transport using soil column experiments and CDE analyses. The results show that biochar generally decreased soil saturated hydraulic conductivity (SSHC), except for the application of 2.0% BMP, which increased it. Biochar enhanced soil saturated water content (SSWC) and water holding capacity (WHC), with the 2.0% BMP treatment achieving the highest values (SSHC: 49.34 cm/d; SSWC: 0.40 g/g; WHC: 0.25 g/g). BUPs and BNPs inhibited water infiltration due to pore-blocking, while 2.0% BMP promoted infiltration. Convective dispersion equation analysis (CDE) indicated that BUPs and BNPs reduced water and nutrient transport, with 2.0% BMP showing optimal performance. Statistical analyses revealed that biochar’s structural heterogeneity significantly affected soil water repellency, its hydraulic properties, and solute transport (p < 0.05). Smaller particles enhanced water retention and nutrient fixation, while larger particles improved WHC at appropriate rates. These findings provide valuable insights for optimizing biochar application to improve soil functions and support sustainable agriculture. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 1958 KiB  
Article
Shifts in Fungal Communities and Potential Functions Under Masson Pine Forest-to-Tea Plantation Conversion in Subtropical China
by Xiaofang Ma, Xiaofang Ou, Dan Chen, Yong Li, Cameron McMillan, Tida Ge, Ji Liu, Min Xue, Cong Wang and Weijun Shen
Microorganisms 2025, 13(7), 1614; https://doi.org/10.3390/microorganisms13071614 - 9 Jul 2025
Viewed by 388
Abstract
The land-use conversion of Masson pine forests to tea fields is extensively practiced across subtropical China, primarily driven by its economic benefit. However, the effects of this conversion on soil fungal communities and functional guilds are poorly understood. Herein, a field experiment was [...] Read more.
The land-use conversion of Masson pine forests to tea fields is extensively practiced across subtropical China, primarily driven by its economic benefit. However, the effects of this conversion on soil fungal communities and functional guilds are poorly understood. Herein, a field experiment was conducted in a Masson pine forest (F), a 5-year-old tea plantation without (FT-CK) fertilization or with (FT-N), and a 30-year-old tea plantation (FT-O) to assess the impact of Masson pine forest-to-tea conversion on soil fungal abundance, community structure, and functional guilds by using qPCR and high-throughput sequencing. Compared to F, fungal abundance significantly decreased by 95%, 68%, and 79% in FT-CK, FT-N, and FT-O, respectively, probably caused by the decreased total nitrogen content and habitat disruption. Fungal alpha diversity significantly increased in FT-N and FT-O compared to FT-CK. FT-O presented the highest percentages of Mortierella among treatments, which favours soil organic carbon accumulation. FUNGuild-based predictions showed that FT-CK and FT-N had higher relative abundances of plant pathogens than F and FT-O. FT-O presented the highest percentages of litter and soil saprotrophs but exhibited the lowest percentages of ectomycorrhizal fungi among treatments, likely driven by increased soil organic carbon, total nitrogen, and total phosphorus content. Our findings demonstrate that Masson pine forest-to-tea conversion significantly degrades soil fungal community and function, highlighting the urgent need for soil management strategies (e.g., organic amendments) to enhance soil health in tea agroecosystems. Full article
(This article belongs to the Special Issue Soil Microbial Carbon/Nitrogen/Phosphorus Cycling)
Show Figures

Figure 1

20 pages, 356 KiB  
Review
Soil Properties and Microelement Availability in Crops for Human Health: An Overview
by Lucija Galić, Vesna Vukadinović, Iva Nikolin and Zdenko Lončarić
Crops 2025, 5(4), 40; https://doi.org/10.3390/crops5040040 - 7 Jul 2025
Viewed by 577
Abstract
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). [...] Read more.
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). In recent years, there has been a growing focus on vitality and longevity, which are closely associated with the sufficient intake of essential microelements. This review focuses on these nine elements, whose bioavailability in the food chain is critically determined by their geochemical behavior in soils. There is a necessity for an understanding of the sources, soil–plant transfer, and plant uptake mechanisms of these microelements, with particular emphasis on the influence of key soil properties, including pH, redox potential, organic matter content, and mineral composition. There is a dual challenge of microelement deficiencies in agricultural soils, leading to inadequate crop accumulation, and the potential for localized toxicities arising from anthropogenic inputs or geogenic enrichment. A promising solution to microelement deficiencies in crops is biofortification, which enhances nutrient content in food by improving soil and plant uptake. This strategy includes agronomic methods (e.g., fertilization, soil amendments) and genetic approaches (e.g., marker-assisted selection, genetic engineering) to boost microelement density in edible tissues. Moreover, emphasizing the need for advanced predictive modeling techniques, such as ensemble learning-based digital soil mapping, enhances regional soil microelement management. Integrating machine learning with digital covariates improves spatial prediction accuracy, optimizes soil fertility management, and supports sustainable agriculture. Given the rising global population and the consequent pressures on agricultural production, a comprehensive understanding of microelement dynamics in the soil–plant system is essential for developing sustainable strategies to mitigate deficiencies and ensure food and nutritional security. This review specifically focuses on the bioavailability of these nine essential microelements (Se, Zn, Cu, B, Mn, Mo, Fe, Ni, and Cl), examining the soil–plant transfer mechanisms and their ultimate implications for human health within the soil–plant–human system. The selection of these nine microelements for this review is based on their recognized dual importance: they are not only essential for various plant metabolic functions, but also play a critical role in human nutrition, with widespread deficiencies reported globally in diverse populations and agricultural systems. While other elements, such as cobalt (Co) and iodine (I), are vital for health, Co is primarily required by nitrogen-fixing microorganisms rather than directly by all plants, and the main pathway for iodine intake is often marine-based rather than soil-to-crop. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
19 pages, 2261 KiB  
Article
Impact of Microplastic Contamination on Phosphorus Availability, Alkaline Phosphatase Activity, and Polymer Degradation in Soil
by Efsun Dindar
Polymers 2025, 17(12), 1586; https://doi.org/10.3390/polym17121586 - 6 Jun 2025
Viewed by 632
Abstract
Microplastics (MPs) are emerging contaminants that can significantly impact soil nutrient dynamics, particularly phosphorus (P) cycling, which is critical for maintaining soil fertility and ecosystem productivity. However, limited information is available on how different microplastic types and concentrations specifically influence phosphorus dynamics and [...] Read more.
Microplastics (MPs) are emerging contaminants that can significantly impact soil nutrient dynamics, particularly phosphorus (P) cycling, which is critical for maintaining soil fertility and ecosystem productivity. However, limited information is available on how different microplastic types and concentrations specifically influence phosphorus dynamics and microbial enzyme activity in soils. Microplastic contamination may alter P cycling by directly supplying phosphorus or indirectly influencing microbial activity and enzyme function through changes in soil structure and aggregation. This study examined the short-term impacts of three widely used microplastic polymers—polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET)—on soil phosphorus forms and alkaline phosphatase activity (APA), a key enzyme in phosphorus transformation. Incubation experiments were conducted at two concentrations (0.5% and 5%) over 30 and 60 days. The results indicated that the impact of microplastics on soil phosphorus dynamics varied according to both polymer type and contamination dose. Microplastics increased available phosphorus (AP) and APA levels compared to control soils, indicating a stimulatory effect on microbial processes. This may be due to the temporary accumulation of phosphorus on MP surfaces, which can stimulate phosphatase activity. Over time, however, both AP and APA levels declined, suggesting that degradation products released from MPs and organic matter may have altered the activity of the microbial communities responsible for P cycling. FTIR analysis revealed clear degradation of microplastics, with PET showing the most pronounced chemical transformation. PP exhibited moderate degradation, while PE demonstrated the highest resistance to environmental breakdown. These degradation processes likely released functional groups (e.g., carboxyl, carbonyl, hydroxyl) and low-molecular-weight compounds into the soil, modifying microbial processes and phosphorus chemistry. Particularly in PET-amended soils, these degradation products may have enhanced phosphate complexation or mobilization, contributing to higher levels of available phosphorus at the end of the incubation time. Understanding the polymer-specific and concentration-dependent effects of microplastics is critical for accurate ecological risk assessment in terrestrial ecosystems. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

18 pages, 2109 KiB  
Article
Coupling of Biochar and Manure Improves Soil Carbon Pool Stability, Pore Structure, and Microbial Diversity
by Jing Sun, Shuxin Tu, Xinrui Lu and Xiujun Li
Agronomy 2025, 15(6), 1384; https://doi.org/10.3390/agronomy15061384 - 5 Jun 2025
Viewed by 790
Abstract
Albic soils in Northeast China are characterized by low fertility due to factors such as high viscosity, acidity, and carbon depletion. To address these challenges and promote sustainable crop production, biochar and manure have been suggested as soil amendments. However, the mechanisms behind [...] Read more.
Albic soils in Northeast China are characterized by low fertility due to factors such as high viscosity, acidity, and carbon depletion. To address these challenges and promote sustainable crop production, biochar and manure have been suggested as soil amendments. However, the mechanisms behind these improvements remain unclear. This study involved a pot experiment to explore how varying levels of biochar application (0.5%, 1.0%, and 2.0%), alone or combined with cow manure (0.5%), affect soil properties. The dual application of biochar (2.0%) and manure (0.5%) elicited synergistic improvements in soil functionality, surpassing individual treatments. The total organic carbon (TOC) increased by 10.4% and 54.9% relative to that associated with biochar-only (2.0%) and manure-only (0.5%) amendments, respectively, with concurrent structural shifts toward stabilized carbon forms—evidenced by elevated alkyl C content (16.3%) and alkyl C/O–alkyl C ratios (22.8%). Soil physical structure was enhanced, as total porosity (5.64%) rose by 2.0% and pH (6.0) increased by 4.7% compared to sole biochar application. Microbial community analysis revealed that the combined treatment amplified bacterial diversity (Chao1 index 26.9%) and catalase activity (67.0%) while reducing Acidobacteria dominance (24.0%), which was indicative of improved metabolic adaptation. These findings demonstrate that biochar–manure coupling drives carbon sequestration through dual mechanisms: (1) physical stabilization via pore architecture modification and (2) biochemical modulation through microbial network complexity. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 8200 KiB  
Article
Enhancing Soil Phosphorus and Potassium Availability in Tea Plantation: The Role of Biochar, PGPR, and Phosphorus- and Potassium-Bearing Minerals
by Wen Wei, Kunyu Li, Changjun Li, Siyu Wang, Lulu Li, Jinchuan Xie, Ting Li, Zijun Zhou, Shirong Zhang, Yulin Pu, Yongxia Jia, Xiaojing Liu, Xiaoxun Xu and Guiyin Wang
Agronomy 2025, 15(6), 1287; https://doi.org/10.3390/agronomy15061287 - 23 May 2025
Cited by 1 | Viewed by 788
Abstract
The co-application of biochar, plant growth-promoting rhizobacteria (PGPR), and phosphorus- and potassium-bearing minerals has emerged as a promising strategy for improving soil nutrient availability. However, the synergistic effects and impact factors that facilitate this optimization are yet to be fully elucidated. To address [...] Read more.
The co-application of biochar, plant growth-promoting rhizobacteria (PGPR), and phosphorus- and potassium-bearing minerals has emerged as a promising strategy for improving soil nutrient availability. However, the synergistic effects and impact factors that facilitate this optimization are yet to be fully elucidated. To address this knowledge gap, we conducted a pot experiment to evaluate the effects of these amendments on tea yield and phosphorus (P)/potassium (K) availability, while employing Random Forest (RF) and Partial Least Squares Structural Equation Modeling (PLS-SEM) to reveal the underlying mechanisms driving these improvements. The results demonstrated that the tripartite combination significantly enhanced tea yield, leaf P/K concentrations, and soil available P (AP)/available K (AK) levels compared to individual applications or pairwise combinations. Analytical modeling identified Chloroflexi bacteria containing pqqc functional genes as key drivers of AP enhancement. The AP was further modulated by β-glucosidase activity, NaHCO3-P, and AK levels. Critical determinants of AK dynamics included phosphorus-solubilizing bacterial populations, catalase activity, and fundamental soil chemical properties. In summary, our research conclusively shows that the co-application of phosphorus- and potassium-bearing minerals, PGPR, and biochar represents an effective approach to enhancing P and K accessibility in soil, thereby offering a viable alternative to conventional P and K fertilizers in tea cultivation. Full article
Show Figures

Figure 1

17 pages, 1948 KiB  
Article
Biochar and Kitchen Stove Ash for Improving Nutrient Availability and Microbial Functions of Tropical Acidic Soil
by Isaac Asirifi, Lars Makarowsky, Stefanie Heinze, Michael Herre, Steffen Werner, Kwame Agyei Frimpong, Robin Pierburg and Bernd Marschner
Soil Syst. 2025, 9(2), 49; https://doi.org/10.3390/soilsystems9020049 - 13 May 2025
Viewed by 1010
Abstract
Tropical acidic soils exhibit inherently low fertility and reduced microbial activity, driven by low pH and accelerated organic matter mineralization, phosphorus (P) fixation, and aluminum (Al3+) and iron (Fe3+) toxicity. These constraints limit agricultural productivity, necessitating sustainable and low-cost [...] Read more.
Tropical acidic soils exhibit inherently low fertility and reduced microbial activity, driven by low pH and accelerated organic matter mineralization, phosphorus (P) fixation, and aluminum (Al3+) and iron (Fe3+) toxicity. These constraints limit agricultural productivity, necessitating sustainable and low-cost soil amendments essential for improving the soil fertility in such regions. This study investigated the effects of biochar, kitchen stove ash (KSA), and their combined application on the soil chemical properties, nutrient dynamics, and microbial functions in a tropical acidic soil. The treatment included the unamended control and two doses of 0.25% w/w (B10) and 0.5% w/w (B20) corncob biochar, 0.03% w/w kitchen stove ash (Ash), and 0.027% w/w commercial-grade calcium carbonate (Lime). Each biochar dose was added alone or in combination with either ash (Ash + B10 and Ash + B20) or calcium carbonate (Lime + B10 and Lime + B20). After eight weeks of laboratory incubation at 20 °C, the soil pH, N and P bioavailability, microbial biomass, and extracellular enzyme activities were measured. The combined application of 0.5% w/w biochar with 0.03% w/w KSA (Ash + B20) resulted in the most significant improvements in all of the examined soil fertility indicators than the individual amendments. Specifically, the soil pH was increased by 40% (+1.9 pH units) compared with the unamended control. Available phosphorus, mineral nitrogen, and total potassium were increased by 49%, 22%, and 36%, respectively, compared with the unamended control. Regarding the microbial parameters, the Ash + B20-treated soil showed the highest microbial respiration (+56%), microbial biomass (+45%), and extracellular C- and N-cycling enzyme activities compared with the unamended soil. The ash supplied minerals (P, K, and Mg) provided a more beneficial effect on the soil’s nutrient content and microbial functions than the calcium carbonate. The study demonstrated that underutilized kitchen ash may supplement biochar’s liming and nutrient supply potentials, even at a lower application rate, to improve the fertility of weathered acidic soil. Full article
Show Figures

Figure 1

38 pages, 3222 KiB  
Review
Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review
by Denis-Constantin Țopa, Sorin Căpșună, Anca-Elena Calistru and Costică Ailincăi
Agriculture 2025, 15(9), 998; https://doi.org/10.3390/agriculture15090998 - 5 May 2025
Cited by 3 | Viewed by 8955
Abstract
Soil health is the cornerstone of sustainable agriculture, serving as the foundation for crop productivity, environmental resilience, and long-term ecosystem stability. Contemporary agricultural methods, characterized by excessive pesticide and fertilizer application, monoculture, and intensive tillage, have resulted in extensive soil degradation, requiring novel [...] Read more.
Soil health is the cornerstone of sustainable agriculture, serving as the foundation for crop productivity, environmental resilience, and long-term ecosystem stability. Contemporary agricultural methods, characterized by excessive pesticide and fertilizer application, monoculture, and intensive tillage, have resulted in extensive soil degradation, requiring novel strategies to restore and sustain soil functionality. This review examined sustainable practices to enhance soil health and improve crop quality in modern agricultural systems. Preserving soil’s physical, chemical, and biological characteristics is essential for its health, achievable through various agronomic strategies. Practices such as crop rotation, cover cropping, no-till or carbon farming, conservation agriculture (CA), and the use of organic amendments were explored for their ability to restore the soil structure, increase organic matter, and promote biodiversity. These initiatives seek to preserve and enhance soil ecosystems by aligning agricultural practices with ecological principles, ensuring long-term productivity and environmental stability. Enhancing soil health will improve soil functions, supporting the concept that increasing the soil organic carbon (SOC) is necessary. This study determined that conservation tillage is more advantageous for soil health than conventional tillage, a topic that is still controversial among scientists and farmers, and that various tillage systems exhibit distinct interactions. These strategies, through the integrated management of the interaction of plant, soil, microbial, and human activities, would enhance soil health. Full article
Show Figures

Figure 1

25 pages, 3380 KiB  
Article
Organic Amendments Enhance Agroecosystem Multifunctionality via Divergent Regulation of Energy Flow Uniformity in Soil Nematode Food Webs
by Tianyuan Huang, Jinghua Huang, Jing Zhang, Guoqing Li and Shiwei Zhao
Agronomy 2025, 15(5), 1048; https://doi.org/10.3390/agronomy15051048 - 26 Apr 2025
Viewed by 646
Abstract
Applying organic amendments enhances agroecosystem multifunctionality (EMF), yet its mechanisms via soil food-web energetics remain unclear. A field experiment was conducted on China’s Loess Plateau in a winter wheat system, comparing mineral fertilizer with straw, biochar, and liquid organic fertilizer to assess their [...] Read more.
Applying organic amendments enhances agroecosystem multifunctionality (EMF), yet its mechanisms via soil food-web energetics remain unclear. A field experiment was conducted on China’s Loess Plateau in a winter wheat system, comparing mineral fertilizer with straw, biochar, and liquid organic fertilizer to assess their impacts on nematode communities and EMF (plant performance and carbon, nitrogen, phosphorus cycling). Using high-throughput sequencing and energy flux modeling, we found that straw and biochar enhanced nematode diversity and co-occurrence network complexity, while liquid organic fertilizer reduced network complexity. Straw balanced fungal- and bacterial-driven energy pathways, enhancing energy flow uniformity (1.05) and EMF. However, its high C:N ratio requires mineral fertilizers to alleviate nitrogen limitations, ensuring stable bacterial energy fluxes and preventing functional trade-offs. Biochar elevated total energy flux but prioritized bacterial- and herbivore-driven pathways, reducing energy flow uniformity (0.76) and functional balance. Liquid organic fertilizer favored omnivores-predators, destabilizing lower trophic functions with minimal functional gains. Amendment properties (C:N ratio, pH) shaped nematode-mediated energy distribution, linking biodiversity to multifunctionality. Overall, straw is optimal for supporting EMF when combined with mineral fertilizers, while biochar and liquid fertilizer require tailored management to mitigate functional trade-offs. These findings advance sustainable strategies for dryland agroecosystems in the Loess Plateau region and similar environments. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

19 pages, 4214 KiB  
Article
Impact of Organic Amendments on Black Wheat Yield, Grain Quality, and Soil Biochemical Properties
by Jiaqi Zhou, Huasen Xu, Meng Zhang, Ruohan Feng, Hui Xiao and Cheng Xue
Agronomy 2025, 15(4), 961; https://doi.org/10.3390/agronomy15040961 - 15 Apr 2025
Cited by 1 | Viewed by 763
Abstract
This study investigated the effects of organic amendments (straw return, organic fertilizer, biochar, and their combinations) on grain yield, quality, and soil biochemical characteristics in black wheat. A two-year field experiment (2022–2024) was conducted with five treatments: F (conventional fertilization), FS (F + [...] Read more.
This study investigated the effects of organic amendments (straw return, organic fertilizer, biochar, and their combinations) on grain yield, quality, and soil biochemical characteristics in black wheat. A two-year field experiment (2022–2024) was conducted with five treatments: F (conventional fertilization), FS (F + full straw return), FO (F + 3 t/ha organic fertilizer), FB (F + 3 t/ha biochar), and FSOB (F + full straw + 3 t/ha organic fertilizer + 3 t/ha biochar). FSOB achieved the highest yield, increasing by 17.3% over F due to a higher spike number and 1000-grain weight. Grain protein increased by 9.0% and 9.4% under FS and FO, respectively. Straw addition also raised gluten by 6.8%. Soil analysis revealed that integrated organic management significantly increased the contents of organic matter (by 23.1%), total nitrogen (by 46.0%), and available phosphorus (by 73.5%) in the 0–20 cm soil layer. It also promoted beneficial microbial taxa, including Actinobacteria (+11.2%) and Proteobacteria (+0.6%), compared to conventional fertilization. These findings suggest that strategic integration of organic amendments can enhance black wheat productivity and grain quality by improving soil fertility and microbial functionality, thereby supporting sustainable cropping systems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 11218 KiB  
Article
Straw-Enhanced Soil Bacterial Robustness via Resource-Driven Niche Dynamics in Tea Plantations, South Henan, China
by Xiangchao Cui, Dongmeng Xu, Yu Zhang, Shuping Huang, Wei Wei, Ge Ma, Mengdi Li and Junhui Yan
Microorganisms 2025, 13(4), 832; https://doi.org/10.3390/microorganisms13040832 - 6 Apr 2025
Viewed by 555
Abstract
Straw application (SP) is a promising strategy for the improvement of soil fertility, but the biological effects and the mechanisms of its effects on microorganisms remain unclear. The investigation into the tea plantations (CK/S) in southern Henan, China, without/with straw amendment was carried [...] Read more.
Straw application (SP) is a promising strategy for the improvement of soil fertility, but the biological effects and the mechanisms of its effects on microorganisms remain unclear. The investigation into the tea plantations (CK/S) in southern Henan, China, without/with straw amendment was carried out to assess the effects of SP on the soil bacterial communities using high-throughput sequencing. SP induced the community restructuring of the dominant phyla, e.g., Acidobacteriota, Pseudomonadota, Chloroflexota, with significantly increasing Nitrospirota, Vicinamibacterales and Anaerolineaceae (p < 0.05), while reducing Terriglobales (p < 0.05). These transitions correlated with significantly enhanced α-diversity and β-diversity divergence (p < 0.05). The linear discriminant analysis effect size (LEfSe) results confirmed the significant selective enrichment of nitrogen-cycling taxa (Nitrospira), copiotrophs (Chryseotalea), and anaerobic degraders (Anaerolineaceae), along with the suppression of the oligotrophic lineage (Ellin6067) by SP (p < 0.05). The co-occurrence networks of S had lower topological properties and negative cohesion (p < 0.05), which exhibited intensified simplified complexity and competition. The soil water content (WC) and pH were the main drivers of β-diversity variation and the keystone taxa assembly, as calculated out by distance-based redundancy analysis (dbRDA). This study demonstrates that SP can enhance bacterial network stability and functional redundancy by resource-driven niche partitioning between copiotrophic taxa and nitrogen-cycling guilds through a competition–cooperation equilibrium. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 1934 KiB  
Article
The Effect of New Zeolite Composites from Fly Ashes Mixed with Leonardite and Lignite in Enhancing Soil Organic Matter
by Renata Jarosz, Joanna Beata Kowalska, Krzysztof Gondek, Romualda Bejger, Lilla Mielnik, Altaf Hussain Lahori and Monika Mierzwa-Hersztek
Agriculture 2025, 15(7), 786; https://doi.org/10.3390/agriculture15070786 - 5 Apr 2025
Cited by 1 | Viewed by 754
Abstract
The aim of this study was to evaluate the influence of innovative mineral–organic mixtures containing zeolite composites produced from fly ashes and lignite or leonardite on the fractional composition of soil organic matter in sandy loam soil under two-year pot experiments with maize. [...] Read more.
The aim of this study was to evaluate the influence of innovative mineral–organic mixtures containing zeolite composites produced from fly ashes and lignite or leonardite on the fractional composition of soil organic matter in sandy loam soil under two-year pot experiments with maize. The fractional composition of soil organic matter (SOM) was analyzed and changes in the functional properties of soil groups were identified using the ATR-FTIR method. Changes in the content of phenolic compounds were assessed, and the potential impact of fertilizer mixtures on soil carbon stocks was investigated. The addition of these mixtures improved the stability of SOM. The application of mineral–organic mixtures significantly increased the total organic carbon (TOC) by 18% after the 2nd year of the experiment. The maximum TOC content in the soil was observed by 33% with the addition of MC3%Leo3% amendment. Nitrogen content in soil was increased by 62% with MV9%Leo6% additive, indicating increased soil fertility. The study highlighted an increase in fulvic acid carbon relative to humic acid carbon, signaling positive changes in organic matter quality. The new mineral–organic mixtures influence changes in specific functional groups (ATR-FTIR) present in the soil matrix, compared to mineral fertilization alone. The additive mixtures also contributed to an increase in soil carbon stocks, highlighting their potential for long-term improvement of soil fertility and carbon sequestration. Full article
Show Figures

Figure 1

26 pages, 2575 KiB  
Review
Tenebrio molitor Frass: A Cutting-Edge Biofertilizer for Sustainable Agriculture and Advanced Adsorbent Precursor for Environmental Remediation
by Alessandra Verardi, Paola Sangiorgio, Brigida Della Mura, Stefania Moliterni, Anna Spagnoletta, Salvatore Dimatteo, Daniela Bassi, Claudia Cortimiglia, Raffaella Rebuzzi, Salvatore Palazzo and Simona Errico
Agronomy 2025, 15(3), 758; https://doi.org/10.3390/agronomy15030758 - 20 Mar 2025
Cited by 1 | Viewed by 1970
Abstract
The projected growth of the global population to over 10 billion by 2080 necessitates groundbreaking sustainable agricultural solutions that enhance productivity while mitigating environmental impacts. Tenebrio molitor frass (TMF), derived from larval excrement and exuviae, has emerged as a promising organic fertilizer. Enriched [...] Read more.
The projected growth of the global population to over 10 billion by 2080 necessitates groundbreaking sustainable agricultural solutions that enhance productivity while mitigating environmental impacts. Tenebrio molitor frass (TMF), derived from larval excrement and exuviae, has emerged as a promising organic fertilizer. Enriched with macro- and micronutrients, TMF enhances soil functions through microbial communities that promote nutrient cycling, decompose organic matter, and suppress soilborne pathogens. Additionally, functional compounds like chitin, cellulose, xylans, and lignin improve the soil structure, foster beneficial microbes, and activate natural plant defence responses. The synergy of microbial activity and bioactive compounds positions TMF as a valuable resource for enhancing plant growth and soil health. Its role as a nutrient source, biostimulant, and soil amendment aligns with circular economy principles by recycling agro-industrial by-products and reducing reliance on synthetic fertilizers. TMF also contributes to sustainable agriculture by improving soil fertility, microbial biodiversity, and plant stress resilience, while mitigating greenhouse gas emissions and nutrient runoff. Additionally, TMF-derived biochar offers the potential for environmental remediation as an effective adsorbent. Despite its advantages, TMF faces challenges in scalability, cost, and regulations, requiring advancements in processing, enrichment, and supportive policies to maximize its potential in sustainable farming. Full article
Show Figures

Figure 1

28 pages, 7770 KiB  
Article
Gypsum and Tillage Practices for Combating Soil Salinity and Enhancing Crop Productivity
by Njomza Gashi, Zsombor Szőke, Antal Czakó, Péter Fauszt, Péter Dávid, Maja Mikolás, László Stündl, Ferenc Gál, Judit Remenyik, Zsolt Sándor and Melinda Paholcsek
Agriculture 2025, 15(6), 658; https://doi.org/10.3390/agriculture15060658 - 20 Mar 2025
Viewed by 1794
Abstract
Soil salinity is a major global challenge, reducing fertility and crop productivity. This study evaluated the effects of various soil management practices on the physical, chemical, and microbial properties of saline soils. Six treatments, combining loosening, ploughing, disking, and gypsum amendment, were applied [...] Read more.
Soil salinity is a major global challenge, reducing fertility and crop productivity. This study evaluated the effects of various soil management practices on the physical, chemical, and microbial properties of saline soils. Six treatments, combining loosening, ploughing, disking, and gypsum amendment, were applied to solonetzic meadow soil with high sodium levels. Soil penetration resistance was measured using a Penetronik penetrometer, while chemical analyses included pH, total salt content, calcium carbonate (CaCO3), humus, and exchangeable cations (Na+, K+, Ca2+, Mg2+). Microbial composition was determined through DNA extraction and nanopore sequencing. The results showed that level A had the lowest penetration resistance (333 ± 200 N/m2), indicating better conditions for plant growth. Gypsum and loosening treatment significantly improved penetration resistance (141 N/m2, p < 0.001), while gypsum amendment enhanced chemical properties (p < 0.05, p < 0.01, and p < 0.001). Gypsum application balanced soil parameters and influenced microbial communities. Reduced tillage favored functionally important microbial genera but did not support fungal diversity (p > 0.05). These findings highlight the effectiveness of gypsum amendment and tillage practices, like loosening and disking, in mitigating salinity stress and fostering beneficial microbial communities. Combining gypsum with these tillage methods proved most effective in enhancing soil health, offering insights for sustainable soil management in saline environments. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop