Impact of Microplastic Contamination on Phosphorus Availability, Alkaline Phosphatase Activity, and Polymer Degradation in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Incubation Experiment
2.3. Methods
2.3.1. Soil Chemical Analyses
2.3.2. Soil Enzyme Activity
2.3.3. Sample Preparation and Analysis of Microplastics in Soil
2.4. Statistical Analysis
3. Results and Discussion
3.1. Total P
3.2. Available Phosphorus
3.3. Alkaline Phosphatase Activity
3.4. Microplastic Identification and Degradation
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Total P | Total Phosphorus |
AP | Available Phosphorus |
APA | Alkaline Phosphatase Activity |
PET | Polyethylene Terephthalate |
PE | Polyethylene |
PP | Polypropylene |
MPs | Microplastics |
PS | Polystyrene |
PVC | Polyvinyl chloride |
WHC | Water Holding Capacity |
PTFE | Polytetrafluoroethylene |
PSB | Phosphate-solubilizing Bacteria |
References
- Yu, H.; Zhang, Z.; Zhang, Y.; Song, Q.; Fan, P.; Xi, B.; Tan, W. Effects of microplastics on soil organic carbon and greenhouse gas emissions in the context of straw incorporation: A comparison with different types of soil. Environ. Pollut. 2021, 288, 117733. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, X.; Liu, G.; Liang, C.; Xue, S.; Chen, H.; Ritsema, C.J.; Geissen, V. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 2017, 185, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Tang, J.; Liu, X.; Liu, Q. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environ. Pollut. 2020, 256, 113347. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, L. Short-term effects of polyethene and polypropylene microplastics on soil phosphorus and nitrogen availability. Chemosphere 2022, 291, 132984. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Liu, X.; Qiu, W.; Song, Z. The mechanism of polystyrene microplastics to affect arsenic volatilization in arsenic-contaminated paddy soils. J. Hazard. Mater. 2020, 398, 122896. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Q.; Sun, Y.; Zhang, S.; Wang, F. Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. J. Hazard. Mater. 2022, 424, 127364. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Aguilar-Trigueros, C.A.; Onandia, G.; Maaß, S.; Zhao, T.; Rillig, M.C. Effects of microplastics and drought on soil ecosystem functions and multifunctionality. J. Appl. Ecol. 2021, 58, 988–996. [Google Scholar] [CrossRef]
- Wan, L.; Cheng, H.; Liu, Y.; Shen, Y.; Liu, G.; Su, X. Global meta-analysis reveals differential effects of microplastics on soil ecosystem. Sci. Total Environ. 2023, 867, 161403. [Google Scholar] [CrossRef]
- Zhu, F.; Yan, Y.; Doyle, E.; Zhu, C.; Jin, X.; Chen, Z.; Wang, C.; He, H.; Zhou, D.; Gu, C. Microplastics altered soil microbiome and nitrogen cycling: The role of phthalate plasticizer. J. Hazard. Mater. 2021, 427, 127944. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Ouyang, D.; Lei, J.; Tan, Q.; Xie, L.; Li, Z.; Liu, T.; Xiao, Y.; Farooq, T.H.; et al. Systematical review of interactions between microplastics and microorganisms in the soil environment. J. Hazard. Mater. 2021, 418, 126288. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Lozano, Y.M.; Rillig, M.C. Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Front. Environ. Sci. 2021, 9, 675803. [Google Scholar] [CrossRef]
- Xu, Z.; Qian, X.; Wang, C.; Zhang, C.; Tang, T.; Zhao, X.; Li, L. Environmentally relevant concentrations of microplastic exhibits negligible impacts on thiacloprid dissipation and enzyme activity in soil. Environ. Res. 2020, 189, 109892. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Zhou, S.; Zhang, L.; Ding, S. The effects of three different microplastics on enzyme activities and microbial communities in soil. Water Environ. Res. 2021, 93, 24–32. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Qiu, W.; Song, Z. Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil. Ecotoxicol. Environ. Saf. 2021, 211, 111899. [Google Scholar] [CrossRef]
- Fei, Y.; Huang, S.; Zhang, H.; Tong, Y.; Wen, D.; Xia, X.; Wang, H.; Luo, Y.; Barceló, D. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Sci. Total Environ. 2020, 707, 135634. [Google Scholar] [CrossRef]
- Wan, W.; Qin, Y.; Wu, H.; Zuo, W.; He, H.; Tan, J.; Wang, Y.; He, D. Isolation and Characterization of Phosphorus Solubilizing Bacteria with Multiple Phosphorus Sources Utilizing Capability and Their Potential for Lead Immobilization in Soil. Front. Microbiol. 2020, 11, 752. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Liang, C.; Li, Y.; Qiao, L.; Ai, Z.; Xue, S.; Liu, G. Interactive effects of microplastics and glyphosate on the dynamics of soil dissolved organic matter in a Chinese loess soil. CATENA 2019, 182, 104177. [Google Scholar] [CrossRef]
- Qi, R.; Jones, D.L.; Li, Z.; Liu, Q.; Yan, C. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2019, 703, 134722. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Z.; Zhu, F.; Zhu, C.; Wang, C.; Gu, C. Effect of polyvinyl chloride microplastics on bacterial community and nutrient status in two agricultural soils. Bull. Environ. Contam. Toxicol. 2021, 107, 602–609. [Google Scholar] [CrossRef]
- Zhu, F.; Zhu, C.; Wang, C.; Gu, C. Occurrence and ecological impacts of microplastics in soil systems: A review. Bull. Environ. Contam. Toxicol. 2019, 102, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Zhu, Y.; Chen, X.; Lu, X.; Yan, J.; Yan, L.; Zou, W. Biochar Influences Polyethylene Microplastic-Contaminated Soil Properties and Enzyme Activities. Agronomy 2024, 14, 2919. [Google Scholar] [CrossRef]
- Schrank, I.; Möller, J.N.; Imhof, H.K.; Hauenstein, O.; Zielke, F.; Agarwal, S.; Löder, M.G.; Greiner, A.; Laforsch, C. Microplastic Sample Purification Methods—Assessing Detrimental Effects of Purification Procedures on Specific Plastic Types. Sci. Total Environ. 2022, 833, 154824. [Google Scholar] [CrossRef] [PubMed]
- Dindar, E. The Effect of N Mineralization, Nitrification and Ammonification Rates in Soils Contaminated with Microplastics. Water Air Soil Pollut. 2024, 235, 11. [Google Scholar] [CrossRef]
- Büks, F.; Kaupenjohann, M. Global concentrations of microplastics in soils—A review. Soil 2020, 6, 649–662. [Google Scholar] [CrossRef]
- Cruz, L.G.; Shen, F.-T.; Chen, C.-P.; Chen, W.-C. Dose Effect of Polyethylene Microplastics Derived from Commercial Resins on Soil Properties, Bacterial Communities, and Enzymatic Activity. Microorganisms 2024, 12, 1790. [Google Scholar] [CrossRef]
- Liu, Z.; Wen, J.; Liu, Z.; Wei, H.; Zhang, J. Polyethylene microplastics alter soil microbial community assembly and ecosystem multifunctionality. Environ. Int. 2023, 183, 108360. [Google Scholar] [CrossRef]
- Dindar, E.; Topaç Şağban, F.O.; Başkaya, H.S. Variations of Soil Enzyme Activities in Petroleum-Hydrocarbon Contaminated Soil. Int. Biodeterior. Biodegrad. 2015, 105, 268–275. [Google Scholar] [CrossRef]
- BS EN ISO 10390:2022; Soil, Treated Biowaste and Sludge—Determination of pH. British Standards Institution: London, UK, 2022.
- ISO 11261:1995; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. ISO: Geneva, Switzerland, 1995.
- TS 8336:2023; Soils-Determination of Organic Matter. Turkish Standards Institute: Ankara, Turkey, 2023.
- BS EN ISO. 10304-1:2009; Determination of Dissolved Anions by Liquid Chromatography of Ions—Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate. British Standards Institution: London, UK, 2009.
- APHA (American Public Health Association). Standard Methods for the Examination of Water and Waste Water, 23rd ed.; American Water Association; Water Pollution Control Federation: Washington, DC, USA, 2017. [Google Scholar]
- EPA. Method 6010C (SW-846): Inductively Coupled Plasma-Atomic Emission Spectrometry, Revision 3; United States Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis. Part 2: Microbiological and Biochemical Properties; Weaver, R.W., Angle, S., Bottomley, P., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 775–833. [Google Scholar]
- Tabatabai, M.A.; Dick, W.A. Enzymes in soil. In Enzymes in the Environment; Burns, R.G., Dick, W.A., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 567–596. [Google Scholar]
- Xia, F.; Tan, Q.; Qin, H.; Wang, D.; Cai, Y.; Zhang, J. Sequestration and export of microplastics in urban river sediments. Environ. Int. 2023, 181, 108265. [Google Scholar] [CrossRef]
- StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 12.5.192.7. 2013. Available online: https://archive.org/details/StatSoftSTATISTICA12.5.192.7 (accessed on 29 April 2025).
- Rillig, M.C.; Lehmann, A.; Ryo, M.; Bergmann, J. Shaping up: Toward considering the shape and form of pollutants. Environ. Sci. Technol. 2019, 53, 7925–7926. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Li, Y.; Powell, T.; Wang, X.; Wang, G.; Zhang, P. Microplastics as contaminants in the soil environment: A mini-review. Sci. Total Environ. 2019, 691, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pedersen, J.N.; Eser, B.E.; Guo, Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol. Adv. 2022, 60, 107991. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xu, H.; Xiang, Y.; Wu, J. Effects of microplastics pollution on plant and soil phosphorus: A meta-analysis. J. Hazard. Mater. 2024, 461, 132705. [Google Scholar] [CrossRef] [PubMed]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef]
- Zhang, G.S.; Liu, Y.F. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci. Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef]
- Katsumi, N.; Kusube, T.; Nagao, S.; Okochi, H. Accumulation of microcapsules derived from coated fertilizer in paddy fields. Chemosphere 2021, 267, 129185. [Google Scholar] [CrossRef]
- Li, J.H.; Yu, C.; Liu, Z.Q.; Wang, Y.; Wang, F. Microplastic accelerate the phosphorus-related metabolism of bacteria to promote the decomposition of methylphosphonate to methane. Sci. Total Environ. 2023, 858, 160020. [Google Scholar] [CrossRef]
- Tong, Y.; Ding, J.; Xiao, M.; Shahbaz, M.; Zhu, Z.; Chen, M.; Kuzyakov, Y.; Deng, Y.; Chen, J.; Ge, T. Microplastics affect activity and spatial distribution of C, N, and P hydrolases in rice rhizosphere. Soil Ecol. Lett. 2022, 5, 220138. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Y.; Wang, J.; Zhang, M.; Jia, W.; Qin, X. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ. Pollut. 2019, 254, 112983. [Google Scholar] [CrossRef]
- Lian, J.P.; Liu, W.T.; Meng, L.Z.; Wu, J.; Zeb, A.; Cheng, L.; Lian, Y.; Sun, H. Effects of microplastics derived from polymer-coated fertilizer on maize growth, rhizosphere, and soil properties. J. Clean. Prod. 2021, 318, 128571. [Google Scholar] [CrossRef]
- Yu, H.; Hou, J.; Dang, Q.; Cui, D.; Xi, B.; Tan, W. Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels. J. Hazard. Mater. 2020, 395, 122690. [Google Scholar] [CrossRef] [PubMed]
- La Mantia, F.P.; Baiamonte, M.; Santangelo, S.; Scaffaro, R.; Mistretta, M.C. Influence of different environments and temperatures on the photo-oxidation behaviour of the polypropylene. Polymers 2022, 15, 74. [Google Scholar] [CrossRef] [PubMed]
- Longo, C.; Savaris, M.; Zeni, M.; Brandalise, R.N.; Grisa, A.M.C. Degradation study of polypropylene (PP) and bioriented polypropylene (BOPP) in the environment. Mater. Res. 2011, 14, 442–448. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, J.; Wang, J. Chemical degradation and recycling of polyethylene terephthalate (PET): A review. RSC Sustain. 2025, 3, 2111–2133. [Google Scholar] [CrossRef]
- Ghatge, S.; Yang, Y.; Ahn, J.; Hur, H. Biodegradation of polyethylene: A brief review. Appl. Biol. Chem. 2020, 63, 27. [Google Scholar] [CrossRef]
- Zhang, X.; Mell, A.; Li, F.; Thaysen, C.; Musselman, B.; Tice, J.; Vukovic, D.; Rochman, C.; Helm, P.A.; Jobst, K.J. Rapid fingerprinting of source and environmental microplastics using direct analysis in real time-high resolution mass spectrometry. Anal. Chim. Acta 2020, 1100, 107–117. [Google Scholar] [CrossRef]
- Kim, S.W.; Waldman, W.R.; Kim, T.Y.; Rillig, M.C. Effects of different microplastics on nematodes in the soil environment: Tracking the extractable additives using an ecotoxicological approach. Environ. Sci. Technol. 2020, 54, 13868–13878. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Wang, F.; Feng, X.; Liu, Y.; Adams, C.A.; Sun, Y.; Zhang, S. Micro (nano) plastics and terrestrial plants: Up-to-date knowledge on uptake, translocation, and phytotoxicity. Resour. Conserv. Recycl. 2022, 185, 106503. [Google Scholar] [CrossRef]
- Zhou, J.; Gui, H.; Banfield, C.C.; Wen, Y.; Zang, H.; Dippold, M.A.; Charlton, A.; Jones, D.L. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol. Biochem. 2021, 156, 108211. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
pH (1:5) | 7.67 |
EC, µS/cm 25 °C (1:5) | 210 |
Total N, % | 0.22 |
Total P, % | 0.08 |
NH4+-N, mg·kg−1 | 8.74 |
NO3−-N, mg·kg−1 | 24.6 |
Organic matter, % | 3.42 |
PE | PP | PET | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sources of Variation | df | MS | F | p | df | MS | F | p | df | MS | F | p |
Dependent Variable: Total-P | ||||||||||||
Contaminant dose | 2 | 2644 | 337.6 | p < 0.001 | 2 | 85 | 27.2 | p < 0.001 | 2 | 157 | 51.3 | p < 0.001 |
Time | 1 | 450 | 57.4 | p < 0.001 | 1 | 4418 | 1420.1 | p < 0.001 | 1 | 3254 | 1064.8 | p < 0.001 |
Contaminant dose × time | 2 | 962 | 122.8 | p < 0.001 | 2 | 473 | 151.9 | p < 0.001 | 2 | 3696 | 1209.5 | p < 0.001 |
Error | 12 | 8 | 12 | 3 | 12 | 3 | ||||||
Dependent Variable: Available-P | ||||||||||||
Contaminant dose | 2 | 44.22 | 88.44 | p < 0.001 | 2 | 15.5 | 46.5 | p < 0.001 | 2 | 9.39 | 33.8 | p < 0.001 |
Time | 1 | 68.06 | 136.11 | p < 0.001 | 1 | 50 | 150 | p < 0.001 | 1 | 5.56 | 20 | p < 0.001 |
Contaminant dose × time | 2 | 1.56 | 3.11 | 0.08156 | 2 | 0.5 | 1.5 | 0.262144 | 2 | 40.06 | 144.2 | p < 0.001 |
Error | 12 | 0.5 | 12 | 0.33 | 12 | 0.28 | ||||||
Dependent Variable: APA | ||||||||||||
Contaminant dose | 2 | 4715 | 424.3 | p < 0.001 | 2 | 1541 | 210.1 | p < 0.001 | 2 | 3187 | 651.8 | p < 0.001 |
Time | 1 | 8065 | 725.8 | p < 0.001 | 1 | 4802 | 654.8 | p < 0.001 | 1 | 280 | 57.3 | p < 0.001 |
Contaminant dose × time | 2 | 314 | 28.3 | p < 0.001 | 2 | 277 | 37.8 | p < 0.001 | 2 | 6188 | 1265.8 | p < 0.001 |
Error | 12 | 11 | 12 | 7 | 12 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dindar, E. Impact of Microplastic Contamination on Phosphorus Availability, Alkaline Phosphatase Activity, and Polymer Degradation in Soil. Polymers 2025, 17, 1586. https://doi.org/10.3390/polym17121586
Dindar E. Impact of Microplastic Contamination on Phosphorus Availability, Alkaline Phosphatase Activity, and Polymer Degradation in Soil. Polymers. 2025; 17(12):1586. https://doi.org/10.3390/polym17121586
Chicago/Turabian StyleDindar, Efsun. 2025. "Impact of Microplastic Contamination on Phosphorus Availability, Alkaline Phosphatase Activity, and Polymer Degradation in Soil" Polymers 17, no. 12: 1586. https://doi.org/10.3390/polym17121586
APA StyleDindar, E. (2025). Impact of Microplastic Contamination on Phosphorus Availability, Alkaline Phosphatase Activity, and Polymer Degradation in Soil. Polymers, 17(12), 1586. https://doi.org/10.3390/polym17121586