Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (154)

Search Parameters:
Keywords = functional nitride layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6273 KB  
Article
Influence of Post-Processing on S-Phase Formation During Plasma Nitriding of Additively Manufactured Inconel 939
by Piotr Maj, Joanna Radziejewska, Ryszard Diduszko, Michał Marczak, Rafał Nowicki, Podolak-Lejtas Anna, Tomasz Borowski and Ryszard Sitek
Materials 2026, 19(1), 130; https://doi.org/10.3390/ma19010130 - 30 Dec 2025
Viewed by 187
Abstract
Active screen plasma nitriding (ASPN) of additively manufactured nickel-based superalloys represents an understudied surface enhancement pathway. This study presents the first systematic investigation of ASPN applied to additively manufactured Inconel 939 (IN 939), evaluating four distinct post-processing routes combining heat treatment atmospheres (argon [...] Read more.
Active screen plasma nitriding (ASPN) of additively manufactured nickel-based superalloys represents an understudied surface enhancement pathway. This study presents the first systematic investigation of ASPN applied to additively manufactured Inconel 939 (IN 939), evaluating four distinct post-processing routes combining heat treatment atmospheres (argon versus air cooling), vibratory finishing, and lapping under identical nitriding parameters (450 °C, 8 h, 25% N2 + 75% H2, 3 hPa). Contrasting nitriding behaviours emerged as a function of the post-processing route: the air-cooled thermal treatment (HT-air-vibr-lap) promotes formation of a thick Al/Cr-rich oxide layer (10–15 µm) that substantially inhibits nitrogen diffusion, resulting in thin and discontinuous nitrided layers. Conversely, the inert atmosphere route (HT-Ar-vibr-lap) circumvents oxide formation, enabling continuous S-phase (expanded austenite, γN) layer development of a 6.4 ± 0.3 µm thickness with exceptional surface hardness (~1200 HV, representing 3–4× enhancement relative to base material). X-ray diffraction confirmed S-phase formation with refined lattice parameter (3.609 Å) and secondary nitride phases (CrN-type and NbN/TaN-type precipitates). The post-processing sequence—particularly heat treatment atmosphere and mechanical finishing methodology—emerged as a critical controlling parameter for S-phase formation efficiency and mechanical properties of nitrided layers in additively manufactured nickel-based superalloys. This work addresses a knowledge gap distinct from the existing literature on conventional Inconel systems, establishing that controlled surface modification through post-processing can achieve the required properties. Full article
Show Figures

Figure 1

23 pages, 8233 KB  
Article
Enhancement of Wear Behaviour and Optimization and Prediction of Friction Coefficient of Nitrided D2 Steel at Different Times
by Abdallah Souid, Slah Mzali, Borhen Louhichi and Mohamed Ali Terres
Lubricants 2025, 13(12), 550; https://doi.org/10.3390/lubricants13120550 - 17 Dec 2025
Viewed by 397
Abstract
The objective of this study is to evaluate the impact of thermal and thermochemical treatment, specifically gas nitriding, on the wear properties of AISI D2 cold work tool steel. The steel was austenitized at 1050 °C, then subjected to two annealing cycles at [...] Read more.
The objective of this study is to evaluate the impact of thermal and thermochemical treatment, specifically gas nitriding, on the wear properties of AISI D2 cold work tool steel. The steel was austenitized at 1050 °C, then subjected to two annealing cycles at 560 °C for two hours each. It was then gas-nitrided for 16 and 36 h. The Vickers microhardness measurements of AISI D2 steel for the three distinct conditions, non-nitrided (NN), nitride at 16 h (N16) and nitride at 36 h (N36), are 560 HV0.1, 1050 HV0.1 and 1350 HV0.1, respectively. Wear tests were conducted utilizing a ball device, under dry friction conditions at ambient temperature, with loads of 5, 10 and 15 N, over 5000, 10,000 and 15,000 cycles at a constant sliding velocity of 30 mm/s and a sliding distance of 10 mm. Furthermore, the utilization of ANFIS modeling of experimental data facilitated the prediction of the variation in the coefficient of friction as a function of nitriding conditions and specific test parameters. The results show a significant effect of nitriding, leading to a marked reduction in the coefficient of friction. In the non-nitrided condition, the average value reaches 0.80, while extended nitriding to 36 h reduces this value to around 0.49, confirming a substantial tribological improvement. This enhancement is ascribed to the formation of hard, resilient nitride layers on the steel surface, thereby increasing wear resistance and cur-tailing in industrial applications. Full article
Show Figures

Figure 1

15 pages, 697 KB  
Article
Optical Properties at 1550 nm of Ion-Beam Sputtered Silicon Nitride Thin Films
by Diksha, Alex Amato, Gianluigi Maggioni, Christophe Michel, David Hofman, Massimo Granata and Jessica Steinlechner
Coatings 2025, 15(12), 1465; https://doi.org/10.3390/coatings15121465 - 10 Dec 2025
Viewed by 516
Abstract
Coating Brownian thermal noise is a major limitation to the sensitivity of gravitational-wave detectors. To reduce it, future detectors are planned to operate at cryogenic temperatures. This implies a change of their mirror coating materials and the use of a longer laser wavelength, [...] Read more.
Coating Brownian thermal noise is a major limitation to the sensitivity of gravitational-wave detectors. To reduce it, future detectors are planned to operate at cryogenic temperatures. This implies a change of their mirror coating materials and the use of a longer laser wavelength, such as 1550 nm. A stack of amorphous silicon and silicon nitride layers has previously been proposed as a promising combination of low- and high-refractive index materials to realize low-noise highly-reflective coatings. An essential step towards such coatings is the production of both materials via ion-beam sputtering. In this paper, for the first time, we present a study of the optical properties at 1550 nm of silicon nitride thin films deposited via ion beam sputtering. The refractive index and optical absorption as a function of post-deposition heat treatment temperature are investigated using a spectrophotometer and a photo-thermal common-path interferometer. Finally, we discuss the prospect of combining this material with amorphous silicon. Full article
(This article belongs to the Section Thin Films)
Show Figures

Graphical abstract

23 pages, 4807 KB  
Article
Reactive Magnetron-Sputtered Tantalum–Copper Nitride Coatings: Structure, Electrical Anisotropy, and Antibacterial Behavior
by Paweł Żukowski, Vitalii Bondariev, Anatoliy I. Kupchishin, Marat N. Niyazov, Kairat B. Tlebaev, Yaroslav Bobitski, Joanna Kisała, Joanna Wojtas, Anna Żaczek, Štefan Hardoň and Alexander D. Pogrebnjak
Nanomaterials 2025, 15(23), 1813; https://doi.org/10.3390/nano15231813 - 30 Nov 2025
Viewed by 522
Abstract
Tantalum nitride (TaN) coatings are valued for their hardness, chemical inertness, and biocompatibility; however, they lack intrinsic antibacterial properties, which limits their application in biomedical environments. Introducing copper (Cu) into the TaN matrix offers a potential solution by combining TaN’s mechanical and chemical [...] Read more.
Tantalum nitride (TaN) coatings are valued for their hardness, chemical inertness, and biocompatibility; however, they lack intrinsic antibacterial properties, which limits their application in biomedical environments. Introducing copper (Cu) into the TaN matrix offers a potential solution by combining TaN’s mechanical and chemical durability with Cu’s well-documented antimicrobial action. This study explores how varying copper incorporation affects the structural, electrical, photocatalytic, and antibacterial characteristics of TaCuN multilayer films synthesized via reactive magnetron sputtering. Three thin TaCuN films were fabricated using a high-power reactive magnetron co-sputtering system, varying the Cu target power to control the composition. Structural and morphological analysis was performed using X-ray diffraction (XRD), scanning/transmission electron microscopy (STEM/TEM), and energy-dispersive X-ray spectroscopy (EDS). Electrical conductivity was studied along and across the film surfaces at temperatures ranging from 20 to 375 K using AC impedance spectroscopy. Optical and photocatalytic properties were assessed using UV–Vis spectroscopy and methylene blue degradation tests. Antibacterial activity against Staphylococcus aureus was analyzed under visible light using CFU reduction tests. XRD and TEM analyses revealed a multilayered four-zone architecture with alternating Ta-, Cu-, and N-rich phases and a dominant cubic δ-TaN pattern. The layers exhibited pronounced conductivity anisotropy, with in-plane conductivity (~103 Ω−1 cm−1) exceeding cross-plane conductivity by ~107 times, attributed to the formation of a metallic conduction channel in the mid-layer. Optical spectra indicated limited light absorption above 300 nm and negligible photocatalytic activity. Increasing the Cu content substantially enhanced antibacterial efficiency, with the highest-Cu sample achieving 95.6 % bacterial growth reduction. Morphological evaluation indicated that smooth film surfaces (Ra < 0.2 μm) effectively minimized bacterial adhesion. Reactive magnetron sputtering enables the precise engineering of TaCuN multilayers, combining high electrical anisotropy with robust antibacterial functionality. The optimized TaCuN coating offers promising potential in biomedical and protective applications where both conductivity and microbial resistance are required. Full article
(This article belongs to the Special Issue Synthesis of Functional Nanoparticles for Biomedical Applications)
Show Figures

Graphical abstract

36 pages, 2307 KB  
Article
From Energy Efficiency to Energy Intelligence: Power Electronics as the Cognitive Layer of the Energy Transition
by Nikolay Hinov
Electronics 2025, 14(23), 4673; https://doi.org/10.3390/electronics14234673 - 27 Nov 2025
Cited by 1 | Viewed by 503
Abstract
The exponential growth of artificial intelligence (AI), electrified transport, and renewable generation is accelerating a structural shift in how societies produce, deliver, and consume electricity. We argue that the next frontier is not incremental efficiency but Energy Intelligence (EI): the embedding of predictive [...] Read more.
The exponential growth of artificial intelligence (AI), electrified transport, and renewable generation is accelerating a structural shift in how societies produce, deliver, and consume electricity. We argue that the next frontier is not incremental efficiency but Energy Intelligence (EI): the embedding of predictive analytics, adaptive control, and material-aware design directly into power-conversion hardware. In this view, power electronics functions as the cognitive layer that links digital intelligence to the physical flow of energy. Wide-bandgap (WBG) semiconductors—gallium nitride (GaN) and silicon carbide (SiC)—provide the material foundation for higher switching frequencies, superior power density, and real-time controllability, enabling compact and efficient converters for data-centers, EV charging, and grid-interactive resources. We formalize an EI reference architecture (predictive, adaptive, material-efficient, data-driven), review the convergence of AI methods with converter design and operation, and outline a GaN/SiC-enabled data-center power path as an illustrative case. Finally, we examine sustainability and sovereignty, highlighting exposure to critical materials (Ga, Si, In, rare earths) and proposing a roadmap that integrates technology, policy, and education. By reframing power electronics as an intelligent, learning infrastructure, this work sets an agenda for systems that are not only efficient but also self-optimizing, explainable, and resilient. Full article
Show Figures

Figure 1

21 pages, 54365 KB  
Article
Thermal Stability of Thin Metal Films on GaN Surfaces: Morphology and Nanostructuring
by Andrzej Stafiniak, Wojciech Macherzyński, Adam Szyszka, Radosław Szymon, Mateusz Wośko and Regina Paszkiewicz
Nanomaterials 2025, 15(23), 1789; https://doi.org/10.3390/nano15231789 - 27 Nov 2025
Viewed by 1922
Abstract
The development of metal nanostructures on large-area Gallium Nitride (GaN) surfaces has the potential to enable new, low-cost technologies for III-N semiconductor layer nanostructuring. Self-assembled nanostructures are typically formed through the thermal activation of solid-state dewetting (SSD) in thin metal layers. However, such [...] Read more.
The development of metal nanostructures on large-area Gallium Nitride (GaN) surfaces has the potential to enable new, low-cost technologies for III-N semiconductor layer nanostructuring. Self-assembled nanostructures are typically formed through the thermal activation of solid-state dewetting (SSD) in thin metal layers. However, such thermal processing can induce degradation of the metal-GaN material system. This comprehensive study investigated the thermal stability of thin metal films on GaN surfaces, focusing on their morphology and nanostructuring for high-temperature processing. The research expands and systematizes the understanding of the thin metal layers on GaN surface interactions at high temperatures by categorizing metals based on their behaviour: those that exhibit self-assembly, those that catalyze GaN decomposition, and those that remain thermally stable. Depending on the annealing temperature and metal type, varying degrees of GaN layer decomposition were observed, ranging from partial surface modification to significant volumetric degradation of the material. A wide range of metals was investigated: Au, Ag, Pt, Ni, Ru, Mo, Ti, Cr, V, Nb. These materials were selected based on criteria such as high work function and chemical resistance. In this studies metal layers with a target thickness of 10 nm deposited by vacuum evaporation on 2.2 μm thick GaN layers grown by metal organic vapor phase epitaxy were applied. The surface morphology and composition were analyzed using AFM, SEM, EDS, and Raman spectroscopy measurement techniques. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

17 pages, 7895 KB  
Article
Electrolytic-Plasma Nitriding of Austenitic Stainless Steels After Mechanical Surface Treatment
by Bauyrzhan Rakhadilov, Zarina Satbayeva, Almasbek Maulit, Nurlat Kadyrbolat and Anuar Rustemov
Crystals 2025, 15(11), 992; https://doi.org/10.3390/cryst15110992 - 17 Nov 2025
Cited by 1 | Viewed by 523
Abstract
In this work, the effect of preliminary mechanical surface treatment on the kinetics of formation, phase composition, and functional properties of the nitrided layer during electrolytic-plasma nitriding (EPN) of austenitic stainless steel 12Kh18N10T (AISI 321) was investigated. In contrast to traditional approaches, for [...] Read more.
In this work, the effect of preliminary mechanical surface treatment on the kinetics of formation, phase composition, and functional properties of the nitrided layer during electrolytic-plasma nitriding (EPN) of austenitic stainless steel 12Kh18N10T (AISI 321) was investigated. In contrast to traditional approaches, for the first time, this work establishes a direct correlation between the degree of surface deformation induced by shot peening and the formation of the expanded austenite (γN) phase under low-temperature plasma conditions. Quantitative X-ray phase analysis revealed a lattice parameter expansion of Δa/a0 ≈ 1.4–1.8% and a gradual transformation of γ-Fe → γN without the formation of CrN nitrides at moderate intensity of preliminary treatment. According to SEM/EDS data and microhardness profiles, a multilayer structure was formed, consisting of a thin surface film of CrN/Fe4N, a developed γN zone with a thickness of 12–15 µm, and a stable austenitic γ-Fe matrix. The surface microhardness increases to 880 ± 20 HV, while the friction coefficient decreases to 0.35–0.40, corresponding to a wear reduction of approximately 55% compared to the initial steel. The results provide a mechanistic understanding of nitrogen diffusion through defect-enriched subsurface layers and show that optimal preliminary deformation (d = 6 mm, v = 40 Hz, t = 20 min) promotes controlled formation of the γN phase with minimal lattice instability. The proposed combined approach—shot peening + EPN—is an effective method for producing wear- and corrosion-resistant surfaces of austenitic steels under atmospheric plasma conditions. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 4359 KB  
Article
Highly Selective Laser Ablation for Thin-Film Electronics: Overcoming Variations Due to Minute Optical Path Length Differences in Plastic Substrates
by Ahmed Fawzy, Henri Fledderus, Jie Shen, Wiel H. Manders, Emile Verstegen and Hylke B. Akkerman
J. Exp. Theor. Anal. 2025, 3(4), 38; https://doi.org/10.3390/jeta3040038 - 14 Nov 2025
Viewed by 484
Abstract
Roll-to-roll production of thin organic and large-area electronic (TOLAE) devices often involves a two-step process per functional layer: a continuous, un-pattered deposition of the film and subsequent structuring process, such as laser ablation. Thin-film organic devices should be protected using ultra-barrier films. To [...] Read more.
Roll-to-roll production of thin organic and large-area electronic (TOLAE) devices often involves a two-step process per functional layer: a continuous, un-pattered deposition of the film and subsequent structuring process, such as laser ablation. Thin-film organic devices should be protected using ultra-barrier films. To perform laser ablation of functional layers on top of such barrier films, in particular that of transparent electrodes, highly selective laser ablation is required to completely remove the layers without damaging the thin-film barrier layers underneath. When targeting highly selective laser ablation of indium tin oxide (ITO) on top of silicon nitride (SiN) barrier layers with a 1064 nm picosecond or 1030 nm femtosecond laser, we observed the emergence of visible large-scale patterns due to local variations in ablation quality. Our investigations using a very sensitive Raman spectroscopy setup show that the observed ablation variations stem from subtle differences in optical path length within the heat-stabilized plastic substrates. These variations are likely caused by minute, localized changes in the refractive index, introduced during the bi-axial stretching process used in film fabrication. Depending on the optical path length, these variations lead to either constructive or destructive interference between the incoming laser beam and the light reflected from the back surface of the substrate. By performing laser ablation under an angle such that the reflected and incoming laser beam do not spatially overlap, highly selective uniform laser ablation can be performed, even for two stacked optically transparent layers. Full article
Show Figures

Graphical abstract

13 pages, 3465 KB  
Article
Raman and Infrared Signatures of Layered Boron Nitride Polytypes: A First-Principles Study
by Priyanka Mishra and Nevill Gonzalez Szwacki
Nanomaterials 2025, 15(20), 1567; https://doi.org/10.3390/nano15201567 - 15 Oct 2025
Cited by 2 | Viewed by 674
Abstract
We present a study based on first-principles calculations of the vibrational and spectroscopic properties of four types of layered boron nitride (BN) polymorphs: e-BN (AA), h-BN (AA), r-BN (ABC), and b-BN (AB). By using density functional [...] Read more.
We present a study based on first-principles calculations of the vibrational and spectroscopic properties of four types of layered boron nitride (BN) polymorphs: e-BN (AA), h-BN (AA), r-BN (ABC), and b-BN (AB). By using density functional perturbation theory with van der Waals corrections, we calculate phonon frequencies and Raman/infrared (IR) activities at the Γ point and extract specific spectral fingerprints for each stack. In e-BN, we observe a sharp, isolated high-frequency E mode at 1420.9cm1 that is active in both Raman and IR. For h-BN, the characteristic Raman E2g line occurs at 1415.5cm1. The out-of-plane IR-active A2u branch shows a mid-frequency TO/LO pair at 673.5/806.6cm1, which closely matches experimental results. Rhombohedral r-BN has a strong, coincident Raman/IR high-frequency feature (E) at 1418.5cm1, along with a large IR LO partner at 1647.3cm1, consistent with observed Raman and IR signatures. Bernal b-BN displays the most complicated pattern. It combines a robust mid-frequency A2 pair (TO/LO at 697.9/803.5cm1) with multiple high-frequency E modes (TO near 1416.9 and 1428.1cm1, each with LO counterparts). These stack-dependent Raman and IR fingerprints match existing experimental data for h-BN and r-BN and provide clear predictions for e-BN and b-BN. The results offer a consistent framework for identifying and interpreting vibrational spectra in layered sp2 boron nitride and related materials. Full article
(This article belongs to the Special Issue Structure–Property Correlation Studies of Low-Dimensional Materials)
Show Figures

Figure 1

17 pages, 1807 KB  
Article
First-Principles Study on the Microheterostructures of N-GQDs@Si3N4 Composite Ceramics
by Wei Chen, Yetong Li, Yucheng Ma, Enguang Xu, Rui Lou, Zhuohao Sun, Yu Tian and Jianjun Zhang
Coatings 2025, 15(10), 1172; https://doi.org/10.3390/coatings15101172 - 7 Oct 2025
Viewed by 588
Abstract
In the previous research that aimed to enhance the toughness and tribological properties of silicon nitride ceramics, a lignin precursor was added to the ceramic matrix, which achieved conversion through pyrolysis and sintering, resulting in a silicon nitride-based composite ceramic containing nitrogen-doped graphene [...] Read more.
In the previous research that aimed to enhance the toughness and tribological properties of silicon nitride ceramics, a lignin precursor was added to the ceramic matrix, which achieved conversion through pyrolysis and sintering, resulting in a silicon nitride-based composite ceramic containing nitrogen-doped graphene quantum dots (N-GQDs). This composite material demonstrated excellent comprehensive mechanical properties and friction-wear performance. Based on the existing experimental results, the first-principles plane wave mode conservation pseudopotential method of density functional theory was adopted in this study to build a microscopic heterostructure model of Si3N4-based composite ceramics containing N-GQDs. Meanwhile, the surface energy of Si3N4 and the system energy of the N-GQDs@Si3N4 heterostructure were calculated. The calculation results showed that when the distance between N-GQDs and Si3N4 in the heterostructure was 2.3 Å, the structural energy was the smallest and the structure was the steadiest. This is consistent with the previous experimental results and further validates the coating mechanism of N-GQDs covering the Si3N4 column-shaped crystals. Simultaneously, based on the results of the previous experiments, the stress of the heterostructure composed of Si3N4 particles coated with different numbers of layers of nitrogen quantum dots was calculated to predict the optimal lignin doping amount. It was found that when the doping amount was between 1% and 2%, the best microstructure and mechanical properties were obtained. This paper provides a new method for studying the graphene quantum dot coating structure. Full article
Show Figures

Figure 1

22 pages, 6737 KB  
Article
Molecular Dynamics Study on the Effect of Surface Films on the Nanometric Grinding Mechanism of Single-Crystal Silicon
by Meng Li, Di Chang, Pengyue Zhao and Jiubin Tan
Micromachines 2025, 16(10), 1141; https://doi.org/10.3390/mi16101141 - 2 Oct 2025
Viewed by 3551
Abstract
To investigate the influence of surface films on the material removal mechanism of single-crystal silicon during nanogrinding, molecular dynamics (MD) simulations were performed under different surface-film conditions. The simulations examined atomic displacements, grinding forces, radial distribution functions (RDF), phase transformations, temperature distributions, and [...] Read more.
To investigate the influence of surface films on the material removal mechanism of single-crystal silicon during nanogrinding, molecular dynamics (MD) simulations were performed under different surface-film conditions. The simulations examined atomic displacements, grinding forces, radial distribution functions (RDF), phase transformations, temperature distributions, and residual stress distributions to elucidate the damage mechanisms at the surface and subsurface on the nanoscale. In this study, boron nitride (BN) and graphene films were applied to the surface of single-crystal silicon workpieces for nanogrinding simulations. The results reveal that both BN and graphene films effectively suppress chip formation, thereby improving the surface quality of the workpiece, with graphene showing a stronger inhibitory effect on atomic displacements. Both films reduce tangential forces and mitigate grinding force fluctuations, while increasing normal forces; the increase in normal force is smaller with BN. Although both films enlarge the subsurface damage layer (SDL) thickness and exhibit limited suppression of crystalline phase transformations, they help to alleviate surface stress release. In addition, the films reduce the surface and subsurface temperatures, with graphene yielding a lower temperature. Residual stresses beneath the abrasive grain are also reduced when either film is applied. Overall, BN and graphene films can enhance the machined surface quality, but further optimization is required to minimize subsurface damage (SSD), providing useful insights for the optimization of single-crystal silicon nanogrinding processes. Full article
Show Figures

Figure 1

45 pages, 2145 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Cited by 3 | Viewed by 2574
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
Show Figures

Figure 1

15 pages, 8373 KB  
Article
Development of Amorphous AlN Thin Films on ITO-Glass and ITO-PET at Low Temperatures by RF Sputtering
by Miriam Cadenas, Michael Sun, Susana Fernández, Sirona Valdueza-Felip, Ana M. Diez-Pascual and Fernando B. Naranjo
Micromachines 2025, 16(9), 993; https://doi.org/10.3390/mi16090993 - 29 Aug 2025
Viewed by 1305
Abstract
Aluminum nitride (AlN) is a material of wide interest in the optoelectronics and high-power electronics industry. The deposition of AlN thin films at elevated temperatures is a well-established process, but its implementation on flexible substrates with conductive oxides, such as ITO-glass or ITO-PET, [...] Read more.
Aluminum nitride (AlN) is a material of wide interest in the optoelectronics and high-power electronics industry. The deposition of AlN thin films at elevated temperatures is a well-established process, but its implementation on flexible substrates with conductive oxides, such as ITO-glass or ITO-PET, poses challenges due to the thermal degradation of these materials. In this work, the deposition and characterization of AlN thin films by reactive sputtering at a low temperature (RT and 100 °C) on ITO-glass and ITO-PET substrates are presented. The structural, optical, and electrical properties of the samples have been analysed as a function of the sputtering power and the deposition temperature. XRD analysis revealed the absence of peaks of crystalline AlN, indicative of the formation of an amorphous phase. EDX measurements performed on the ITO-glass substrate with a radiofrequency power applied to the Al target of 175 W confirmed the presence of Al and N, corroborating the deposition of AlN. SEM analyses showed the formation of homogeneous and compact layers, and transmission optical measurements revealed a bandgap of around 5.82 eV, depending on the deposition conditions. Electrical resistivity measurements indicated an insulating character. Overall, these findings confirm the potential of amorphous AlN for applications in flexible optoelectronic devices. Full article
Show Figures

Figure 1

12 pages, 372 KB  
Article
Early Clinical Outcomes of a Nitrided Ti-6Al-4V Titanium Alloy Anatomic Total Knee Replacement System
by Derek Johnson, P. Maxwell Courtney, Henry Boucher, Erik Kowalski, Roberta E. Redfern and Krishna R. Tripuraneni
Osteology 2025, 5(3), 26; https://doi.org/10.3390/osteology5030026 - 26 Aug 2025
Cited by 1 | Viewed by 1948
Abstract
Background/Objectives: To prevent potential complications for patients with metal hypersensitivity requiring total knee arthroplasty (TKA), implant coatings have been developed. Thermal nitriding of the titanium surface creates a TiN layer that increases hardness and wear resistance while preventing release of cobalt and chromium [...] Read more.
Background/Objectives: To prevent potential complications for patients with metal hypersensitivity requiring total knee arthroplasty (TKA), implant coatings have been developed. Thermal nitriding of the titanium surface creates a TiN layer that increases hardness and wear resistance while preventing release of cobalt and chromium ions. The aim of this study was to evaluate the clinical safety and performance of an anatomic implant system comprised of thermally nitrided Ti-6Al-4V. Methods: This is an ongoing prospective, multicenter observational cohort study of primary and revision TKA patients. Patient-reported outcome measures including the Oxford Knee Score (OKS), Knee Society Score (KSS) Expectations subscale, EQ-5D-5L, physical exams, and radiographic assessments to document abnormalities were investigated in 94 patients who provided at least two years of follow-up data. The primary endpoint was improvement in the Oxford Knee Score (OKS), defined as the minimal clinically important difference (MCID, 7.0 points). Results: All outcome measures including patient-reported function (OKS) demonstrated significant improvements (19.4–22.6 points) exceeding the MCID with no between-group differences by bearing types utilized. Health-related quality of life as measured by EQ-5D-5L improved over the cohort and was maintained at 2-years post-operative. In total, three (1.4%) radiographic abnormalities were observed, all of which resolved at two-year follow-up. 12 (5.3%) serious complications were reported, none of which were related to the device. Two revisions have occurred, one due to infection and one due to a fall, in the ultracongruent bearing cohort (survivorship 98.1%, 95%CI 87.4–99.7). Implant survivorship was 100% in all other bearing cohorts. Conclusions: This anatomically designed, thermally nitrided titanium alloy implant demonstrated clinically significant improvements in function, PROMs, and quality of life in patients undergoing TKA regardless of bearing type. Excellent two-year implant survivorship between 98.1% and 100% across cohorts were observed, with no radiographic abnormalities at 2 years. Full article
Show Figures

Figure 1

12 pages, 474 KB  
Article
Intrinsic Temperature and Pressure Compensation of Thin-Film Acoustic Resonators
by Sergiu Cojocaru
Appl. Sci. 2025, 15(17), 9349; https://doi.org/10.3390/app15179349 - 26 Aug 2025
Viewed by 3653
Abstract
Stabilization of the resonance frequency in thin-film acoustic devices to variations in environmental conditions is commonly reduced to the passive or active compensation of a single factor (usually temperature) and the isolation or addition of a separate correction circuit for every other factor [...] Read more.
Stabilization of the resonance frequency in thin-film acoustic devices to variations in environmental conditions is commonly reduced to the passive or active compensation of a single factor (usually temperature) and the isolation or addition of a separate correction circuit for every other factor (e.g., pressure and mass loading). In this work, the possibility of dual-factor compensation is proposed, where the response of a multi-layered thin structure to both temperature and ambient pressure variation vanishes due to the choice of intrinsic parameters (materials and thickness ratios). The response functions are derived for the S0 Lamb mode at long wavelengths in an explicit analytical form in terms of bulk material characteristics. It is demonstrated that the dual-factor intrinsic stabilization requires at least a three-layered structure and can be achieved for materials commonly used in temperature-compensated devices (aluminum nitride, fused silica, and aluminum). Identification of the key material characteristics governing the existence of a stability solution can serve for a targeted search of such composites and implementation of new thin-film dual devices. Full article
Show Figures

Figure 1

Back to TopTop