Early Clinical Outcomes of a Nitrided Ti-6Al-4V Titanium Alloy Anatomic Total Knee Replacement System
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Inclusion/Exclusion Criteria
2.3. Assessments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Chen, Y.; Shen, Z. Global Shifts in Osteoarthritis Subtype Trends among Older Adults Due to Elevated Bmi: An Age-Period-Cohort Analysis Based on the Global Burden of Disease Database. Front. Public Health 2025, 13, 1518572. [Google Scholar] [CrossRef]
- Nguyen, A.; Lee, P.; Rodriguez, E.K.; Chahal, K.; Freedman, B.R.; Nazarian, A. Addressing the Growing Burden of Musculoskeletal Diseases in the Ageing Us Population: Challenges and Innovations. Lancet Healthy Longev. 2025, 6, 100707. [Google Scholar] [CrossRef] [PubMed]
- Shichman, I.; Roof, M.; Askew, N.; Nherera, L.; Rozell, J.C.; Seyler, T.M.; Schwarzkopf, R. Projections and Epidemiology of Primary Hip and Knee Arthroplasty in Medicare Patients to 2040–2060. JBJS Open Access 2023, 8, e22.00112. [Google Scholar] [CrossRef]
- National Joint Registry: 21st Annual Report 2024; National Joint Registry: London, UK, 2024.
- Sadoghi, P.; Koutp, A.; Prieto, D.P.; Clauss, M.; Kayaalp, M.E.; Hirschmann, M.T. The Projected Economic Burden and Complications of Revision Hip and Knee Arthroplasties: Insights from National Registry Studies. Knee Surg. Sports Traumatol. Arthrosc. 2025; online ahead of print. [Google Scholar]
- Bhandari, M.; Smith, J.; Miller, L.E.; Block, J.E. Clinical and Economic Burden of Revision Knee Arthroplasty. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2012, 5, 89–94. [Google Scholar] [CrossRef]
- Lutzner, J.; Hartmann, A.; Dinnebier, G.; Spornraft-Ragaller, P.; Hamann, C.; Kirschner, S. Metal Hypersensitivity and Metal Ion Levels in Patients with Coated or Uncoated Total Knee Arthroplasty: A Randomised Controlled Study. Int. Orthop. 2013, 37, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Matar, H.E.; Porter, P.J.; Porter, M.L. Metal Allergy in Primary and Revision Total Knee Arthroplasty: A Scoping Review and Evidence-Based Practical Approach. Bone Jt. Open 2021, 2, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Siljander, B.R.; Chandi, S.K.; Cororaton, A.D.; Debbi, E.M.; McLawhorn, A.S.; Sculco, P.K.; Chalmers, B.P. A Comparison of Clinical Outcomes after Total Knee Arthroplasty in Patients Who Have and Do Not Have Self-Reported Nickel Allergy: Matched and Unmatched Cohort Comparisons. J. Arthroplast. 2024, 39, 2490–2495. [Google Scholar] [CrossRef]
- Tidd, J.L.; Gudapati, L.S.; Simmons, H.L.; Klika, A.K.; Pasqualini, I.; Group Cleveland Clinic Arthroplasty; Piuzzi, N.S. Do Patients with Hypoallergenic Total Knee Arthroplasty Implants for Metal Allergy Do Worse? An Analysis of Health Care Utilizations and Patient-Reported Outcome Measures. J. Arthroplast. 2024, 39, 103–110. [Google Scholar] [CrossRef]
- Tille, E.; Beyer, F.; Lutzner, C.; Postler, A.; Thomas, P.; Summer, B.; Lutzner, J. No Difference in Patient Reported Outcome and Inflammatory Response after Coated and Uncoated Total Knee Arthroplasty—A Randomized Controlled Study. BMC Musculoskelet. Disord. 2023, 24, 968. [Google Scholar] [CrossRef]
- Xie, F.; Sheng, S.; Ram, V.; Pandit, H. Hypoallergenic Knee Implant Usage and Clinical Outcomes: Are They Safe and Effective? Arthroplast. Today 2024, 28, 101399. [Google Scholar] [CrossRef]
- Nam, D.; Li, K.; Riegler, V.; Barrack, R.L. Patient-Reported Metal Allergy: A Risk Factor for Poor Outcomes after Total Joint Arthroplasty? J. Arthroplast. 2016, 31, 1910–1915. [Google Scholar] [CrossRef]
- Peacock, C.J.H.; Fu, H.; Asopa, V.; Clement, N.D.; Kader, D.; Sochart, D.H. The Effect of Nickel Hypersensitivity on the Outcome of Total Knee Arthroplasty and the Value of Skin Patch Testing: A Systematic Review. Arthroplasty 2022, 4, 40. [Google Scholar] [CrossRef]
- Arnholt, C.M.; MacDonald, D.W.; Klein, G.R.; Cates, H.E.; Rimnac, C.M.; Kurtz, S.M.; Writing, C.I.R.C.; Kocagoz, S.; Chen, A.F. What Is the Incidence of Cobalt-Chromium Damage Modes on the Bearing Surface of Contemporary Femoral Component Designs for Total Knee Arthroplasty? J. Arthroplast. 2018, 33, 3313–3319. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, M.A.; Hallab, N.J.; Rainey, J.P.; Pelt, C.E.; Mihalko, W.M.; Piuzzi, N.S.; Mont, M.A.; Spece, H.; Kurtz, S.M. Metal Release in Total Knee Arthroplasty: A Review of Mechanisms, Adverse Local Tissue Reactions, and Biological Effects. J. Arthroplast. 2025; in press. [Google Scholar]
- Luetzner, J.; Krummenauer, F.; Lengel, A.M.; Ziegler, J.; Witzleb, W.C. Serum Metal Ion Exposure after Total Knee Arthroplasty. Clin. Orthop. Relat. Res. 2007, 461, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Lons, A.; Putman, S.; Pasquier, G.; Migaud, H.; Drumez, E.; Girard, J. Metallic Ion Release after Knee Prosthesis Implantation: A Prospective Study. Int. Orthop. 2017, 41, 2503–2508. [Google Scholar] [CrossRef] [PubMed]
- Reiner, T.; Sorbi, R.; Muller, M.; Nees, T.; Kretzer, J.P.; Rickert, M.; Moradi, B. Blood Metal Ion Release after Primary Total Knee Arthroplasty: A Prospective Study. Orthop. Surg. 2020, 12, 396–403. [Google Scholar] [CrossRef]
- Vivegananthan, B.; Shah, R.; Karuppiah, A.S.; Karuppiah, S.V. Metallosis in a Total Knee Arthroplasty. BMJ Case Rep. 2014, 2014, bcr2013202801. [Google Scholar] [CrossRef]
- AbuAlia, M.; Fullam, S.; Cinotti, F.; Manninen, N.; Wimmer, M.A. Titanium Nitride Coatings on Cocrmo and Ti6al4v Alloys: Effects Onwear and Ion Release. Lubricants 2024, 12, 96. [Google Scholar] [CrossRef]
- Harvie, P.; Torres-Grau, J.; Beaver, R.J. Common Peroneal Nerve Palsy Associated with Pseudotumour after Total Knee Arthroplasty. Knee 2012, 19, 148–150. [Google Scholar] [CrossRef]
- Rainey, J.P.; Gililland, J.M.; Peters, C.L.; Archibeck, M.J.; Anderson, L.A.; Pelt, C.E. Metallosis and Corrosion Associated with Revision Total Knee Arthroplasties with Metaphyseal Sleeves. Arthroplast. Today 2023, 22, 101167. [Google Scholar] [CrossRef]
- Thakur, R.R.; Ast, M.P.; McGraw, M.; Bostrom, M.P.; Rodriguez, J.A.; Parks, M.L. Severe Persistent Synovitis after Cobalt-Chromium Total Knee Arthroplasty Requiring Revision. Orthopedics 2013, 36, e520–e524. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, P.W.; Aslani, S.; Kurtz, M.A.; Taylor, L.M.; Barnes, E.R.; MacDonald, D.W.; Piuzzi, N.S.; Mihalko, W.M.; Kurtz, S.M.; Gilbert, J.L. Cobalt-Chromium-Molybdenum Femoral Knee Implant Damage Correlates with Elevated Periprosthetic Metal Concentrations. J. Arthroplast. 2025, 40, S315–S323. [Google Scholar] [CrossRef] [PubMed]
- Post, C.E.; Bitter, T.; Briscoe, A.; Fluit, R.; Verdonschot, N.; Janssen, D. The Primary Stability of a Cementless Peek Femoral Component Is Sensitive to Bmi: A Population-Based Fe Study. J. Biomech. 2024, 168, 112061. [Google Scholar] [CrossRef] [PubMed]
- Skjoldebrand, C.; Tipper, J.L.; Hatto, P.; Bryant, M.; Hall, R.M.; Persson, C. Current Status and Future Potential of Wear-Resistant Coatings and Articulating Surfaces for Hip and Knee Implants. Mater. Today Bio 2022, 15, 100270. [Google Scholar] [CrossRef]
- van Hove, R.P.; Sierevelt, I.N.; van Royen, B.J.; Nolte, P.A. Titanium-Nitride Coating of Orthopaedic Implants: A Review of the Literature. Biomed. Res. Int. 2015, 2015, 485975. [Google Scholar] [CrossRef]
- Tkachik, O.V.; Sheykin, S.E.; Lavrys, S.M.; Rostotskii, I.Y.; Danyliak, M.-O.M.; Pohrelyuk, I.M.; Proskurnyak, R.V. Effect of Stage Gas Nitriding on Corrosion and Wear Resistance of Ti6al4v. Vacuum 2024, 230, 113713. [Google Scholar] [CrossRef]
- Venugopalan, R.; Weimer, J.J.; George, M.A.; Lucas, L.C. The Effect of Nitrogen Diffusion Hardening on the Surface Chemistry and Scratch Resistance of Ti-6a1-4v Alloy. Biomaterials 2000, 21, 1669–1677. [Google Scholar] [CrossRef]
- Matijošius, T.; Pohrelyuk, I.; Lavrys, S.; Staišiūnas, L.; Selskienė, A.; Stičinskaitė, A.; Ragelienė, L.; Smailys, A.; Andriušis, A.; Padgurskas, J. Wear Resistance and Antibacterial Properties of 3d-Printed Ti6al4v Alloy after Gas Nitriding. Tribol. Int. 2024, 197, 109839. [Google Scholar] [CrossRef]
- Chan, C.-W.; Quinn, J.; Hussain, I.; Carson, L.; Smith, G.C.; Lee, S. A Promising Laser Nitriding Method for the Design of Next Generation Orthopaedic Implants: Cytotoxicity and Antibacterial Performance of Titanium Nitride (Tin) Wear Nano-Particles, and Enhanced Wear Properties of Laser-Nitrided Ti6al4v Surfaces. Surf. Coat. Technol. 2021, 405, 126714. [Google Scholar] [CrossRef]
- Breuer, R.; Fiala, R.; Hartenbach, F.; Pollok, F.; Huber, T.; Strasser-Kirchweger, B.; Rath, B.; Trieb, K. Long Term Follow-up of a Completely Metal Free Total Knee Endoprosthesis in Comparison to an Identical Metal Counterpart. Sci. Rep. 2024, 14, 20958. [Google Scholar] [CrossRef]
- Deroche, E.; Batailler, C.; Shatrov, J.; Gunst, S.; Servien, E.; Lustig, S. No Clinical Difference at Mid-Term Follow-up between Tin-Coated Versus Uncoated Cemented Mobile-Bearing Total Knee Arthroplasty: A Matched Cohort Study. SICOT J. 2023, 9, 5. [Google Scholar] [CrossRef]
- Rossi, S.M.P.; Perticarini, L.; Mosconi, M.; Ghiara, M.; Benazzo, F. Ten-Year Outcomes of a Nitrided Ti-6al-4v Titanium Alloy Fixed-Bearing Total Knee Replacement with a Highly Crosslinked Polyethylene-Bearing in Patients with Metal Allergy. Knee 2020, 27, 1519–1524. [Google Scholar] [CrossRef]
- Guenther, D.; Thomas, P.; Kendoff, D.; Omar, M.; Gehrke, T.; Haasper, C. Allergic Reactions in Arthroplasty: Myth or Serious Problem? Int. Orthop. 2016, 40, 239–244. [Google Scholar] [CrossRef]
- Zondervan, R.L.; Vaux, J.J.; Blackmer, M.J.; Brazier, B.G.; Taunt, C.J., Jr. Improved Outcomes in Patients with Positive Metal Sensitivity Following Revision Total Knee Arthroplasty. J. Orthop. Surg. Res. 2019, 14, 182. [Google Scholar] [CrossRef]
- Lapaj, L.; Rozwalka, J. Retrieval Analysis of Tin (Titanium Nitride) Coated Knee Replacements: Coating Wear and Degradation in Vivo. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 1251–1261. [Google Scholar] [CrossRef]
- Herbster, M.; Doring, J.; Nohava, J.; Lohmann, C.H.; Halle, T.; Bertrand, J. Retrieval Study of Commercially Available Knee Implant Coatings Tin, Tinbn and Zrn on Tial6v4 and Cocr28mo6. J. Mech. Behav. Biomed. Mater. 2020, 112, 104034. [Google Scholar] [CrossRef] [PubMed]
- Shetty, R.H. Surface Hardening of Orthopedic Implants. In Biomaterials Engineering and Devices: Human Applications: Orthopedic, Dental, and Bone Graft Applications; Wise, D.L., Trantolo, D.J., Lewandrowski, K.-U., Gresser, J.D., Cattaneo, M.V., Yaszemski, M.J., Eds.; Humana Press: Totowa, NJ, USA, 2000; Volume 2, pp. 191–202. [Google Scholar]
- Beard, D.J.; Harris, K.; Dawson, J.; Doll, H.; Murray, D.W.; Carr, A.J.; Price, A.J. Meaningful Changes for the Oxford Hip and Knee Scores after Joint Replacement Surgery. J. Clin. Epidemiol. 2015, 68, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Chimento, G.; Daher, J.; Desai, B.; Velasco-Gomez, C. Nickel Allergy Does Not Correlate with Function after Total Knee Arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2024, 33, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Bloemke, A.D.; Clarke, H.D. Prevalence of Self-Reported Metal Allergy in Patients Undergoing Primary Total Knee Arthroplasty. J. Knee Surg. 2015, 28, 243–246. [Google Scholar] [CrossRef]
- D’Ambrosi, R.; Nuara, A.; Mariani, I.; Di Feo, F.; Ursino, N.; Hirschmann, M. Titanium Niobium Nitride Mobile-Bearing Unicompartmental Knee Arthroplasty Results in Good to Excellent Clinical and Radiographic Outcomes in Metal Allergy Patients with Medial Knee Osteoarthritis. J. Arthroplast. 2021, 36, 140–147.e2. [Google Scholar] [CrossRef]
- Desai, M.M.; Shah, K.A.; Mohapatra, A.; Patel, D.C. Prevalence of Metal Hypersensitivity in Total Knee Replacement. J. Orthop. 2019, 16, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Bracey, D.N.; Hegde, V.; Johnson, R.; Kleeman-Forsthuber, L.; Jennings, J.; Dennis, D. Poor Correlation among Metal Hypersensitivity Testing Modalities and Inferior Patient-Reported Outcomes after Primary and Revision Total Knee Arthroplasties. Arthroplast. Today 2022, 18, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Razak, A.; Ebinesan, A.D.; Charalambous, C.P. Metal Allergy Screening Prior to Joint Arthroplasty and Its Influence on Implant Choice: A Delphi Consensus Study Amongst Orthopaedic Arthroplasty Surgeons. Knee Surg. Relat. Res. 2013, 25, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Hallab, N.; Merritt, K.; Jacobs, J.J. Metal Sensitivity in Patients with Orthopaedic Implants. J. Bone Jt. Surg. Am. 2001, 83, 428–436. [Google Scholar] [CrossRef]
- Granchi, D.; Cenni, E.; Giunti, A.; Baldini, N. Metal Hypersensitivity Testing in Patients Undergoing Joint Replacement: A Systematic Review. J. Bone Jt. Surg. Br. 2012, 94, 1126–1134. [Google Scholar] [CrossRef]
- Soler, F.; Murcia, A.; Benlloch, M.; Mariscal, G. The Impact of Allergies on Patient-Reported Outcomes after Total Hip and Knee Arthroplasty: A Systematic Review and Meta-Analysis. Arch. Orthop. Trauma Surg. 2024, 144, 3755–3765. [Google Scholar] [CrossRef]
- Lionberger, D.; Conlon, C.; Wattenbarger, L.; Walker, T.J. Unacceptable Failure Rate of a Ceramic-Coated Posterior Cruciate-Substituting Total Knee Arthroplasty. Arthroplast. Today 2019, 5, 187–192. [Google Scholar] [CrossRef]
- Song, S.J.; Lee, H.W.; Bae, D.K.; Park, C.H. High Incidence of Tibial Component Loosening after Total Knee Arthroplasty Using Ceramic Titanium-Nitride-Coated Mobile Bearing Prosthesis in Moderate to Severe Varus Deformity: A Matched-Pair Study between Ceramic-Coated Mobile Bearing and Fixed Bearing Prostheses. J. Arthroplast. 2020, 35, 1003–1008. [Google Scholar]
- Postler, A.; Beyer, F.; Lutzner, C.; Tille, E.; Lutzner, J. Similar Outcome During Short-Term Follow-up after Coated and Uncoated Total Knee Arthroplasty: A Randomized Controlled Study. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3459–3467. [Google Scholar] [CrossRef]
- Kim, S.E.; Ro, D.H.; Lee, M.C.; Cholewa, J.M. Early- to Mid-Term Review of a Prospective, Multi-Center, International, Outcomes Study of an Anatomically Designed Implant with Posterior-Stabilized Bearing in Total Knee Arthroplasty. Medicina 2023, 59, 2105. [Google Scholar] [CrossRef]
- Mahmood, F.; Rae, F.; Rae, S.; Ewen, A.; Holloway, N.; Clarke, J. Mid-Term Results of an Anatomic Total Knee Replacement Design. Arch. Orthop. Trauma Surg. 2024, 144, 2239–2247. [Google Scholar] [CrossRef]
- de Villeneuve, F.B.; Jacquet, C.; Puech, S.; Parratte, S.; Ollivier, M.; Argenson, J.-N. Minimum Five Years Follow-up of Total Knee Arthroplasty Using Morphometric Implants in Patients with Osteoarthritis. J. Arthroplast. 2021, 36, 2502–2509. [Google Scholar] [CrossRef] [PubMed]
- Mathijssen, N.M.C.; Verburg, H.; London, N.J.; Landsiedl, M.; Dominkus, M. Patient Reported Outcomes and Implant Survivorship after Total Knee Arthroplasty with the Persona Knee Implant System: Two Year Follow Up. BMC Musculoskelet. Disord. 2019, 20, 97. [Google Scholar] [CrossRef] [PubMed]
- Dauder Gallego, C.; Fenoll, I.B.M.; Contreras, J.L.P.; Coronas, F.J.M.; de la Cal, M.D.C.T.; Martin, J.M. Midterm Results of a New Personalized Knee Implant for Total Knee Arthroplasty: Implant Survivorship and Patient-Reported Outcome after Five Years’ Follow-Up. Eur. J. Orthop. Surg. Traumatol. 2022, 32, 257–262. [Google Scholar] [CrossRef]
- Omari, A.; Troelsen, A.; Husted, H.; Nielsen, C.S.; Gromov, K. Early Clinical Outcome and Learning Curve Following Unilateral Primary Total Knee Arthroplasty after Introduction of a Novel Total Knee Arthroplasty System. World J. Orthop. 2020, 11, 431–441. [Google Scholar] [CrossRef]
Cruciate Retaining (CR) | Medial Congruent (MC) | Posterior Stabilized (PS/CPS) | Ultracongruent (UC) | Between-Group Differences p-Value | |
---|---|---|---|---|---|
N | 50 | 60 | 56 | 60 | |
Sex (F/M) | 25/25 | 47/13 | 41/15 | 41/19 | 0.011 |
Age | 68.3 ± 8.4 | 65.5 ± 8.9 | 65.7 ± 9.4 | 66.9 ± 7.5 | |
BMI (kg/m2) | 31.8 ± 5.4 (50) | 33.8 ± 7.4 (60) | 35.0 ± 7.9 (56) | 30.8 ± 6.0 (59) | 0.005 |
Anatomic Alignment at baseline (n/N (%)) | |||||
Varus (<2° valgus) | 25/50 (50.0%) | 33/60 (55.0%) | 23/56 (41.1%) | 35/60 (58.3%) | |
Neutral (2–10° valgus) | 21/50 (42.0%) | 24/60 (40.0%) | 27/56 (48.2%) | 22/60 (36.7%) | |
Valgus (>10° valgus) | 4/50 (8.0%) | 3/60 (5.0%) | 6/56 (10.7%) | 3/60 (5.0%) | |
ROM (degrees) | |||||
Baseline | 112.8 ± 16.5 (49) | 116.1 ± 10.2 (59) | 112.2 ± 13.6 (56) | 117.5 ± 12.6 (60) | 0.095 |
6 Month | 122.9 ± 10.3 (31) * | 120.4 ± 10.4 (50) * | 120.9 ± 9.4 (50) * | 118.5 ± 6.4 (46) * | 0.242 |
1 Year | 123.9 ± 10.4 (24) * | 123.5 ± 8.3 (43) * | 123.2 ± 7.1 (34) * | 117.9 ± 7.9 (26) | 0.028 |
2 Year | 128.8 ± 2.5 (4) | 124.2 ± 7.9 (37) * | 120.7 ± 9.4 (27) * | 116.3 ± 4.8 (4) | 0.070 |
Cruciate Retaining (CR) | Medial Congruent (MC) | Posterior Stabilized (PS/CPS) | Ultracongruent (UC) | Between-Group Differences p-Value | |
---|---|---|---|---|---|
Oxford Knee Score | |||||
Baseline | 21.7 ± 8.1 (50) | 21.8 ± 7.2 (60) | 20.9 ± 8.1 (53) | 23.8 ± 7.4 (60) | 0.224 |
6 Month | 39.7 ± 4.2 (34) * | 40.3 ± 5.8 (49) * | 38.2 ± 9.0 (47) * | 40.3 ± 6.5 (50) * | 0.376 |
1 Year | 42.2 ± 5.1 (25) * | 42.0 ± 5.4 (49) * | 40.4 ± 9.1 (35) * | 42.3 ± 4.6 (29) * | 0.585 |
2 Year | 45.9 ± 2.4 (8) * | 42.6 ± 5.8 (46) * | 40.9 ± 8.9 (30) * | 42.5 ± 9.3 (10) * | 0.372 |
EQ-5D-5L | |||||
Baseline | 77.0 ± 19.5 (50) | 71.4 ± 16.0 (50) | 70.1 ± 18.0 (53) | 77.0 ± 18.6 (60) | 0.081 |
6 Month | 82.0 ± 11.3 (34) * | 83.9 ± 11.0 (49) * | 79.1 ± 14.1 (47) * | 84.8 ± 15.2 (50) * | 0.247 |
1 Year | 86.8 ± 9.3 (25) * | 83.8 ± 9.9 (49) * | 81.3 ± 14.5 (35) * | 87.8 ± 11.1 (29) * | 0.095 |
2 Year | 82.5 ± 12.0 (8) * | 83.4 ± 11.1 (46) * | 74.1 ± 21.7 (30) * | 83.0 ± 18.4 (10) * | 0.092 |
KSS Expectations | |||||
Baseline | 14.7 ± 0.8 (50) | 14.6 ± 0.7 (60) | 13.8 ± 1.7 (53) | 14.2 ± 1.3 (60) | <0.001 |
6 Month | 9.0 ± 2.5 (32) | 10.1 ± 2.7 (45) | 9.7 ± 3.2 (46) | 10.7 ± 3.1 (50) | 0.075 |
1 Year | 10.4 ± 3.5 (25) | 11.3 ± 3.4 (47) | 10.7 ± 3.4 (33) | 11.5 ± 3.3 (28) | 0.504 |
2 Year | 10.3 ± 3.1 (8) | 11.7 ± 2.6 (46) | 10.5 ± 3.1 (30) | 11.4 ± 4.0 (10) | 0.283 |
Cruciate Retaining (CR) | Medial Congruent (MC) | Posterior Stabilized (PS/CPS) | Ultracongruent (UC) | Between-Group Differences p-Value | |
---|---|---|---|---|---|
Early Postop | 1 (2.1%) | 0 (0%) | 0 (0%) | 0 (0%) | 0.212 |
6 Month | 0 (0%) | 0 (0%) | 1 (2.2%) | 0 (0%) | 0.453 |
1 Year | 0 (0%) | 1 (2.3%) | 0 (0%) | 0 (0%) | 1.000 |
2 Year | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | N/A |
Cruciate Retaining (CR) | Medial Congruent (MC) | Posterior Stabilized (PS)/CPS | Ultracongruent (UC) | Between-Group Differences p-Value | |
---|---|---|---|---|---|
AEs | |||||
Possible Relationship to Device | 1/30 (3.3%) | 3/46 (6.5%) | 2/38 (5.4%) | 1/13 (7.7%) | 0.254 |
Mild | 6/30 (20.0%) | 14/46 (30.4%) | 16/38 (42.1%) | 8/13 (61.5%) | |
Moderate | 22/30 (73.3%) | 31/46 (67.4%) | 22/38 (57.9%) | 5/13 (38.5%) | |
Severe | 2/30 (6.7%) | 1/46 (2.2%) | 0/38 (0%) | 0/13 (0%) | |
SAEs | |||||
Possible Relationship to Device | 0/3 (0%) | 0/3 (0%) | 0/6 (0%) | 0/0 (0%) | 0.092 |
Mild | 0/3 (0%) | 0/3 (0%) | 1/6 (16.7%) | 0/0 (0%) | |
Moderate | 3/3 (100%) | 3/3 (100%) | 4/6 (66.7%) | 0/0 (0%) | |
Severe | 0/3 (0%) | 0/3 (0%) | 1/6 (16.7%) | 0/0 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, D.; Courtney, P.M.; Boucher, H.; Kowalski, E.; Redfern, R.E.; Tripuraneni, K.R. Early Clinical Outcomes of a Nitrided Ti-6Al-4V Titanium Alloy Anatomic Total Knee Replacement System. Osteology 2025, 5, 26. https://doi.org/10.3390/osteology5030026
Johnson D, Courtney PM, Boucher H, Kowalski E, Redfern RE, Tripuraneni KR. Early Clinical Outcomes of a Nitrided Ti-6Al-4V Titanium Alloy Anatomic Total Knee Replacement System. Osteology. 2025; 5(3):26. https://doi.org/10.3390/osteology5030026
Chicago/Turabian StyleJohnson, Derek, P. Maxwell Courtney, Henry Boucher, Erik Kowalski, Roberta E. Redfern, and Krishna R. Tripuraneni. 2025. "Early Clinical Outcomes of a Nitrided Ti-6Al-4V Titanium Alloy Anatomic Total Knee Replacement System" Osteology 5, no. 3: 26. https://doi.org/10.3390/osteology5030026
APA StyleJohnson, D., Courtney, P. M., Boucher, H., Kowalski, E., Redfern, R. E., & Tripuraneni, K. R. (2025). Early Clinical Outcomes of a Nitrided Ti-6Al-4V Titanium Alloy Anatomic Total Knee Replacement System. Osteology, 5(3), 26. https://doi.org/10.3390/osteology5030026