Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (882)

Search Parameters:
Keywords = functional nanofibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1881 KB  
Article
Sustainable Lavender Extract-Mediated Synthesis of Silver Nanoparticles and Their Use in Fabricating Antibacterial Polymer Nanocomposites
by Lívia Mačák, Oksana Velgosová, Erika Múdra, Marek Vojtko and Silvia Ondrašovičová
Nanomaterials 2026, 16(2), 98; https://doi.org/10.3390/nano16020098 - 12 Jan 2026
Abstract
This study focuses on the development of antibacterial polymer nanocomposites based on biologically synthesized silver nanoparticles (AgNPs) and polyvinyl alcohol (PVA) as the polymer matrix. Silver nanoparticles were produced using an aqueous extract from dried Lavandula angustifolia (lavender) leaves, which proved to be [...] Read more.
This study focuses on the development of antibacterial polymer nanocomposites based on biologically synthesized silver nanoparticles (AgNPs) and polyvinyl alcohol (PVA) as the polymer matrix. Silver nanoparticles were produced using an aqueous extract from dried Lavandula angustifolia (lavender) leaves, which proved to be highly effective in reducing silver ions and stabilizing the resulting nanoparticles. The synthesized AgNPs were characterized by FTIR, UV-Vis, TEM, SEM, and DLS analyses. The nanoparticles were predominantly spherical, with more than 70% having diameters below 20 nm. Subsequently, AgNPs were incorporated into the PVA matrix via an ex situ approach to fabricate nanocomposite fibers and thin films. SEM analysis confirmed successful incorporation and uniform distribution of AgNPs within the polymer structures. The nanocomposites exhibited pronounced antibacterial activity against both Gram-positive (Staphylococcus aureus, Staphylococcus haemolyticus, Streptococcus uberis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, with nanofibers demonstrating superior performance compared to thin films. These findings highlight the potential of lavender-extract-mediated AgNPs as sustainable functional fillers for the fabrication of eco-friendly antibacterial materials applicable in biomedical and food packaging fields. Full article
(This article belongs to the Special Issue Fabrication and Application of Polymer-Based Nanomaterials)
Show Figures

Graphical abstract

19 pages, 4098 KB  
Article
Effect of Human Amniotic Membrane with Aligned Electrospun Nanofiber Transplantation on Tendon Regeneration in Rats
by Mohamed Nasheed, Mohd Yazid Bajuri, Jia Xian Law and Nor Amirrah Ibrahim
Int. J. Mol. Sci. 2026, 27(2), 650; https://doi.org/10.3390/ijms27020650 - 8 Jan 2026
Viewed by 157
Abstract
Tendon injuries, whether resulting from trauma, repetitive strain, or degenerative conditions, present a considerable clinical challenge. The natural healing process, which involves inflammatory, proliferative, and remodeling phases, is often inefficient and leads to excessive scar tissue formation, ultimately compromising the mechanical properties of [...] Read more.
Tendon injuries, whether resulting from trauma, repetitive strain, or degenerative conditions, present a considerable clinical challenge. The natural healing process, which involves inflammatory, proliferative, and remodeling phases, is often inefficient and leads to excessive scar tissue formation, ultimately compromising the mechanical properties of the tendon compared to its native state. This highlights the critical need for innovative approaches to enhance tendon repair and regeneration. Leveraging the regenerative properties of human amniotic membrane (HAM) and electrospun PCL/gelatin nanofibers, this study aims to develop and assess a novel composite scaffold in a rodent model to facilitate improved tendon healing. This prospective experimental study involved 12 male Sprague Dawley rats (250–300 g), randomly assigned to three groups: Group A (No Treatment/No HAM), Group B (HAM-treated), and Group C (HAM with electrospun nanofibers, HAM-NF). A surgically induced tendon injury was created in the left hind limb, while the right limb served as a control. Following surgery, HAM and HAM-NF (0.5 cm2) were applied to the respective treatment groups, and tendon healing was assessed after six weeks. Gait analysis, including stride length and toe-out angle, was conducted both pre-operatively and six weeks post-operatively. Macroscopic and microscopic evaluations were performed on harvested tendons to assess regeneration, comparing treated groups to the controls. Gait analysis demonstrated that the HAM-NF group showed a significant increase in stride length from 11.70 ± 1.50 cm to 12.79 ± 1.71 cm (p < 0.05), with only a modest change in toe-out angle (14.58 ± 2.96° to 16.27 ± 2.20°). In contrast, the No Treatment group exhibited reduced stride length (10.27 ± 2.17 cm to 8.40 ± 1.67 cm) and a marked increase in toe-out angle (16.33 ± 4.51° to 26.47 ± 5.81°, p < 0.05), while the HAM-only group showed mild changes in both parameters. Macroscopic evaluation showed a significant difference in tendon healing. HAM-NF group had the highest score that indicates more rapid tissue regeneration. Histological analysis after 6 weeks showed that tendons treated with HAM-NF achieved a mean histological score of 5.54 ± 4.14, closely resembling the uninjured tendon (6.67 ± 1.63), indicating substantial regenerative potential. The combination of human amniotic membrane (HAM) and electrospun nanofibers presents significant potential as an effective strategy for tendon regeneration. The HAM/NF group exhibited consistent improvements in gait parameters and histological outcomes, closely mirroring those of uninjured tendons. These preliminary results indicate that this biomaterial-based approach can enhance both functional recovery and structural integrity, providing a promising pathway for advanced tendon repair therapies. Full article
Show Figures

Figure 1

26 pages, 4325 KB  
Article
Pentamidine-Functionalized Polycaprolactone Nanofibers Produced by Solution Blow Spinning for Controlled Release in Cutaneous Leishmaniasis Treatment
by Nerea Guembe-Michel, Paul Nguewa and Gustavo González-Gaitano
Polymers 2026, 18(2), 170; https://doi.org/10.3390/polym18020170 - 8 Jan 2026
Viewed by 159
Abstract
Leishmaniasis, a widespread, neglected infectious disease with limited effective treatments and increasing drug resistance, demands innovative therapeutic approaches. In this study, we report the fabrication of pentamidine (PTM)-loaded polycaprolactone (PCL) nanofibers using solution blow spinning (SBS) as a potential topical delivery system for [...] Read more.
Leishmaniasis, a widespread, neglected infectious disease with limited effective treatments and increasing drug resistance, demands innovative therapeutic approaches. In this study, we report the fabrication of pentamidine (PTM)-loaded polycaprolactone (PCL) nanofibers using solution blow spinning (SBS) as a potential topical delivery system for cutaneous leishmaniasis (CL). Homogeneous PCL fiber mats were produced using a simple SBS set-up with a commercial airbrush after optimizing several working parameters. Drug release studies demonstrated sustained PTM release profile over time, which was mechanistically modeled by utilizing the complete nanofiber diameter distribution, obtained from SEM analysis of the blow-spun material. FTIR and XRD analyses were performed to investigate the drug–polymer interactions, revealing molecularly dispersed PTM at low-proportion drug/polymers and partial crystallinity at high loadings. The released PTM exhibited significant leishmanicidal activity against Leishmania major promastigotes. Biological investigations showed that SBS-formulated PTM treatment was consistent with the downregulation of parasite genes involved in cell division and DNA replication (cycA, cyc6, pcna, top2, mcm4) and upregulation of the drug response gene (prp1). The controlled delivery of PTM within SBS-fabricated PCL nanofibers provides an effective therapeutic approach to tackle CL and, through the incorporation of additional drugs, could be extended to address a broader range of cutaneous infections. Full article
(This article belongs to the Special Issue Fiber Spinning Technologies and Functional Polymer Fiber Development)
Show Figures

Graphical abstract

14 pages, 5202 KB  
Article
Flexible Electrospun PVDF/PAN/Graphene Nanofiber Piezoelectric Sensors for Passive Human Motion Monitoring
by Hasan Cirik, Yasemin Gündoğdu Kabakci, M. A. Basyooni-M. Kabatas and Hamdi Şükür Kiliç
Sensors 2026, 26(2), 391; https://doi.org/10.3390/s26020391 - 7 Jan 2026
Viewed by 187
Abstract
Flexible piezoelectric sensors based on electrospun poly(vinylidene fluoride) (PVDF)/polyacrylonitrile (PAN)/graphene nanofibers were fabricated and evaluated for passive human body motion detection. Optimized electrospinning yielded smooth, continuous fibers with diameters of 200–250 nm and uniform films with thicknesses of 20–25 µm. Fourier transform infrared [...] Read more.
Flexible piezoelectric sensors based on electrospun poly(vinylidene fluoride) (PVDF)/polyacrylonitrile (PAN)/graphene nanofibers were fabricated and evaluated for passive human body motion detection. Optimized electrospinning yielded smooth, continuous fibers with diameters of 200–250 nm and uniform films with thicknesses of 20–25 µm. Fourier transform infrared (FTIR) spectroscopy confirmed a high fraction of the piezoelectrically active β-phase in PVDF, which was further enhanced by post-deposition thermal treatment. Graphene and lithium phosphate were incorporated to improve electrical conductivity, β-phase nucleation, and piezoelectric response, while PAN provided mechanical reinforcement and flexibility. Custom test platforms were developed to simulate low-amplitude mechanical stimuli, including finger bending and pulsatile pressure. Under applied pressures of 40, 80, and 120 mmHg, the sensors generated stable millivolt-level outputs with average peak voltages of 25–30 mV, 53–60 mV, and 80–90 mV, respectively, with good repeatability and an adequate signal-to-noise ratio. These results demonstrate that PVDF/PAN/graphene nanofiber films are promising candidates for flexible, wearable piezoelectric sensors capable of detecting subtle physiological signals, and highlight the critical roles of electrospinning conditions, functional additives, and post-processing treatments in tuning their electromechanical performance. Full article
(This article belongs to the Special Issue Advanced Flexible Electronics for Sensing Application)
Show Figures

Graphical abstract

17 pages, 7235 KB  
Article
Nanofiber Mats as Amine-Functionalized Heterogeneous Catalysts in Continuous Microfluidic Reactor Systems
by Katja Rumpke, Naresh Killi, Barbara Dittrich, Andreas Herrmann and Dirk Kuckling
Gels 2026, 12(1), 55; https://doi.org/10.3390/gels12010055 - 6 Jan 2026
Viewed by 233
Abstract
The development of sustainable catalysts is the main objective in green chemistry approaches. In this study, a catalytically active polymer based on a tertiary amine was synthesized, functionalized with a photo-crosslinker, and structured into nanofibers via electrospinning technique with polycaprolactone (PCL) as a [...] Read more.
The development of sustainable catalysts is the main objective in green chemistry approaches. In this study, a catalytically active polymer based on a tertiary amine was synthesized, functionalized with a photo-crosslinker, and structured into nanofibers via electrospinning technique with polycaprolactone (PCL) as a stabilizing additive. Subsequent photo-crosslinking yielded hierarchically porous polymers with high swelling properties and increased surface areas, thereby improving the accessibility of the immobilized catalytically active sites. The nanofiber mats were incorporated into a microfluidic reactor (MFR) setup and utilized as heterogeneous catalysts for the Knoevenagel reaction of malononitrile with different aldehydes. It was observed that the system demonstrated a substantial improvement in NMR yields (40–60%) and turnover frequencies (50–80 h−1) in comparison to catalytical systems that had been previously published. Reusability studies showed reproducibility of NMR yields over up to three cycles. The obtained results demonstrate the potential of electrospun, photo-crosslinked nanofibers as efficient heterogeneous catalysts in microfluidic synthesis, thus contributing to more sustainable production of valuable malononitrile derivatives. Full article
(This article belongs to the Special Issue Designing Gels as Adsorbents and Catalysts)
Show Figures

Figure 1

23 pages, 2568 KB  
Review
Ultra-Short Peptide Hydrogels as 3D Bioprinting Materials
by Davina In, Androulla N. Miliotou, Panoraia I. Siafaka and Yiannis Sarigiannis
Gels 2026, 12(1), 49; https://doi.org/10.3390/gels12010049 - 2 Jan 2026
Viewed by 490
Abstract
Ultra-short peptides (USPs; ≤7–8 amino acids) emerge as minimal self-assembling building blocks for hydrogel-based biomaterials. Their intrinsic biocompatibility, straightforward synthesis, and ease of tunability make them particularly attractive candidates for potential use in bioprinting. This review provides an overview of the properties of [...] Read more.
Ultra-short peptides (USPs; ≤7–8 amino acids) emerge as minimal self-assembling building blocks for hydrogel-based biomaterials. Their intrinsic biocompatibility, straightforward synthesis, and ease of tunability make them particularly attractive candidates for potential use in bioprinting. This review provides an overview of the properties of USPs along with their applications in three-dimensional (3D) bioprinting. We first discuss how peptide sequence, terminal and side-chain modifications, and environmental triggers govern USPs’ self-assembly into nanofibers and 3D networks and how these supramolecular features translate into key rheological properties such as shear-thinning, rapid gelation, and mechanical tunability. We then survey reported applications in tissue engineering, wound healing, and organotypic models, as well as emerging ultra-short peptide-based systems for drug delivery, biosensing, and imaging, highlighting examples where printed constructs support cell viability, differentiation, and matrix deposition. Attention is given to hybrid and multi-material formulations in which USPs provide bioactivity while complementary components contribute structural robustness or additional functionality. Finally, this review outlines the main challenges that currently limit widespread adoption, including achieving high print fidelity with cytocompatible crosslinking, controlling batch-to-batch variability, and addressing the scalability, cost, and sustainability of peptide manufacturing. We conclude by discussing future opportunities such as AI-assisted peptide design, adaptive and multi-material bioprinting workflows, and greener synthetic routes, which together may accelerate the translation of ultra-short peptide-based bioinks from proof-of-concept studies to clinically and industrially relevant platforms. Full article
(This article belongs to the Special Issue Hydrogel-Based Scaffolds with a Focus on Medical Use (3rd Edition))
Show Figures

Figure 1

40 pages, 11257 KB  
Review
Ultralong Hydroxyapatite Nanowires: Promising Flexible Building Blocks for Constructing High-Performance Biomimetic Materials—A Review
by Han-Ping Yu and Ying-Jie Zhu
Molecules 2026, 31(1), 142; https://doi.org/10.3390/molecules31010142 - 1 Jan 2026
Viewed by 150
Abstract
Traditional hydroxyapatite materials are inherently stiff and brittle, limiting their applications. Flexible ultralong hydroxyapatite nanowires, characterized by nano-scale diameters and micrometer-scale lengths, offer a promising alternative as one-dimensional flexible building blocks for constructing high-performance biomimetic materials. Nature has evolved a variety of high-performance [...] Read more.
Traditional hydroxyapatite materials are inherently stiff and brittle, limiting their applications. Flexible ultralong hydroxyapatite nanowires, characterized by nano-scale diameters and micrometer-scale lengths, offer a promising alternative as one-dimensional flexible building blocks for constructing high-performance biomimetic materials. Nature has evolved a variety of high-performance materials with hierarchically ordered structures assembled from nano-scale building blocks, which provide valuable insights into the design and ordered assembly of flexible nanofibers for building high-performance biomimetic materials. Currently, how to distill the structural design principles of natural materials to engineer flexible nanofibers into advanced high-performance biomimetic materials with excellent properties and multifunctions remains a frontier scientific challenge. In 2014, the authors’ research group reported for the first time the calcium oleate precursor solvothermal method for the synthesis of flexible ultralong hydroxyapatite nanowires and their applications. Since then, many soft functional materials and high-performance biomimetic materials have been designed and prepared using flexible ultralong hydroxyapatite nanowires, and their applications in various fields have been explored. These studies demonstrate the successful assembly of flexible ultralong hydroxyapatite nanowires into hierarchical biomimetic structures inspired by natural materials such as enamel, nacre, and bone, which exhibit enhanced mechanical properties, including improved strength, toughness, and flexibility, alongside multifunctional capabilities like thermal insulation and biomedical compatibility. These findings suggest that flexible ultralong hydroxyapatite nanowires provide a versatile platform for designing and constructing advanced biomimetic materials with promising applications in various fields. This review article aims to briefly review recent advances in this exciting and rapidly evolving research field. The synthetic methods, assembly strategies, properties, and applications of flexible ultralong hydroxyapatite nanowires and their derivative biomimetic materials are discussed, enlightening their structural design principles and potential applications. Finally, we propose future research directions and future perspectives in this exciting frontier research field. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

12 pages, 2378 KB  
Article
Cell Adhesion and Cytotoxicity Assessment of Collagen-Coated Electrospun PCL Membranes Functionalized with Silver Nanoparticles
by Chiara Goisis, Davide Porrelli, Gianluca Turco, Barbara Medagli, Giovanni Papa and Martin Iurilli
Membranes 2026, 16(1), 17; https://doi.org/10.3390/membranes16010017 - 31 Dec 2025
Viewed by 272
Abstract
Chronic and complex wounds require biomaterials that are both cytocompatible and antimicrobial. Herein, electrospun polycaprolactone (PCL) nanofiber membranes were coated with Type I collagen and functionalized with silver nanoparticles (AgNPs). The main objective was to assess fibroblast adhesion, proliferation, and cytotoxicity. Membrane morphology [...] Read more.
Chronic and complex wounds require biomaterials that are both cytocompatible and antimicrobial. Herein, electrospun polycaprolactone (PCL) nanofiber membranes were coated with Type I collagen and functionalized with silver nanoparticles (AgNPs). The main objective was to assess fibroblast adhesion, proliferation, and cytotoxicity. Membrane morphology and surface characteristics were analyzed in a previous work by SEM, AFM, and wettability measurements, confirming the transformation from hydrophobic PCL to fully wettable collagen-coated surfaces. In this study, Murine 3T3 fibroblasts were cultured on PCL, PCL–Collagen, PCL–Collagen–Citrate, and PCL–Collagen–AgNPs membranes. Cellular activity was quantified using Alamar Blue assays at 24, 48, and 72 h, while cytotoxicity was determined by LDH release. Cellular viability and adhesion were studied using confocal microscopy. All membrane types supported fibroblast growth, with collagen-coated samples exhibiting the highest metabolic activity. AgNPs-functionalized membranes sustained overall cell viability above 90%, with cytotoxicity values of approximately 10% at 24 h and 20% at 48 h. Antimicrobial evaluations demonstrated complete inhibition of Pseudomonas aeruginosa and vancomycin-resistant Enterococcus, and partial inhibition of Staphylococcus aureus. These results indicate that collagen-coated, AgNPs-functionalized electrospun PCL membranes exhibit both high cytocompatibility and significant antimicrobial activity, supporting their potential as advanced wound-dressing materials. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Graphical abstract

12 pages, 2236 KB  
Article
Phase-Engineered Electrospun Poly(vinylidene fluoride) Nanofibers with Enhanced Piezoelectricity
by Seung Kwan Hong, Jae-Jin Lee and Suk-Won Choi
Crystals 2026, 16(1), 30; https://doi.org/10.3390/cryst16010030 - 30 Dec 2025
Viewed by 178
Abstract
Poly(vinylidene fluoride) (PVDF) nanofibers have emerged as promising materials for flexible piezoelectric sensors, yet their performance is fundamentally constrained by the limited formation and alignment of the electroactive β-phase. In this study, we report a phase-engineering strategy that integrates ionic functionalization, inorganic nanofiller [...] Read more.
Poly(vinylidene fluoride) (PVDF) nanofibers have emerged as promising materials for flexible piezoelectric sensors, yet their performance is fundamentally constrained by the limited formation and alignment of the electroactive β-phase. In this study, we report a phase-engineering strategy that integrates ionic functionalization, inorganic nanofiller incorporation, and post-fabrication corona poling to achieve enhanced crystalline ordering and electromechanical coupling in electrospun PVDF nanofibers. Tetrabutylammonium perchlorate increases solution conductivity, enabling uniform, bead-free fiber formation, while barium titanate nanoparticles act as nucleation centers that promote β-phase crystallization at the expense of the non-polar α-phase. Subsequent corona poling further aligns molecular dipoles and strengthens remnant polarization within both the PVDF matrix and embedded nanoparticles. Structural analyses confirm the synergistic evolution of crystalline phases, and piezoelectric measurements demonstrate a substantial increase in peak-to-peak output voltage under dynamic loading conditions. This combined phase-engineering approach provides a simple and scalable route to high-performance PVDF-based piezoelectric sensors and highlights the importance of coupling crystallization control with dipole alignment in designing next-generation wearable electromechanical materials. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

24 pages, 7551 KB  
Article
Scalable Fabrication of Non-Toxic Polyamide 6 Hybrid Nanofiber Membranes Using CuO for Antimicrobial and Aerosol Filtration Protection
by Radmila Žižková, Baturalp Yalcinkaya, Eva Filová, Fatma Yalcinkaya and Matej Buzgo
Textiles 2026, 6(1), 2; https://doi.org/10.3390/textiles6010002 - 29 Dec 2025
Viewed by 209
Abstract
Electrospinning has advanced from a lab technique to an industrial method, enabling modern filters that are high-performing, sustainable, recyclable, and non-toxic. This study produced recycled PA6 nanofibers using green solvents and incorporated non-toxic CuO nanoparticles via industrial free-surface electrospinning. Polymer solutions with concentrations [...] Read more.
Electrospinning has advanced from a lab technique to an industrial method, enabling modern filters that are high-performing, sustainable, recyclable, and non-toxic. This study produced recycled PA6 nanofibers using green solvents and incorporated non-toxic CuO nanoparticles via industrial free-surface electrospinning. Polymer solutions with concentrations of 12.5, 15.0 and 17.5 (w/v)% were electrospun directly onto recyclable polypropylene spunbond/meltblown nonwoven substrates to produce nanofibers with average fiber sizes of 80–250 nm. Electrospinning parameter optimization revealed that the 12.5 wt.% PA6 solution and the 2–3 mm·s−1 winding speed had the optimal performance, attaining 98.06% filtering efficiency and a 142 Pa pressure drop. The addition of 5 wt.% CuO nanoparticles increased the membrane density and reduced the pressure drop to 162 Pa, thereby improving the filtration efficiency to 98.23%. Bacterial and viral filtration studies have demonstrated pathogen retention above 99%. Moreover, antibacterial and antiviral testing has demonstrated that membranes trap and inactivate microorganisms, resulting in a 2.0 log (≈approximately 99%) reduction in viral titer. This study shows that recycled PA6 can be converted into high-performance membranes using green, industrial electrospinning, introducing innovations such as non-toxic CuO functionalization and ultra-fine fibers on recyclable substrates, yielding sustainable filters with strong antimicrobial and filtration performance, which are suitable for personal protective equipment and medical filtration. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Graphical abstract

36 pages, 3935 KB  
Review
Application of Electrospun Nanofiber Membranes in Outdoor Sportswear: From Preparation Technologies to Multifunctional Integration
by Guobao Yan, Yangxian Hu, Mingxing Liu, Fawei Huang, Jinghua Miu and Guoyuan Huang
Coatings 2026, 16(1), 29; https://doi.org/10.3390/coatings16010029 - 26 Dec 2025
Viewed by 338
Abstract
Outdoor sportswear increasingly demands multifunctional performance, including waterproofness, breathability, and intelligent thermal regulation. Nanofiber membranes, especially those prepared via electrospinning, offer a promising platform due to their tunable pore structures, high specific surface area, and ease of functionalization. This review outlines progress from [...] Read more.
Outdoor sportswear increasingly demands multifunctional performance, including waterproofness, breathability, and intelligent thermal regulation. Nanofiber membranes, especially those prepared via electrospinning, offer a promising platform due to their tunable pore structures, high specific surface area, and ease of functionalization. This review outlines progress from fabrication to multifunctional integration, highlighting key quantitative advances: electrospun membranes achieve water vapor transmission rates >10,000 g·m−2·day−1 with hydrostatic pressure resistance of 80–150 kPa, and thermal conductivity as low as 0.033–0.040 W·m−1·K−1. We analyze how structural designs enable tailored functionalities for diverse outdoor scenarios. The review’s key contributions include establishing a clear “process-structure-function” framework, critically comparing nanofiber membranes with conventional materials, and identifying industrialization challenges—scalability, durability, cost—while pointing toward smart, sustainable, and customizable future directions. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

12 pages, 5286 KB  
Article
Construction of Regular Hexagonal Double-Layer Hollow Nanocages by Defect Orientation and Composite Phase Change Materials with Carbon Nanotubes for Thermal Safety of Power Batteries
by Silong Wang, Wei Yan, Pan Sun and Jun Yuan
Nanomaterials 2026, 16(1), 26; https://doi.org/10.3390/nano16010026 - 24 Dec 2025
Viewed by 306
Abstract
At present, composite phase change materials are widely studied for battery thermal management. However, to ensure the battery’s thermal safety, it is necessary not only to control the temperature during regular operation, but also to prevent sudden thermal runaway. This basic function depends [...] Read more.
At present, composite phase change materials are widely studied for battery thermal management. However, to ensure the battery’s thermal safety, it is necessary not only to control the temperature during regular operation, but also to prevent sudden thermal runaway. This basic function depends on the flame-retardant properties of the composite phase change materials. In this study, a hexagonal double-layer hollow nanocage S2 with defect orientation was prepared and combined with carbon nanotubes (PNT) derived from polypyrrole (PPy) tubes to form a high adsorption mixture. Multifunctional composite phase change material PNT/S2@PEG/TEP was prepared by adsorbing and coating polyethylene glycol 8000 (PEG-8000) and triethyl phosphate (TEP) with microfibrillated cellulose nanofibers (CNF) as the skeleton. The characterization shows that its thermal conductivity is 0.65 W/m·K and its phase transition enthalpy is 146.1 J/g, demonstrating its excellent thermal regulation. Microcalorimetric testing (MCC) confirmed its flame-retardant ability, attributed to the strong adsorption of PNT/S2 on PEG-8000 and TEP, the improvement in PNT’s thermal conductivity, and the contribution of CNF to flexibility. This composite phase change material, with excellent comprehensive properties, has broad application prospects in thermal safety for electronic equipment, significantly expanding its practical scope. Full article
(This article belongs to the Special Issue Carbon Nanocomposites for Energy)
Show Figures

Graphical abstract

16 pages, 5746 KB  
Article
Quantifying Early Electromechanical Integration of Cardiomyocytes Using a Minimalist PCL Nanofiber Platform
by Vitalii Dzhabrailov, Elena Turchaninova, Daria V. Kononova, Egor Ilin, Mikhail Slotvitsky, Anton Efimov, Igor Agapov, Valeriya Tsvelaya, Alexander Romanov and Konstantin Agladze
Polymers 2026, 18(1), 17; https://doi.org/10.3390/polym18010017 - 21 Dec 2025
Viewed by 346
Abstract
A critical obstacle in cardiac cell therapy is the unpredictable and poorly understood initial electrophysiological integration of grafted cardiomyocytes into the host tissue, a process that dictates therapeutic success and arrhythmic risk. Current models fail to capture the earliest stages of functional coupling [...] Read more.
A critical obstacle in cardiac cell therapy is the unpredictable and poorly understood initial electrophysiological integration of grafted cardiomyocytes into the host tissue, a process that dictates therapeutic success and arrhythmic risk. Current models fail to capture the earliest stages of functional coupling formation. Here, we employed a tailored bioengineering platform, where single cardiomyocytes were stabilized on minimalist electrospun polycaprolactone (PCL) nanofibers, to model the “graft–host” interface and study the dynamics of excitation wave transmission in real-time. Using high-speed optical mapping enhanced by a custom SUPPORT neural network, we achieved the first quantitative insights into the efficiency of nascent intercellular contacts. We determined that within the first 3 h, these initial connections are 39–44 times less effective at conducting excitation than mature contacts within the native monolayer, explaining the observed partial (46%) synchronization of grafted cells. This work provides the first direct measurement of the functional deficit during the initial minutes and hours of graft integration. It establishes that simple, inert polymer fibers can act as a catalytic scaffold to enable this fundamental biological process, offering a powerful strategy to deconstruct and ultimately control the integration of engineered tissues (or cells) for safer cell therapies. Full article
Show Figures

Figure 1

17 pages, 3041 KB  
Article
Electrospun Polycaprolactone/Carbon Nanotube Membranes for Transdermal Drug Delivery Systems
by Elizabeth Ortiz-Maldonado, Eduardo San Martin-Martínez, Ningel Omar Gama-Castañeda, Marquidia Pacheco, Ulises Figueroa-López, Andrea Guevara-Morales, Esmeralda Juárez, Andy Ruiz and Horacio Vieyra
Polymers 2026, 18(1), 15; https://doi.org/10.3390/polym18010015 - 21 Dec 2025
Viewed by 307
Abstract
The development of membranes and patches for controlled drug release to enhance therapeutic efficacy is a promising approach to addressing the challenge posed by poor adherence to pharmacological therapies for chronic diseases. In this study, we designed an electrospun polycaprolactone (PCL) nanofibrous membrane [...] Read more.
The development of membranes and patches for controlled drug release to enhance therapeutic efficacy is a promising approach to addressing the challenge posed by poor adherence to pharmacological therapies for chronic diseases. In this study, we designed an electrospun polycaprolactone (PCL) nanofibrous membrane reinforced with different concentrations (0.04%, 0.05%, 0.075%, and 0.2%) of functionalized multi-walled carbon nanotubes (f-MWCNTs) intended for biomedical applications, such as transdermal devices. We characterized the resulting composites using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and dynamic mechanical analysis (DMA) to evaluate their morphology, chemical composition, and mechanical properties. We also measured their cytotoxicity upon contact with peripheral blood mononuclear cells. The nanofibers had diameters below 100 nm and inclusions of microspheres, which were attributed to the electrospinning expansion phenomenon. Spectroscopic and mechanical analyses confirmed molecular interactions between the PCL matrix and the f-MWCNTs. Finally, biological tests demonstrated that both the dispersion of f-MWCNTs and the nanofiber sizing render the membranes biocompatible, supporting their potential use as drug-delivery systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

11 pages, 2223 KB  
Article
Multiferroic Pb(Zr0.52Ti0.48)O3-CoFe2O4 Janus-Type Nanofibers and Their Nanoscale Magnetoelectric Coupling
by Qingfeng Zhu, Ting Wang, Junfeng Zhao, Haijuan Mei and Weiping Gong
Nanomaterials 2026, 16(1), 2; https://doi.org/10.3390/nano16010002 - 19 Dec 2025
Viewed by 296
Abstract
One-dimensional (1D) multiferroic composite nanofibers are known to exhibit enhanced magnetoelectric (ME) coupling compared to their thin-film and bulk counterparts with similar compositions. While measuring their local ME coupling at the nanoscale is essential for understanding multiferroic interactions, it remains challenging due to [...] Read more.
One-dimensional (1D) multiferroic composite nanofibers are known to exhibit enhanced magnetoelectric (ME) coupling compared to their thin-film and bulk counterparts with similar compositions. While measuring their local ME coupling at the nanoscale is essential for understanding multiferroic interactions, it remains challenging due to their complex structure. In this work, multiferroic Pb(Zr0.52Ti0.48)O3-CoFe2O4 (PZT-CFO) Janus-type nanofibers were synthesized by electrospinning. This unique structure is expected to provide a more compact and continuous interface between the ferroelectric and ferromagnetic phases compared to core–shell configurations. X-ray diffraction confirmed the coexistence of the perovskite PZT and spinel CFO phases without detectable impurities. The Janus configuration was directly verified by scanning electron microscopy and Kelvin probe force microscopy, which revealed a distinct surface potential contrast between the two halves of a single nanofiber. Magnetic hysteresis loops demonstrated the macroscopic ferromagnetic behavior of the nanofiber assembly. Local magnetoelectric coupling was probed using piezoresponse force microscopy under an applied magnetic field. An enhancement of the intrinsic piezoresponse from 15 pm to 19 pm. was observed upon applying an 8000 Oe magnetic field, providing direct evidence of strain-mediated ME coupling at the nanoscale. Although no ferroelectric domain switching was observed, likely due to the substrate clamping effect, the observed piezoresponse modulation confirms the functional ME interaction. These findings suggest that the Janus nanofibers hold promise for applications in one-dimensional multiferroic devices. Full article
Show Figures

Figure 1

Back to TopTop