Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (362)

Search Parameters:
Keywords = functional NIRS (fNIRS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 919 KiB  
Systematic Review
Advances in Research on Brain Structure and Activation Characteristics in Patients with Anterior Cruciate Ligament Reconstruction: A Systematic Review
by Jingyi Wang, Yaxiang Jia, Qiner Li, Longhui Li, Qiuyu Dong and Quan Fu
Brain Sci. 2025, 15(8), 831; https://doi.org/10.3390/brainsci15080831 - 1 Aug 2025
Viewed by 118
Abstract
Objectives: To synthesize evidence on structural and functional neuroplasticity in patients after anterior cruciate ligament reconstruction (ACLR) and its clinical implications. Methods: Adhering to the PRISMA guidelines for systematic reviews and meta-analyses, a literature search was conducted using PubMed, Embase, Web of [...] Read more.
Objectives: To synthesize evidence on structural and functional neuroplasticity in patients after anterior cruciate ligament reconstruction (ACLR) and its clinical implications. Methods: Adhering to the PRISMA guidelines for systematic reviews and meta-analyses, a literature search was conducted using PubMed, Embase, Web of Science, Scopus, and Cochrane CENTRAL (2018–2025) using specific keyword combinations, screening the results based on predetermined inclusion and exclusion criteria. Results: Among the 27 included studies were the following: (1) sensory cortex reorganization with compensatory visual dependence (5 EEG/fMRI studies); (2) reduced motor cortex efficiency evidenced by elevated AMT (TMS, 8 studies) and decreased γ-CMC (EEG, 3 studies); (3) progressive corticospinal tract degeneration (increased radial diffusivity correlating with postoperative duration); (4) enhanced sensory-visual integration correlated with functional recovery. Conclusions: This review provides a novel synthesis of evidence from transcranial magnetic stimulation (TMS), electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), diffusion tensor imaging (DTI), and functional magnetic resonance imaging (fMRI) studies. It delineates characteristic patterns of post-ACLR structural and functional neural reorganization. Targeting visual–cognitive integration and corticospinal facilitation may optimize rehabilitation. Full article
(This article belongs to the Special Issue Diagnosis, Therapy and Rehabilitation in Neuromuscular Diseases)
Show Figures

Figure 1

17 pages, 1003 KiB  
Article
Gender Moderates the Neural Impact of Problematic Media Use on Working Memory in Preschoolers: An fNIRS Study
by Keya Ding, Xinyi Dong, Yu Xue and Hui Li
Brain Sci. 2025, 15(8), 818; https://doi.org/10.3390/brainsci15080818 - 30 Jul 2025
Viewed by 235
Abstract
Background: This study investigated the relationship between problematic media use (PMU) and working memory in preschoolers. Methods: Parents of children aged 3 to 7 (260 boys, 257 girls; Mage = 5.57, SD = 0.73) in Jinan, China, completed questionnaires assessing children’s PMU [...] Read more.
Background: This study investigated the relationship between problematic media use (PMU) and working memory in preschoolers. Methods: Parents of children aged 3 to 7 (260 boys, 257 girls; Mage = 5.57, SD = 0.73) in Jinan, China, completed questionnaires assessing children’s PMU and working memory. Subsequently, High (nhigh = 32, Mage = 4.53, SD = 0.67) and Low (nlow = 30, Mage = 4.67, SD = 0.66) PMU groups, based on the survey data, complete a dual 1-back task during functional near-infrared spectroscopy (fNIRS) recording. Results: Behavioral accuracy and reaction time showed no significant group differences. However, a significant interaction between the PMU group and gender on prefrontal activation was observed, F(1, 60) = 5.88–7.59, ps < 0.05, ηp2 = 0.09–0.12. High-PMU boys exhibited greater left prefrontal activation than low-PMU boys, while low-PMU girls showed greater activation in these same areas compared to low-PMU boys. A three-way interaction of group, task condition, and gender on prefrontal activation was also found, F(2, 60) = 5.81–6.42, p < 0.01, ηp2 = 0.10–0.19, suggesting that neural responses varied by task and participant characteristics. Conclusions: These findings indicate that PMU may be associated with altered prefrontal activation during working memory tasks in preschoolers, with gender playing a moderating role. Full article
(This article belongs to the Section Developmental Neuroscience)
Show Figures

Figure 1

34 pages, 2191 KiB  
Review
Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Monitoring Treatment Response in Psychiatry: A Scoping Review
by Ciprian-Ionuț Bǎcilǎ, Gabriela Mariana Marcu, Bogdan Ioan Vintilă, Claudia Elena Anghel, Andrei Lomnasan, Monica Cornea and Andreea Maria Grama
J. Clin. Med. 2025, 14(15), 5197; https://doi.org/10.3390/jcm14155197 - 22 Jul 2025
Viewed by 300
Abstract
Background/Objective: Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique with growing relevance in psychiatry. Its ability to measure cortical hemodynamics positions it as a potential tool for monitoring neurofunctional changes related to treatment. However, the specific features and level of consistency [...] Read more.
Background/Objective: Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique with growing relevance in psychiatry. Its ability to measure cortical hemodynamics positions it as a potential tool for monitoring neurofunctional changes related to treatment. However, the specific features and level of consistency of its use in clinical psychiatric settings remain unclear. A scoping review was conducted under PRISMA-ScR guidelines to systematically map how fNIRS has been used in monitoring treatment response among individuals with psychiatric disorders. Methods: Forty-seven studies published between 2009 and 2025 were included based on predefined eligibility criteria. Data was extracted on publication trends, research design, sample characteristics, fNIRS paradigms, signal acquisition, preprocessing methods, and integration of clinical outcomes. Reported limitations and conflicts of interest were also analyzed. Results: The number of publications increased sharply after 2020, predominantly from Asia. Most studies used experimental designs, with 31.9% employing randomized controlled trials. Adults were the primary focus (93.6%), with verbal fluency tasks and DLPFC-targeted paradigms most common. Over half of the studies used high-density (>32-channel) systems. However, only 44.7% reported motion correction procedures, and 53.2% did not report activation direction. Clinical outcome linkage was explicitly stated in only 12.8% of studies. Conclusions: Despite growing clinical interest, with fNIRS showing promise as a non-invasive neuroimaging tool for monitoring psychiatric treatment response, the current evidence base is limited by methodological variability and inconsistent outcome integration. There is a rising need for the adoption of standardized protocols for both design and reporting. Future research should also include longitudinal studies and multimodal approaches to enhance validity and clinical relevance. Full article
(This article belongs to the Special Issue Neuro-Psychiatric Disorders: Updates on Diagnosis and Treatment)
Show Figures

Figure 1

16 pages, 1435 KiB  
Case Report
Multidimensional Effects of Manual Therapy Combined with Pain Neuroscience-Based Sensorimotor Retraining in a Patient with Chronic Neck Pain: A Case Study Using fNIRS
by Song-ui Bae, Ju-hyeon Jung and Dong-chul Moon
Healthcare 2025, 13(14), 1734; https://doi.org/10.3390/healthcare13141734 - 18 Jul 2025
Viewed by 404
Abstract
Chronic neck pain is a multifactorial condition involving physical, psychological, and neurological dimensions. This case report describes the clinical course of a 25-year-old female with chronic neck pain and recurrent headaches who underwent a 6-week integrative intervention consisting of manual therapy and pain [...] Read more.
Chronic neck pain is a multifactorial condition involving physical, psychological, and neurological dimensions. This case report describes the clinical course of a 25-year-old female with chronic neck pain and recurrent headaches who underwent a 6-week integrative intervention consisting of manual therapy and pain neuroscience-based sensorimotor retraining, administered three times per week. Outcome measures included the Headache Impact Test-6 (HIT-6), Neck Pain and Disability Scale (NPDS), Pain Catastrophizing Scale (PCS), Fear-Avoidance Beliefs Questionnaire (FABQ), pressure pain threshold (PPT), cervical range of motion (CROM), and functional near-infrared spectroscopy (fNIRS) to assess brain activity. Following the intervention, the patient demonstrated marked reductions in pain and psychological distress: HIT-6 decreased from 63 to 24 (61.9%), NPDS from 31 to 4 (87.1%), FABQ from 24 to 0 (100%), and PCS from 19 to 2 (89.5%). Improvements in PPT and CROM were also observed. fNIRS revealed decreased dorsolateral prefrontal cortex (DLPFC) activation during pain stimulation and movement tasks, suggesting a possible reduction in central sensitization burden. These findings illustrate that an integrative approach targeting biopsychosocial pain mechanisms may be beneficial in managing chronic neck pain, improving function, and modulating cortical responses. This report provides preliminary evidence in support of the clinical relevance of combining manual therapy with neurocognitive retraining in similar patients. Full article
Show Figures

Figure 1

17 pages, 1455 KiB  
Article
Effectiveness of a Cognitive Stimulation Program in Older Adults with Mild Neurocognitive Disorder: Insights from fNIRS Analysis in a Randomized Controlled Trial
by Susana I. Justo-Henriques, Rosa C. G. Silva, Janessa O. Carvalho, João L. A. Apóstolo, Débora Nogueira and Telmo A. S. Pereira
Neurol. Int. 2025, 17(7), 108; https://doi.org/10.3390/neurolint17070108 - 15 Jul 2025
Viewed by 413
Abstract
Background/Objectives: Neurocognitive disorders (NCDs) encompass a spectrum of conditions that significantly impact cognitive domains, including attention, memory, and language. Mild NCD, increasingly prevalent with aging, represents an early stage of these disorders, characterized by cognitive deficits that do not interfere with daily functioning. [...] Read more.
Background/Objectives: Neurocognitive disorders (NCDs) encompass a spectrum of conditions that significantly impact cognitive domains, including attention, memory, and language. Mild NCD, increasingly prevalent with aging, represents an early stage of these disorders, characterized by cognitive deficits that do not interfere with daily functioning. Non-pharmacological therapies, especially cognitive stimulation, are widely recommended to preserve cognitive function of older adults. This study aimed to evaluate the effectiveness of a 12-week individual cognitive stimulation (iCS) program on cognitive performance, mood, and prefrontal cortex activation in older adults with mild NCD using a single-blind, randomized, parallel two-arm RCT. Methods: A sample of 36 older adults were selected from a central region of Portugal. The intervention group (n = 18) received 24 iCS sessions, twice weekly for 12 weeks. The control group (n = 18) completed their regularly scheduled activities. Outcomes included global cognitive function, executive functioning, and mood. All participants were assessed at baseline and after the intervention. Functional near infra-red spectroscopy (fNIRS) was also collected to measure prefrontal cortex activity at both time points in the intervention group. Results: The intervention group showed a significant improvement in global cognition and executive functions, and reduced depressive symptomatology compared to the control group. fNIRS data revealed enhanced activation and functional efficiency in the lateral prefrontal cortex following the iCS program. Adherence and degree of collaboration to the intervention were very high. Conclusions: These findings suggest that iCS is an effective approach to improving cognitive function and mood in mildly cognitively impaired older adults. Full article
(This article belongs to the Section Aging Neuroscience)
Show Figures

Figure 1

21 pages, 5148 KiB  
Article
Research on Buckwheat Weed Recognition in Multispectral UAV Images Based on MSU-Net
by Jinlong Wu, Xin Wu and Ronghui Miao
Agriculture 2025, 15(14), 1471; https://doi.org/10.3390/agriculture15141471 - 9 Jul 2025
Viewed by 281
Abstract
Quickly and accurately identifying weed areas is of great significance for improving weeding efficiency, reducing pesticide residues, protecting soil ecological environment, and increasing crop yield and quality. Targeting low detection efficiency in complex agricultural environments and inability of multispectral input in weed recognition [...] Read more.
Quickly and accurately identifying weed areas is of great significance for improving weeding efficiency, reducing pesticide residues, protecting soil ecological environment, and increasing crop yield and quality. Targeting low detection efficiency in complex agricultural environments and inability of multispectral input in weed recognition of minor grain based on unmanned aerial vehicles (UAVs), a semantic segmentation model for buckwheat weeds based on MSU-Net (multispectral U-shaped network) was proposed to explore the influence of different band optimizations on recognition accuracy. Five spectral features—red (R), blue (B), green (G), red edge (REdge), and near-infrared (NIR)—were collected in August when the weeds were more prominent. Based on the U-net image semantic segmentation model, the input module was improved to adaptively adjust the input bands. The neuron death caused by the original ReLU activation function may lead to misidentification, so it was replaced by the Swish function to improve the adaptability to complex inputs. Five single-band multispectral datasets and nine groups of multi-band combined data were, respectively, input into the improved MSU-Net model to verify the performance of our method. Experimental results show that in the single-band recognition results, the B band performs better than other bands, with mean pixel accuracy (mPA), mean intersection over union (mIoU), Dice, and F1 values of 0.75, 0.61, 0.87, and 0.80, respectively. In the multi-band recognition results, the R+G+B+NIR band performs better than other combined bands, with mPA, mIoU, Dice, and F1 values of 0.76, 0.65, 0.85, and 0.78, respectively. Compared with U-Net, DenseASPP, PSPNet, and DeepLabv3, our method achieved a preferable balance between model accuracy and resource consumption. These results indicate that our method can adapt to multispectral input bands and achieve good results in weed segmentation tasks. It can also provide reference for multispectral data analysis and semantic segmentation in the field of minor grain crops. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

32 pages, 3815 KiB  
Article
Temporal Synchrony in Bodily Interaction Enhances the Aha! Experience: Evidence for an Implicit Metacognitive Predictive Processing Mechanism
by Jiajia Su and Haosheng Ye
J. Intell. 2025, 13(7), 83; https://doi.org/10.3390/jintelligence13070083 - 7 Jul 2025
Viewed by 535
Abstract
Grounded in the theory of metacognitive prediction error minimization, this study is the first to propose and empirically validate the mechanism of implicit metacognitive predictive processing by which bodily interaction influences the Aha! experience. Three experimental groups were designed to manipulate the level [...] Read more.
Grounded in the theory of metacognitive prediction error minimization, this study is the first to propose and empirically validate the mechanism of implicit metacognitive predictive processing by which bodily interaction influences the Aha! experience. Three experimental groups were designed to manipulate the level of temporal synchrony in bodily interaction: Immediate Mirror Group, Delayed Mirror Group, and No-Interaction Control Group. A three-stage experimental paradigm—Prediction, Execution, and Feedback—was constructed to decompose the traditional holistic insight task into three sequential components: solution time prediction (prediction phase), riddle solving (execution phase), and self-evaluation of Aha! experience (feedback phase). Behavioral results indicated that bodily interaction significantly influenced the intensity of the Aha! experience, likely mediated by metacognitive predictive processing. Significant or marginally significant differences emerged across key measures among the three groups. Furthermore, fNIRS results revealed that low-frequency amplitude during the “solution time prediction” task was associated with the Somato-Cognitive Action Network (SCAN), suggesting its involvement in the early predictive stage. Functional connectivity analysis also identified Channel 16 within the reward network as potentially critical to the Aha! experience, warranting further investigation. Additionally, the high similarity in functional connectivity patterns between the Mirror Game and the three insight tasks implies that shared neural mechanisms of metacognitive predictive processing are engaged during both bodily interaction and insight. Brain network analyses further indicated that the Reward Network (RN), Dorsal Attention Network (DAN), and Ventral Attention Network (VAN) are key neural substrates supporting this mechanism, while the SCAN network was not consistently involved during the insight formation stage. In sum, this study makes three key contributions: (1) it proposes a novel theoretical mechanism—implicit metacognitive predictive processing; (2) it establishes a quantifiable, three-stage paradigm for insight research; and (3) it outlines a dynamic neural pathway from bodily interaction to insight experience. Most importantly, the findings offer an integrative model that bridges embodied cognition, enactive cognition, and metacognitive predictive processing, providing a unified account of the Aha! experience. Full article
(This article belongs to the Section Studies on Cognitive Processes)
Show Figures

Figure 1

12 pages, 1523 KiB  
Article
Latency and Amplitude of Cortical Activation in Interactive vs. Passive Tasks: An fNIRS Study Using the NefroBall System
by Karolina Jezierska, Agnieszka Turoń-Skrzypińska, Iwona Rotter, Anna Syroka, Magdalena Łukowiak, Kamila Rawojć, Piotr Rawojć and Aleksandra Rył
Sensors 2025, 25(13), 4135; https://doi.org/10.3390/s25134135 - 2 Jul 2025
Viewed by 378
Abstract
Functional near-infrared spectroscopy (fNIRS) allows non-invasive assessment of cortical activity during naturalistic tasks. This study aimed to compare cortical activation dynamics—specifically the latency (tmax) and amplitude (ΔoxyHb) of oxygenated haemoglobin changes—in passive observation and an interactive task using the Nefroball system. [...] Read more.
Functional near-infrared spectroscopy (fNIRS) allows non-invasive assessment of cortical activity during naturalistic tasks. This study aimed to compare cortical activation dynamics—specifically the latency (tmax) and amplitude (ΔoxyHb) of oxygenated haemoglobin changes—in passive observation and an interactive task using the Nefroball system. A total of 117 healthy adults performed two tasks involving rhythmic hand movements: a passive protocol and an interactive game-controlled condition. fNIRS recorded signals from the visual, parietal, motor, and prefrontal cortices of the left hemisphere. The Mann–Whitney test revealed significantly shorter tmax in all areas during the interactive task, suggesting faster recruitment of cortical networks. ΔoxyHb amplitude was significantly higher only in the visual cortex during the interactive task, indicating increased visual processing demand. No significant ΔoxyHb differences were observed in the motor, prefrontal, or parietal cortices. Weak but significant positive correlations were found between tmax and ΔoxyHb in the motor and prefrontal regions, but only in the passive condition. These findings support the notion that interactive tasks elicit faster, though not necessarily stronger, cortical responses. The results have potential implications for designing rehabilitation protocols and brain–computer interfaces involving visual–motor integration. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

18 pages, 1001 KiB  
Article
Time-Resolved Information-Theoretic and Spectral Analysis of fNIRS Signals from Multi-Channel Prototypal Device
by Irene Franzone, Yuri Antonacci, Fabrizio Giuliano, Riccardo Pernice, Alessandro Busacca, Luca Faes and Giuseppe Costantino Giaconia
Entropy 2025, 27(7), 694; https://doi.org/10.3390/e27070694 - 28 Jun 2025
Viewed by 344
Abstract
Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique that measures brain hemodynamic activity by detecting changes in oxyhemoglobin and deoxyhemoglobin concentrations using light in the near-infrared spectrum. This study aims to provide a comprehensive characterization of fNIRS signals acquired with a prototypal [...] Read more.
Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique that measures brain hemodynamic activity by detecting changes in oxyhemoglobin and deoxyhemoglobin concentrations using light in the near-infrared spectrum. This study aims to provide a comprehensive characterization of fNIRS signals acquired with a prototypal continuous-wave fNIRS device during a breath-holding task, to evaluate the impact of respiratory activity on scalp hemodynamics within the framework of Network Physiology. To this end, information-theoretic and spectral analysis methods were applied to characterize the dynamics of fNIRS signals. In the time domain, time-resolved information-theoretic measures, including entropy, conditional entropy and, information storage, were employed to assess the complexity and predictability of the fNIRS signals. These measures highlighted distinct informational dynamics across the breathing and apnea phases, with conditional entropy showing a significant modulation driven by respiratory activity. In the frequency domain, power spectral density was estimated using a parametric method, allowing the identification of distinct frequency bands related to vascular and respiratory components. The analysis revealed significant modulations in both the amplitude and frequency of oscillations during the task, particularly in the high-frequency band associated with respiratory activity. Our observations demonstrate that the proposed analysis provides novel insights into the characterization of fNIRS signals, enhancing the understanding of the impact of task-induced peripheral cardiovascular responses on NIRS hemodynamics. Full article
Show Figures

Figure 1

23 pages, 3253 KiB  
Article
Neural Effects of Creative Movement, General Movement, and Sedentary Play Interventions on Interpersonal Synchrony in Children with Autism Spectrum Disorder: A Preliminary fNIRS Study
by Wan-Chun Su, Daisuke Tsuzuki, Sudha Srinivasan and Anjana Bhat
Brain Sci. 2025, 15(7), 683; https://doi.org/10.3390/brainsci15070683 - 25 Jun 2025
Viewed by 416
Abstract
Background/Objectives: Children with Autism Spectrum Disorder (ASD) experience difficulties with interpersonal synchrony (IPS). While creative movement (CM) interventions have shown benefits for social, cognitive, and motor skills in children with ASD, the neural mechanisms underlying these improvements remain unclear. This pilot randomized control [...] Read more.
Background/Objectives: Children with Autism Spectrum Disorder (ASD) experience difficulties with interpersonal synchrony (IPS). While creative movement (CM) interventions have shown benefits for social, cognitive, and motor skills in children with ASD, the neural mechanisms underlying these improvements remain unclear. This pilot randomized control trial examined the behavioral and neural effects of CM, general movement (GM), and sedentary play (SP) interventions. Methods: Twenty-two children with ASD (Mean Age ± SE = 8.7 ± 1.9) participated. Functional Near-Infrared Spectroscopy (fNIRS) was used to measure cortical activation during a drumming synchrony task before and after 8 weeks of intervention. Results: The CM group demonstrated significant improvements in IPS and the most widespread increases in socially enhanced activation across the left middle frontal gyrus (MFG), inferior frontal gyrus (IFG), and superior temporal sulcus (STS). The GM group showed increased activation in the left IFG, while the SP group showed enhanced activation in the left STS. Children with lower baseline adaptive functioning and social responsiveness showed greater IPS improvement. Conclusions: These findings provide preliminary evidence for the efficacy of CM in improving IPS in children with ASD and support the use of fNIRS to capture neural effects following interventions. Full article
(This article belongs to the Special Issue Language, Communication and the Brain—2nd Edition)
Show Figures

Graphical abstract

62 pages, 1422 KiB  
Review
The Neural Correlates of Chewing Gum—A Neuroimaging Review of Its Effects on Brain Activity
by James Chmiel and Agnieszka Malinowska
Brain Sci. 2025, 15(6), 657; https://doi.org/10.3390/brainsci15060657 - 18 Jun 2025
Cited by 1 | Viewed by 2539
Abstract
Introduction: Chewing gum is a widespread, seemingly mundane behaviour that has been linked to diverse benefits such as improved cognitive performance, reduced stress, and enhanced alertness. While animal and human research indicate that mastication engages extensive sensorimotor networks and may also modulate higher-order [...] Read more.
Introduction: Chewing gum is a widespread, seemingly mundane behaviour that has been linked to diverse benefits such as improved cognitive performance, reduced stress, and enhanced alertness. While animal and human research indicate that mastication engages extensive sensorimotor networks and may also modulate higher-order cognitive and emotional processes, questions remain about the specific neural mechanisms involved. This review combines findings from neuroimaging studies—including fMRI, fNIRS, and EEG—that investigate how chewing gum alters brain activity in humans. Methods: Using a targeted search strategy, we screened the major databases (PubMed/Medline, Scopus, ResearchGate, Google Scholar, and Cochrane) from January 1980 to March 2025 for clinical studies published in English. Eligible studies explicitly measured brain activity during gum chewing using EEG, fNIRS, or fMRI. Results: After a title/abstract screening and a full-text review, thirty-two studies met the inclusion criteria for this review: 15 utilising fMRI, 10 using fNIRS, 2 using both fNIRS and EEG, and 5 employing EEG. Overall, the fMRI investigations consistently reported strong activation in bilateral motor and somatosensory cortices, the supplementary motor area, the insula, the cerebellum, and the thalamus, during gum chewing, with several studies also noting involvement of higher-order prefrontal and cingulate regions, particularly under stress conditions or when participants chewed flavoured gum. The fNIRS findings indicated that chewing gum increased oxygenated haemoglobin in the prefrontal cortex, reflecting heightened cortical blood flow; these effects were often amplified when the gum was flavoured or when participants were exposed to stressful stimuli, suggesting that both sensory and emotional variables can influence chewing-related cortical responses. Finally, the EEG studies documented transient increases in alpha and beta wave power during gum chewing, particularly when flavoured gum was used, and reported short-lived enhancements in vigilance or alertness, which tended to subside soon after participants ceased chewing. Conclusions: Neuroimaging data indicate that chewing gum reliably engages broad sensorimotor circuits while also influencing regions tied to attention, stress regulation, and possibly memory. Although these effects are often short-lived, the range of outcomes—from changes in cortical oxygenation to shifts in EEG power—underscores chewing gum’s capacity to modulate brain function beyond simple oral motor control. However, at this time, the neural changes associated with gum chewing cannot be directly linked to the positive behavioural and functional outcomes observed in studies that measure these effects without the use of neuroimaging techniques. Future research should address longer-term impacts, refine methods to isolate flavour or stress variables, and explore potential therapeutic applications for mastication-based interventions. Full article
(This article belongs to the Special Issue Brain Network Connectivity Analysis in Neuroscience)
Show Figures

Figure 1

19 pages, 4333 KiB  
Article
Characterizing Behavior, Sex and Subtype in Childhood ADHD via the Related Spectrum of Functional Network Connectivity at Rest
by Emily Lundstrum, Haylee Hudson, Parth Patel, Caitlyn Busch, Channelle Gordon and Anastasia Kerr-German
BioMed 2025, 5(2), 14; https://doi.org/10.3390/biomed5020014 - 13 Jun 2025
Viewed by 596
Abstract
Background/Objectives: This study investigates sex differences in the neural profiles of children with and without ADHD using functional near-infrared spectroscopy (fNIRS). Specifically, it explores the functional connectivity patterns in female and male children, considering both group membership and symptom severity scores. Methods: Participants [...] Read more.
Background/Objectives: This study investigates sex differences in the neural profiles of children with and without ADHD using functional near-infrared spectroscopy (fNIRS). Specifically, it explores the functional connectivity patterns in female and male children, considering both group membership and symptom severity scores. Methods: Participants aged 6–8 (N = 52) years performed a Passive Viewing Paradigm resting-state task while fNIRS was used to measure resting-state functional connectivity. ADHD diagnoses and subtypes were determined using the K-SADS interview, from which a continuous symptom severity score was calculated across both group and subtype. Results: The results revealed that female children with combined-type ADHD exhibited distinct neural profiles compared to male children, both overall and according to symptom severity. Male children with ADHD, across all subtypes, demonstrated less refined functional connectivity, with male children in the combined-type group showing particularly weak connectivity. Additionally, connectivity patterns varied with symptom severity: in male children, connectivity increased as symptom severity increased, while in female children, the opposite trend was observed, with connectivity decreasing as symptom severity rose. These patterns contrasted with those observed in typically developing peers. Conclusions: This study highlights significant sex differences in neural connectivity profiles in children with ADHD. Male children tend to show less refined connectivity, particularly in the combined-type subtype, whereas female children exhibit an inverse relationship between connectivity and symptom severity. These findings provide important insights into the neural mechanisms underlying ADHD and suggest that sex may play a crucial role in the neural presentation of the disorder. Full article
Show Figures

Figure 1

18 pages, 2416 KiB  
Article
Wide-Based Illumination and Detection in Functional Near-Infrared Spectroscopy for Enhanced Seizure Detection in Grey Matter
by Netaniel Rein, Revital Shechter, Evgeny Tsizin, Mordekhay Medvedovsky and Michal Balberg
Sensors 2025, 25(12), 3627; https://doi.org/10.3390/s25123627 - 9 Jun 2025
Viewed by 507
Abstract
Functional near-infrared spectroscopy (fNIRS) is a non-invasive method for monitoring brain activity by detecting hemodynamic changes. Studies have shown that it can identify ictal and pre-ictal hemodynamic variations, supporting its potential use as a complement to electroencephalography (EEG) in epilepsy monitoring. This study [...] Read more.
Functional near-infrared spectroscopy (fNIRS) is a non-invasive method for monitoring brain activity by detecting hemodynamic changes. Studies have shown that it can identify ictal and pre-ictal hemodynamic variations, supporting its potential use as a complement to electroencephalography (EEG) in epilepsy monitoring. This study explores an expanded illumination and detection approach utilizing wide-based optodes and increased emitter–detector separation (EDS) to enhance fNIRS sensitivity to cortical hemodynamic changes while minimizing scalp contamination. A Monte Carlo simulation was designed to assess signal amplitude and sensitivity of fNIRS with varying emitter and detector diameters (1–15 mm) and EDS (30–50 mm). Signal strength, grey matter to scalp path ratio (GSPR), and percentage signal change per absorption coefficients (AC) variation were analyzed. Sensitivity to changes in AC of superficial and deep grey matter (SGM, DGM) and scalp was assessed. Increasing emitter and detector diameters substantially increased total detected photon packet weights, enabling practical use at larger EDS. Sensitivity to SGM AC changes tripled at 50 mm EDS, while GSPR increased by 80%, indicating reduced signal contamination from the scalp. Sensitivity to deep cortical hemodynamic changes also improved. Therefore, wide-based fNIRS optodes with increased EDS can enhance seizure-related hemodynamic detection, potentially improving epilepsy diagnostics. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

23 pages, 9130 KiB  
Article
Individual Differences in the Neurocognitive Effect of Movement During Executive Functioning in Children with ADHD: Impact of Subtype, Severity, and Gender
by Beverly-Ann Hoy, Maya Feehely, Michelle Bi, Matthew Lam, Androu Abdalmalak and Barbara Fenesi
Brain Sci. 2025, 15(6), 623; https://doi.org/10.3390/brainsci15060623 - 9 Jun 2025
Cited by 1 | Viewed by 951
Abstract
Background/Objectives: Attention-Deficit Hyperactivity Disorder (ADHD) is an immensely heterogeneous developmental disorder, uniquely impacting each individual. Physical movement is a promising adjunct behavioral treatment that can promote executive functioning in children with ADHD. The current study used neuroimaging and behavioral techniques to investigate the [...] Read more.
Background/Objectives: Attention-Deficit Hyperactivity Disorder (ADHD) is an immensely heterogeneous developmental disorder, uniquely impacting each individual. Physical movement is a promising adjunct behavioral treatment that can promote executive functioning in children with ADHD. The current study used neuroimaging and behavioral techniques to investigate the impact of movement during executive functioning on dorsolateral prefrontal cortical (DLPFC) activity and inhibitory control in children with ADHD, with particular focus on key individual difference factors in ADHD, such as subtype, severity, and gender. Methods: Twenty-eight children with ADHD completed a Stroop task while remaining stationary (stationary condition) and while desk cycling (movement condition). Simultaneous functional near-infrared spectroscopy (fNIRS) recorded oxygenated and deoxygenated changes in hemoglobin within the left DLPFC. Participants were categorized into ADHD subtype (hyperactive/impulsive, inattention, combined), ADHD severity (low, moderate, high), and gender (male, female). Results: Those with the hyperactive and combined ADHD subtypes, those with high ADHD severity, and males with ADHD showed greater DLPFC activation when engaging in movement during executive functioning compared to remaining stationary. In contrast, those with the inattentive ADHD subtype, those with low-to-moderate ADHD severity, and females with ADHD showed greater DLPFC activation when remaining stationary during executive functioning compared to engaging in movement. Inhibitory control improved in the stationary condition for females who were predominantly inattentive. Conclusions: This work underscores the importance of considering individual difference factors in ADHD when designing physical activity interventions, as treatment efficacy may vary. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

22 pages, 553 KiB  
Article
Block-Wise Domain Adaptation for Workload Prediction from fNIRS Data
by Jiyang Wang, Ayse Altay, Leanne Hirshfield and Senem Velipasalar
Sensors 2025, 25(12), 3593; https://doi.org/10.3390/s25123593 - 7 Jun 2025
Viewed by 476
Abstract
Functional near-infrared spectroscopy (fNIRS) is a non-intrusive way to measure cortical hemodynamic activity. Predicting cognitive workload from fNIRS data has taken on a diffuse set of methods. To be applicable in real-world settings, models are needed, which can perform well across different sessions [...] Read more.
Functional near-infrared spectroscopy (fNIRS) is a non-intrusive way to measure cortical hemodynamic activity. Predicting cognitive workload from fNIRS data has taken on a diffuse set of methods. To be applicable in real-world settings, models are needed, which can perform well across different sessions as well as different subjects. However, most existing works assume that training and testing data come from the same subjects and/or cannot generalize well across never-before-seen subjects. Additional challenges imposed by fNIRS data include not only the high variations in inter-subject fNIRS data but also the variations in intra-subject data collected across different blocks of sessions. To address these challenges, we propose an effective method, referred to as the block-wise domain adaptation (BWise-DA), which explicitly minimizes intra-session variance as well by viewing different blocks from the same subject and same session as different domains. We minimize the intra-class domain discrepancy and maximize the inter-class domain discrepancy accordingly. In addition, we propose an MLPMixer-based model for workload prediction. Experimental results demonstrate that the proposed model provides better performance compared to three different baseline models on three publicly-available workload datasets. Two of the datasets are collected from n-back tasks and one of them is from finger-tapping. Moreover, the experimental results show that our proposed contrastive learning method can also be leveraged to improve the performance of the baseline models. We also present a visualization study showing that the models are paying attention to the right regions in the brain, which are known to be involved in the respective tasks. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

Back to TopTop