Characterizing Behavior, Sex and Subtype in Childhood ADHD via the Related Spectrum of Functional Network Connectivity at Rest
Abstract
1. Introduction
2. Functional Connectivity in the ADHD Brain: A Potential Lifeline to Address Sample Disparities in Neuroscience
3. Current Approach
4. Hypotheses
5. Methods
5.1. Participants
5.2. Survey Procedures
5.3. Demographics
5.4. The Affective Reactivity Index Parent Form (ARI-P)
5.5. Parental Stress Scale (PSS)
5.6. The Disruptive Behavior Disorder Parent/Teacher Rating Scale
5.7. Parent IRS: The Narrative Description of a Child
5.8. fNIRS Procedures
5.9. Passive-Viewing Paradigm
6. Analysis
6.1. Survey Data
6.2. fNIRS Data
7. Results
7.1. Demographics
7.2. Survey Analyses
7.3. Survey Results
7.4. Passive Video Watching/Resting State Task
7.5. Resting-State Functional Connectivity Analyses
8. Discussion
8.1. Sex Differences in Functional Connectivity
8.2. Impact of Symptom Severity on Subtype-Specific Findings
8.3. Clinical and Research Implications
8.4. Ethical Concerns for fNIRS
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burke, J.D.; Boylan, K.; Rowe, R.; Duku, E.; Stepp, S.D.; Hipwell, A.E.; Waldman, I.D. Identifying the irritability dimension of ODD: Application of a modified bifactor model across five large community samples of children. J. Abnorm. Psychol. 2014, 123, 841–851. [Google Scholar] [CrossRef]
- Danielson, M.L.; Bitsko, R.H.; Ghandour, R.M.; Holbrook, J.R.; Kogan, M.D.; Blumberg, S.J. Prevalence of Parent-Reported ADHD Diagnosis and Associated Treatment Among U.S. Children and Adolescents, 2016. J. Clin. Child Adolesc. Psychol. 2018, 47, 199–212. [Google Scholar] [CrossRef]
- Brock, L.L.; Rimm-Kaufman, S.E.; Nathanson, L.; Grimm, K.J. The contributions of ‘hot’ and ‘cool’ executive function to children’s academic achievement, learning-related behaviors, and engagement in kindergarten. Early Child. Res. Q. 2009, 24, 337–349. [Google Scholar] [CrossRef]
- Barnard, L.; Stevens, T.; To, Y.M.; Lan, W.Y.; Mulsow, M. The Importance of ADHD Subtype Classification for Educational Applications of DSM-V. J. Atten. Disord. 2010, 13, 573–583. [Google Scholar] [CrossRef]
- Rowland, A.S.; Skipper, B.J.; Umbach, D.M.; Rabiner, D.L.; Campbell, R.A.; Naftel, A.J.; Sandler, D.P. The Prevalence of ADHD in a Population-Based Sample. J. Atten. Disord. 2015, 19, 741–754. [Google Scholar] [CrossRef]
- Scahill, L.; Schwab-Stone, M. Epidemiology of ADHD in School-Age Children. Child Adolesc. Psychiatr. Clin. N. Am. 2000, 9, 541–555. [Google Scholar] [CrossRef]
- Thomas, R.; Sanders, S.; Doust, J.; Beller, E.; Glasziou, P. Prevalence of Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-analysis. Pediatrics 2015, 135, e994–e1001. [Google Scholar] [CrossRef]
- Gilbert, M.; Boecker, M.; Reiss, F.; Kaman, A.; Erhart, M.; Schlack, R.; Westenhofer, J.; Dopfner, M.; Ravens-Sieberer, U. Gender and Age Differences in ADHD Symptoms and Co-occurring Depression and Anxiety Symptoms Among Children and Adolescents in the BELLA Study. Child Psychiatry Hum. Dev. 2023, 1–11. [Google Scholar] [CrossRef]
- Yoshimasu, K.; Barbaresi, W.J.; Colligan, R.C.; Voigt, R.G.; Killian, J.M.; Weaver, A.L.; Katusic, S.K. Childhood ADHD is strongly associated with a broad range of psychiatric disorders during adolescence: A population-based birth cohort study. J. Child Psychol. Psychiatry Allied Discip. 2012, 53, 1036–1043. [Google Scholar] [CrossRef]
- Ayano, G.; Demelash, S.; Gizachew, Y.; Tsegay, L.; Alati, R. The global prevalence of attention deficit hyperactivity disorder in children and adolescents: An umbrella review of meta-analyses. J. Affect. Disord. 2023, 339, 860–866. [Google Scholar] [CrossRef]
- Martin, J. Why are females less likely to be diagnosed with ADHD in childhood than males? Lancet Psychiatry 2024, 11, 303–310. [Google Scholar] [CrossRef]
- Skoglund, C.; Poromaa, I.S.; Leksell, D.; Selling, K.E.; Cars, T.; Giacobini, M.; Young, S.; Kallner, H.K. Time after time: Failure to identify and support females with ADHD-a Swedish population register study. J. Child Psychol. Psychiatry 2024, 65, 832–844. [Google Scholar] [CrossRef]
- Arnett, A.B.; Pennington, B.F.; Willcutt, E.G.; DeFries, J.C.; Olson, R.K. Sex differences in ADHD symptom severity. J. Child Psychol. Psychiatry 2015, 56, 632–639. [Google Scholar] [CrossRef]
- Biederman, J.; Mick, E.; Faraone, S.V.; Braaten, E.; Doyle, A.; Spencer, T.; Wilens, T.E.; Frazier, E.; Johnson, M.A. Influence of Gender on Attention Deficit Hyperactivity Disorder in Children Referred to a Psychiatric Clinic. Am. J. Psychiatry 2002, 159, 36–42. [Google Scholar] [CrossRef]
- Willcutt, E.G. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: A meta-analytic review. Neurotherapeutics 2012, 9, 490–499. [Google Scholar] [CrossRef]
- Park, B.; Park, H. Connectivity differences between adult male and female patients with attention deficit hyperactivity disorder according to resting-state functional MRI. Neural Regen. Res. 2016, 11, 119. [Google Scholar] [CrossRef]
- Rosch, K.S.; Mostofsky, S.H.; Nebel, M.B. ADHD-related sex differences in fronto-subcortical intrinsic functional connectivity and associations with delay discounting. J. Neurodev. Disord. 2018, 10, 34. [Google Scholar] [CrossRef]
- Cho, Y.; Son, H.M.; Chung, T.; Kim, J. Exploring the biases of the perception of inattention, hyperactivity, and impulsivity of students from parents, teachers, self-reports, and a VR measure. Psychol. Sch. 2024, 61, 2567–2588. [Google Scholar] [CrossRef]
- Mowlem, F.; Agnew-Blais, J.; Taylor, E.; Asherson, P. Do different factors influence whether girls versus boys meet ADHD diagnostic criteria? Sex differences among children with high ADHD symptoms. Psychiatry Res. 2019, 272, 765–773. [Google Scholar] [CrossRef]
- Murray, A.L.; Booth, T.; Eisner, M.; Auyeung, B.; Murray, G.; Ribeaud, D. Sex differences in ADHD trajectories across childhood and adolescence. Dev. Sci. 2019, 22, e12721. [Google Scholar] [CrossRef]
- Peterson, R.K.; Duvall, P.; Crocetti, D.; Palin, T.; Robinson, J.; Mostofsky, S.H.; Rosch, K.S. ADHD-related sex differences in frontal lobe white matter microstructure and associations with response control under conditions of varying cognitive load and motivational contingencies. Brain Imaging Behav. 2023, 17, 674–688. [Google Scholar] [CrossRef]
- Rosch, K.S.; Batschelett, M.A.; Crocetti, D.; Mostofsky, S.H.; Seymour, K.E. Sex differences in atypical fronto-subcortical structural connectivity among children with attention-deficit/hyperactivity disorder: Associations with delay discounting. Behav. Brain Res. 2023, 452, 114525. [Google Scholar] [CrossRef]
- Wang, X.; Yang, C.; Dong, W.; Zhang, Q.; Ma, S.; Zang, Y.; Yuan, L. Impaired segregation of the attention deficit hyperactivity disorder related pattern in children. J. Psychiatr. Res. 2024, 170, 111–121. [Google Scholar] [CrossRef]
- Lin, H.; Chiu, E.; Hsieh, H.; Wang, P. Gender Differences in Auditory and Visual Attentional Performance in Children with and without ADHD. Arch. Clin. Neuropsychol. 2023, 38, 891–903. [Google Scholar] [CrossRef]
- De Ronda, A.C.; Rice, L.; Zhao, Y.; Rosch, K.S.; Mostofsky, S.H.; Seymour, K.E. ADHD-related sex differences in emotional symptoms across development. Eur. Child Adolesc. Psychiatry 2024, 33, 1419–1432. [Google Scholar] [CrossRef]
- Pauli-Pott, U.; Skoluda, N.; Nater, U.M.; Becker, K.; Derz, F.; Kaspar, E.; Kasperzack, D.; Kehm, K.; Kott, M.; Mann, C.; et al. Long-term cortisol secretion in attention deficit hyperactivity disorder: Roles of sex, comorbidity, and symptom presentation. Eur. Child Adolesc. Psychiatry 2024, 33, 569–579. [Google Scholar] [CrossRef]
- Pacheco, J.; Garvey, M.A.; Sarampote, C.S.; Cohen, E.D.; Murphy, E.R.; Friedman-Hill, S.R. The contributions of the RDoC Research Framework on Understanding the Neurodevelopmental Origins, Progression and Treatment of Mental Illnesses. J. Child Psychol. Psychiatry 2022, 63, 360–376. [Google Scholar] [CrossRef]
- Jacobson, L.A.; Crocetti, D.; Dirlikov, B.; Slifer, K.; Denckla, M.B.; Mostofsky, S.H.; Mahone, E.M. Anomalous Brain Development Is Evident in Preschoolers with Attention-Deficit/Hyperactivity Disorder. J. Int. Neuropsychol. Soc. 2018, 24, 531–539. [Google Scholar] [CrossRef]
- Stephens, R.L.; Elsayed, H.E.; Reznick, J.S.; Crais, E.R.; Watson, L.R. Infant Attentional Behaviors Are Associated with ADHD Symptomatology and Executive Function in Early Childhood. J. Atten. Disord. 2021, 25, 1908–1918. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, W.; Yang, L.; Cao, L.; Liu, N.; Gu, Y.; Wang, S.; Xu, X.; Wang, H. Aberrant amplitude of low-frequency fluctuation and functional connectivity in children with different subtypes of ADHD: A resting state fNIRS study. BMC Psychiatry 2024, 24, 919. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, S.; Zhang, F.; Ren, Y.; Zhang, T.; Sun, J.; Wang, X.; Wang, L.; Yang, J. Response inhibition in children with different subtypes/ presentations of attention deficit hyperactivity disorder: A near-infrared spectroscopy study. Front. Neurosci. 2023, 17, 1119289. [Google Scholar] [CrossRef]
- Pironti, V.A.; Lai, M.-C.; Müller, U.; Dodds, C.M.; Suckling, J.; Bullmore, E.T.; Sahakian, B.J. Neuroanatomical Abnormalities and Cognitive Impairments Are Shared by Adults with Attention-Deficit/Hyperactivity Disorder and Their Unaffected First-Degree Relatives. Biol. Psychiatry 2014, 76, 639–647. [Google Scholar] [CrossRef]
- Hearne, L.J.; Lin, H.-Y.; Sanz-Leon, P.; Tseng, W.-Y.I.; Gau, S.S.-F.; Roberts, J.A.; Cocchi, L. ADHD symptoms map onto noise-driven structure–function decoupling between hub and peripheral brain regions. Mol. Psychiatry 2019, 26, 4036–4045. [Google Scholar] [CrossRef]
- Konrad, K.; Eickhoff, S.B. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum. Brain Mapp. 2010, 31, 904–916. [Google Scholar] [CrossRef]
- Lu, C.M.; Zhang, Y.J.; Biswal, B.B.; Zang, Y.F.; Peng, D.L.; Zhu, C.Z. Use of fnirs to assess resting state functional connectivity. J. Neurosci. Methods 2010, 186, 242–249. [Google Scholar] [CrossRef]
- Stringaris, A.; Goodman, R.; Ferdinando, S.; Razdan, V.; Muhrer, E.; Leibenluft, E.; Brotman, M.A. The Affective Reactivity Index: A concise irritability scale for clinical and research settings. J. Child Psychol. Psychiatry 2012, 53, 1109–1117. [Google Scholar] [CrossRef]
- Algarvio, S.; Leal, I.; Maroco, J. Parental Stress Scale: Validation study with a Portuguese population of parents of children from 3 to 10 years old. J. Child Health Care 2018, 22, 563–576. [Google Scholar] [CrossRef]
- Berry, J.O.; Jones, W.H. The Parental Stress Scale: Initial Psychometric Evidence. J. Soc. Pers. Relatsh. 1995, 12, 463–472. [Google Scholar] [CrossRef]
- Harding, L.; Murray, K.; Shakespeare-Finch, J.; Frey, R. Understanding the Parental Stress Scale with a Foster Carer Cohort. Fam. Relat. 2020, 69, 865–879. [Google Scholar] [CrossRef]
- Pontoppidan, M.; Nielsen, T.; Kristensen, I.H. Psychometric properties of the Danish Parental Stress Scale: Rasch analysis in a sample of mothers with infants. PLoS ONE 2018, 13, e0205662. [Google Scholar] [CrossRef]
- Zelman, J.J.; Ferro, M.A. The Parental Stress Scale: Psychometric Properties in Families of Children with Chronic Health Conditions: The Parental Stress Scale. Fam. Relat. 2018, 67, 240–252. [Google Scholar] [CrossRef]
- Fabiano, G.A.; Pelham, W.E., Jr.; Waschbusch, D.A.; Gnagy, E.M.; Lahey, B.B.; Chronis, A.M.; Onyango, A.N.; Kipp, H.; Lopez-Williams, A.; Burrows-MacLean, L. A Practical Measure of Impairment: Psychometric Properties of the Impairment Rating Scale in Samples of Children with Attention Deficit Hyperactivity Disorder and Two School-Based Samples. J. Clin. Child Adolesc. Psychol. 2006, 35, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Vanderwal, T.; Kelly, C.; Eilbott, J.; Mayes, L.C.; Castellanos, F.X. Inscapes: A movie paradigm to improve compliance in functional magnetic resonance imaging. NeuroImage 2015, 122, 222–232. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, D.; Lin, W. Resting-state functional MRI studies on infant brains: A decade of gap-filling efforts. NeuroImage 2019, 185, 664–684. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.T.; Zeki, S. Perceptual asynchrony for motion. Front. Hum. Neurosci. 2014, 8, 108. [Google Scholar] [CrossRef]
- Kerr-German, A.N.; Buss, A.T.; White, S.; Doucet, G. Assessing the relationship between maternal risk for attention deficit hyperactivity disorder and functional connectivity in their biological toddlers. Eur. Psychiatry 2022, 65, e66. [Google Scholar] [CrossRef]
- Santosa, H.; Zhai, X.; Fishburn, F.; Huppert, T. The NIRS brain AnalyzIR toolbox. Algorithms 2018, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- Cope, M.; Delpy, D.T.; Reynolds, E.O.R.; Wray, S.; Wyatt, J.; van der Zee, P. Methods of Quantitating Cerebral Near Infrared Spectroscopy Data. In Oxygen Transport to Tissue X; Mochizuki, M., Honig, C.R., Koyama, T., Goldstick, T.K., Bruley, D.F., Eds.; Springer: Greer, SC, USA, 1988; Volume 222, pp. 183–189. [Google Scholar] [CrossRef]
- Santosa, H.; Aarabi, A.; Perlman, S.B.; Huppert, T.J. Characterization and correction of the false-discovery rates in resting state connectivity using functional near-infrared spectroscopy. J. Biomed. Opt. 2017, 22, 055002. [Google Scholar] [CrossRef]
- Fishburn, F.A.; Ludlum, R.S.; Vaidya, C.J.; Medvedev, A.V. Temporal Derivative Distribution Repair (TDDR): A motion correction method for fNIRS. NeuroImage 2019, 184, 171–179. [Google Scholar] [CrossRef]
- Camacho, C.M.; Quinones-Camacho, L.E.; Perlman, S.B. Does the child brain rest?: An examination and interpretation of resting cognition in developmental cognitive neuroscience. NeuroImage 2020, 212, 116688. [Google Scholar] [CrossRef]
- Tomasi, D.; Volkow, N. Abnormal Functional Connectivity in Children with Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry 2012, 71, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Oxfordshire, UK, 1988; ISBN 978-1-134-74270-7. [Google Scholar]
Age 6 (n = 22) | Age 7 (n = 18) | Age 8 (n = 12) | Total (n = 52) | ||
---|---|---|---|---|---|
Sex | Female | 8 | 10 | 6 | 24 |
Male | 14 | 8 | 6 | 28 | |
Race | White | 18 | 16 | 9 | 43 |
Multiracial | 4 | 2 | 3 | 9 | |
Ethnicity | Non-Hispanic/Latino | 18 | 17 | 11 | 46 |
Hispanic/Latino | 4 | 0 | 1 | 5 | |
Unknown | 1 | 2 | 0 | 3 | |
Main Language in Household | English | 20 | 16 | 12 | 48 |
Spanish | 1 | 0 | 0 | 1 | |
Other | 1 | 2 | 0 | 3 | |
Highest Level of Parental Education | Some High School | 1 | 0 | 0 | 1 |
High School Degree | 1 | 0 | 0 | 1 | |
Some College/Technical School | 3 | 3 | 0 | 6 | |
College Degree | 10 | 5 | 4 | 19 | |
Graduate/Professional Degree | 7 | 10 | 8 | 25 | |
Household Income | $5000–$9999 | 1 | 1 | 0 | 2 |
$10,000–$14,999 | 0 | 1 | 1 | 2 | |
$15,000–$24,999 | 2 | 1 | 0 | 3 | |
$25,000–$39,999 | 0 | 1 | 0 | 1 | |
$40,000–$59,999 | 2 | 1 | 0 | 3 | |
$60,000–$89,999 | 5 | 5 | 3 | 13 | |
$90,000–$179,000 | 7 | 5 | 7 | 19 | |
Greater than $180,000 | 5 | 3 | 1 | 9 | |
Number of Adults in Household | One | 0 | 6 | 0 | 6 |
Two | 21 | 11 | 11 | 43 | |
Three or More | 1 | 1 | 1 | 3 | |
Number of Children in Household | One-Two | 8 | 7 | 2 | 17 |
Three-Four | 11 | 10 | 8 | 29 | |
Five or More | 3 | 1 | 2 | 6 | |
Adoption | Child is Adopted | 1 | 1 | 1 | 3 |
Child is Not Adopted | 21 | 17 | 11 | 49 | |
Special Education | Child in Special Education | 2 | 0 | 2 | 4 |
Child Not in Special Education | 20 | 18 | 10 | 48 |
Age 6 | Age 7 | Age 8 | Total | |||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | |||
ADHD Group | 5 | 3 | 5 | 6 | 4 | 2 | 25 | |
Subtype | Hyperactive | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Inattentive | 0 | 0 | 1 | 0 | 2 | 0 | 3 | |
Combined | 5 | 2 | 4 | 6 | 2 | 2 | 21 | |
TD Group | 9 | 5 | 3 | 4 | 2 | 4 | 27 | |
Total | 14 | 8 | 8 | 10 | 6 | 6 | 52 |
Age 6 | Age 7 | Age 8 | Total | |||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | |||
ADHD Group | 25.60 | 21.67 | 29.00 | 21.33 | 16.50 | 18.50 | 22.76 | |
Subtype | Hyperactive | 0.00 | 11.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.00 |
Inattentive | 0.00 | 0.00 | 14.00 | 0.00 | 14.50 | 0.00 | 14.33 | |
Combined | 25.60 | 27.00 | 32.80 | 21.33 | 18.50 | 18.50 | 24.52 | |
TD Group | 2.00 | 2.00 | 5.33 | 2.00 | 1.50 | 3.50 | 2.55 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1. K-SADS Vocabulary | -- | ||||||
2. K-SADS Symptom Severity | −0.043 | -- | |||||
3. PSS | −0.04 | 0.339 | -- | ||||
4. ARI-P | −0.371 | 0.557 * | 0.349 | -- | |||
5. ADHD-Inattention | −0.025 | 0.766 * | 0.264 | 0.351 | -- | ||
6. ADHD-Hyperactive | 0.084 | 0.824 * | 0.463 * | 0.5 * | 0.836 * | -- | |
7. ODD | −0.101 | 0.304 | 0.246 | 0.669 * | 0.315 | 0.458 * | -- |
Channel Connectivity | MNI Region | Condition | R | z | t | q * |
---|---|---|---|---|---|---|
1<-->2 | lFC<-->lFC | Male | 0.521209 | 0.577999 | 4.883782 | 0.002015 |
1<-->3 | lFC<-->lFC | Male | 0.334026 | 0.347353 | 4.618476 | 0.004508 |
2<-->4 | lFC<-->lFC | Male | 0.338104 | 0.35195 | 5.179304 | 0.000809 |
2<-->6 | lFC<-->lFC | Male | 0.350914 | 0.366486 | 5.378394 | 0.00044 |
3<-->2 | lFC<-->lFC | Male | 0.281118 | 0.288896 | 4.694692 | 0.003648 |
3<-->4 | lFC<-->lFC | Male | 0.403652 | 0.428005 | 4.431514 | 0.008137 |
3<-->5 | lFC<-->lFC | Male | 0.184477 | 0.186613 | 4.002845 | 0.02873 |
4<-->6 | lFC<-->lFC | Male | 0.32942 | 0.342178 | 5.33512 | 0.000501 |
4<-->35 | lFC<-->lFC | Male | −0.19612 | −0.19869 | −3.98387 | 0.029831 |
5<-->6 | lFC<-->rPC | Male | 0.415942 | 0.442775 | 3.807233 | 0.046841 |
3<-->5 | lFC<-->lFC | Female | 0.205807 | 0.208789 | 3.94482 | 0.03296 |
13<-->14 | lPC<-->lPC | Female | 0.53267 | 0.593866 | 3.894906 | 0.037276 |
13<-->33 | lPC<-->rPC | Symptom Severity | 0.001943 | 0.001943 | 4.210226 | 0.015532 |
Condition | R-Value | q-Value | Channel Conn. | Region Conn. |
---|---|---|---|---|
Male | 0.20 | <0.01 | 6 ßà12 | lFCßàlTC |
Male | −0.18 | 0.02 | 6ßà38 | lFCßàrPC |
Male | 0.47 | 0.03 | 23ßà24 | rFCßàrFC |
Female | −0.06 | 0.03 | 15ßà33 | lPCßàrPC |
Condition | R-Value | q-Value | Channel Conn. | Region Conn. |
---|---|---|---|---|
Male | 0.38 | 0.04 | 2 ßà6 | lFCßàlFC |
Male | 0.23 | 0.03 | 2ßà11 | lFCßàlTC |
Male | 0.24 | <0.01 | 2ßà15 | lFCßàlPC |
Male | 0.42 | 0.01 | 4ßà6 | lFCßàlFC |
Male | −0.21 | 0.02 | 10ßà16 | lTCßàlPC |
Male | 0.19 | 0.04 | 10ßà38 | lTCßàrPC |
Male | −0.20 | <0.01 | 15ßà34 | lPCßàrPC |
Male | −0.21 | 0.02 | 18ßà37 | lPCßàrPC |
Female | 0.47 | 0.04 | 3ßà4 | lFCßàlFC |
Female | 0.49 | 0.03 | 35ßà36 | rPCßàrPC |
Condition | R-Value | q-Value | Channel Conn. | Region Conn. |
---|---|---|---|---|
Male:SS | 0.04 | 0.02 | 5 ßà23 | lFCßàrFC |
Male:SS | 0.03 | 0.05 | 6ßà21 | lFCßàrFC |
Male:SS | 0.02 | 0.03 | 12ßà36 | lTCßàrPC |
Male:SS | 0.03 | <0.01 | 15ßà23 | lPCßàrFC |
Female:SS | −0.03 | 0.01 | 8ßà38 | lFCßàrPC |
Female:SS | −0.06 | 0.05 | 17ßà18 | lPCßàlPC |
Female:SS | −0.03 | 0.01 | 19ßà33 | lPCßàrPC |
Condition | R-Value | q-Value | Channel Conn. | Region Conn. |
---|---|---|---|---|
Male:SS | −0.05 | <0.01 | 1ßà15 | lFCßàlPC |
Male:SS | −0.05 | <0.01 | 1ßà23 | lFCßàrFC |
Male:SS | −0.04 | 0.03 | 1ßà31 | lFCßàrTC |
Male:SS | 0.03 | 0.01 | 1ßà32 | lFCßàrPC |
Male:SS | −0.10 | <0.01 | 2ßà4 | lFCßàlFC |
Male:SS | −0.15 | <0.01 | 2ßà5 | lFCßàlFC |
Male:SS | −0.06 | 0.03 | 2ßà32 | lFCßàrPC |
Male:SS | −0.05 | <0.01 | 2ßà37 | lFCßàrPC |
Male:SS | −0.06 | 0.01 | 3ßà32 | lFCßàrPC |
Male:SS | −0.17 | <0.01 | 4ßà6 | lFCßàlFC |
Male:SS | 0.08 | 0.01 | 4ßà25 | lFCßàrFC |
Male:SS | −0.04 | 0.01 | 5ßà15 | lFCßàlPC |
Male:SS | 0.03 | 0.02 | 5ßà31 | lFCßàrTC |
Male:SS | 0.06 | 0.05 | 6ßà35 | lFCßàrPC |
Male:SS | −0.07 | <0.01 | 6ßà37 | lFCßàrPC |
Male:SS | −0.10 | <0.01 | 8ßà11 | lFCßàlTC |
Male:SS | −0.05 | <0.01 | 9ßà32 | lFCßàrPC |
Male:SS | −0.06 | <0.01 | 11ßà19 | lTCßàlPC |
Male:SS | −0.07 | <0.01 | 12ßà16 | lTCßàlPC |
Male:SS | 0.08 | <0.01 | 12ßà17 | lTCßàlPC |
Male:SS | 0.01 | 0.05 | 13ßà16 | lPCßàlPC |
Male:SS | −0.07 | 0.01 | 14ßà32 | lPCßàrPC |
Male:SS | 0.04 | 0.04 | 15ßà19 | lPCßàlPC |
Male:SS | 0.10 | <0.01 | 17ßà25 | lPCßàrFC |
Male:SS | 0.04 | <0.01 | 17ßà28 | lPCßàrFC |
Male:SS | −0.10 | <0.01 | 18ßà19 | lPCßàlPC |
Male:SS | 0.05 | <0.01 | 18ßà31 | lPCßàrTC |
Male:SS | −0.06 | <0.01 | 19ßà28 | lPCßàrFC |
Male:SS | 0.11 | <0.01 | 20ßà38 | rFCßàrPC |
Male:SS | 0.08 | <0.01 | 21ßà34 | rFCßàrPC |
Male:SS | 0.08 | <0.01 | 21ßà38 | rFCßàrPC |
Male:SS | 0.05 | 0.02 | 22ßà34 | rFCßàrPC |
Male:SS | 0.04 | 0.03 | 22ßà35 | rFCßàrPC |
Male:SS | 0.06 | <0.01 | 22ßà38 | rFCßàrPC |
Male:SS | 0.06 | <0.01 | 23ßà33 | rFCßàrPC |
Male:SS | 0.09 | <0.01 | 25ßà37 | rFCßàrPC |
Male:SS | 0.08 | <0.01 | 25ßà38 | rFCßàrPC |
Male:SS | 0.05 | 0.03 | 27ßà32 | rFCßàrPC |
Male:SS | 0.11 | <0.01 | 27ßà34 | rFCßàrPC |
Female:SS | 0.09 | 0.01 | 1ßà18 | lFCßàlPC |
Female:SS | −0.08 | 0.03 | 16ßà17 | lPCßàlPC |
Female:SS | −0.07 | 0.02 | 19ßà23 | lPCßàrFC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundstrum, E.; Hudson, H.; Patel, P.; Busch, C.; Gordon, C.; Kerr-German, A. Characterizing Behavior, Sex and Subtype in Childhood ADHD via the Related Spectrum of Functional Network Connectivity at Rest. BioMed 2025, 5, 14. https://doi.org/10.3390/biomed5020014
Lundstrum E, Hudson H, Patel P, Busch C, Gordon C, Kerr-German A. Characterizing Behavior, Sex and Subtype in Childhood ADHD via the Related Spectrum of Functional Network Connectivity at Rest. BioMed. 2025; 5(2):14. https://doi.org/10.3390/biomed5020014
Chicago/Turabian StyleLundstrum, Emily, Haylee Hudson, Parth Patel, Caitlyn Busch, Channelle Gordon, and Anastasia Kerr-German. 2025. "Characterizing Behavior, Sex and Subtype in Childhood ADHD via the Related Spectrum of Functional Network Connectivity at Rest" BioMed 5, no. 2: 14. https://doi.org/10.3390/biomed5020014
APA StyleLundstrum, E., Hudson, H., Patel, P., Busch, C., Gordon, C., & Kerr-German, A. (2025). Characterizing Behavior, Sex and Subtype in Childhood ADHD via the Related Spectrum of Functional Network Connectivity at Rest. BioMed, 5(2), 14. https://doi.org/10.3390/biomed5020014