Wide-Based Illumination and Detection in Functional Near-Infrared Spectroscopy for Enhanced Seizure Detection in Grey Matter
Abstract
:1. Introduction
1.1. Epilepsy and Electroencephalography (EEG)
1.2. Functional Near-Infrared Spectroscopy (fNIRS) and Epilepsy
1.3. Expanded Illumination and Detection with fNIRS
2. Methods
2.1. Structure of Monte Carlo Simulation
2.2. Emitter and Detector Parameters
2.3. Metrics of the Simulation
3. Results
3.1. Simulation with Increased Diameter of Emitter and Detector
3.2. Impact of Increased Emitter–Detector Separation on Sensitivity to Changes in SGM AC
3.3. Impact of Emitter–Detector Separation on Superficial Grey Matter to Scalp Path Ratio (GSPR)
3.4. Impact of EDS on Sensitivity to Changes in the AC of DGM1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
fNIRS | Functional Near-Infrared Spectroscopy |
EEG | Electroencephalography |
SMS | Standard Measured Signal |
SNR | Signal to Noise Ratio |
rSNR | Reference SNR |
fMRI | Functional Magnetic Resonance Imaging |
BOLD | Blood Oxygen Level Dependent |
GM | Grey Matter |
DGM | Deep Grey Matter |
WM | White Matter |
CSF | Cerebrospinal Fluid |
MC | Monte Carlo |
Appendix A
References
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J.; Forsgren, L.; French, J.A.; Glynn, M.; et al. ILAE Official Report: A Practical Clinical Definition of Epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Musall, S.; Von Pföstl, V.; Rauch, A.; Logothetis, N.K.; Whittingstall, K. Effects of Neural Synchrony on Surface EEG. Cereb. Cortex 2014, 24, 1045–1053. [Google Scholar] [CrossRef]
- Tao, J.X.; Baldwin, M.; Ray, A.; Hawes-Ebersole, S.; Ebersole, J.S. The Impact of Cerebral Source Area and Synchrony on Recording Scalp Electroencephalography Ictal Patterns. Epilepsia 2007, 48, 2167–2176. [Google Scholar] [CrossRef] [PubMed]
- Casale, M.J.; Marcuse, L.V.; Young, J.J.; Jette, N.; Panov, F.E.; Bender, H.A.; Saad, A.E.; Ghotra, R.S.; Ghatan, S.; Singh, A.; et al. The Sensitivity of Scalp EEG at Detecting Seizures—A Simultaneous Scalp and Stereo EEG Study. J. Clin. Neurophysiol. 2022, 39, 78–84. [Google Scholar] [CrossRef] [PubMed]
- van Mierlo, P.; Vorderwülbecke, B.J.; Staljanssens, W.; Seeck, M.; Vulliémoz, S. Ictal EEG Source Localization in Focal Epilepsy: Review and Future Perspectives. Clin. Neurophysiol. 2020, 131, 2600–2616. [Google Scholar] [CrossRef] [PubMed]
- Petroff, O.A.; Spencer, D.D.; Goncharova, I.I.; Zaveri, H.P. A Comparison of the Power Spectral Density of Scalp EEG and Subjacent Electrocorticograms. Clin. Neurophysiol. 2016, 127, 1108–1112. [Google Scholar] [CrossRef] [PubMed]
- Piastra, M.C.; Nüßing, A.; Vorwerk, J.; Clerc, M.; Engwer, C.; Wolters, C.H. A Comprehensive Study on Electroencephalography and Magnetoencephalography Sensitivity to Cortical and Subcortical Sources. Hum. Brain Mapp. 2021, 42, 978–992. [Google Scholar] [CrossRef] [PubMed]
- Ramon, C.; Freeman, W.J.; Holmes, M.; Ishimaru, A.; Haueisen, J.; Schimpf, P.H.; Rezvanian, E. Similarities between Simulated Spatial Spectra of Scalp EEG, MEG and Structural MRI. Brain Topogr. 2009, 22, 191–196. [Google Scholar] [CrossRef]
- Ramantani, G.; Dümpelmann, M.; Koessler, L.; Brandt, A.; Cosandier-Rimélé, D.; Zentner, J.; Schulze-Bonhage, A.; Maillard, L.G. Simultaneous Subdural and Scalp EEG Correlates of Frontal Lobe Epileptic Sources. Epilepsia 2014, 55, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Bauernfeind, G.; Wriessnegger, S.C.; Haumann, S.; Lenarz, T. Cortical Activation Patterns to Spatially Presented Pure Tone Stimuli with Different Intensities Measured by Functional Near-Infrared Spectroscopy. Hum. Brain Mapp. 2018, 39, 2710–2724. [Google Scholar] [CrossRef]
- Meidenbauer, K.L.; Choe, K.W.; Cardenas-Iniguez, C.; Huppert, T.J.; Berman, M.G. Load-Dependent Relationships between Frontal FNIRS Activity and Performance: A Data-Driven PLS Approach. Neuroimage 2021, 230, 117795. [Google Scholar] [CrossRef] [PubMed]
- Causse, M.; Chua, Z.; Peysakhovich, V.; Del Campo, N.; Matton, N. Mental Workload and Neural Efficiency Quantified in the Prefrontal Cortex Using FNIRS. Sci. Rep. 2017, 7, 5222. [Google Scholar] [CrossRef] [PubMed]
- Kirilina, E.; Jelzow, A.; Heine, A.; Niessing, M.; Wabnitz, H.; Brühl, R.; Ittermann, B.; Jacobs, A.M.; Tachtsidis, I. The Physiological Origin of Task-Evoked Systemic Artefacts in Functional near Infrared Spectroscopy. Neuroimage 2012, 61, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.K.; Tremblay, J.; Pouliot, P.; Vannasing, P.; Florea, O.; Carmant, L.; Lepore, F.; Sawan, M.; Lesage, F.; Lassonde, M. Noninvasive Continuous Functional Near-Infrared Spectroscopy Combined with Electroencephalography Recording of Frontal Lobe Seizures. Epilepsia 2013, 54, 331–340. [Google Scholar] [CrossRef]
- Sirpal, P.; Kassab, A.; Pouliot, P.; Nguyen, D.K. FNIRS Improves Seizure Detection in Multimodal EEG-FNIRS Recordings. J. Biomed. Opt. 2019, 24, 051408. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Tremblay, J.; Pouliot, P.; Vannasing, P.; Florea, O.; Carmant, L.; Lepore, F.; Sawan, M.; Lesage, F.; Lassonde, M. Non-Invasive Continuous EEG-FNIRS Recording of Temporal Lobe Seizures. Epilepsy Res. 2012, 99, 112–126. [Google Scholar] [CrossRef]
- Peng, K.; Nguyen, D.K.; Tayah, T.; Vannasing, P.; Tremblay, J.; Sawan, M.; Lassonde, M.; Lesage, F.; Pouliot, P. FNIRS-EEG Study of Focal Interictal Epileptiform Discharges. Epilepsy Res. 2014, 108, 491–505. [Google Scholar] [CrossRef]
- Strangman, G.E.; Li, Z.; Zhang, Q. Depth Sensitivity and Source-Detector Separations for Near Infrared Spectroscopy Based on the Colin27 Brain Template. PLoS ONE 2013, 8, e66319. [Google Scholar] [CrossRef]
- Shin, J.; Kwon, J.; Choi, J.; Im, C.H. Performance Enhancement of a Brain-Computer Interface Using High-Density Multi-Distance NIRS. Sci. Rep. 2017, 7, 16545. [Google Scholar] [CrossRef]
- Liu, N.; Cui, X.; Bryant, D.M.; Glover, G.H.; Reiss, A.L. Inferring Deep-Brain Activity from Cortical Activity Using Functional near-Infrared Spectroscopy. Biomed. Opt. Express 2015, 6, 1074–1089. [Google Scholar] [CrossRef]
- Rein, N.; Shechter, R.; Tsizin, E.; Rosenthal, G.; Heymann, S.; Zurita, M.; Isreal, Z.; Medvedovsky, M.; Balberg, M. Optical Anchor Bolt for Simultaneous Stereo-EEG and Intracranial Functional Near Infrared Spectroscopy; Concept, Phantom Experiment and Monte Carlo Simulation. IEEE Sens. J. 2024, 25, 1359–1371. [Google Scholar] [CrossRef]
- Ito, Y.; Kennan, R.P.; Watanabe, E.; Koizumi, H. Assessment of Heating Effects in Skin during Continuous Wave near Infrared Spectroscopy. J. Biomed. Opt. 2000, 5, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Ziegelberger, G. ICNIRP Guidelines on Limits of Exposure to Incoherent Visible and Infrared Radiation. Health Phys. 2013, 105, 74–96. [Google Scholar]
- Zhang, S.; Long, Y.; Zhang, P.; Fang, Z.; Li, Z.; Ye, H.; Zheng, G.; Jia, H.; Qiu, J.; Li, Y. Ultra-Transparent β-Ga2O3:Cr3+ Glass-Ceramics Enabling High-Efficiency True-Transmission near-Infrared Light-Emitting Diodes. J. Adv. Ceram. 2025, 14, 9221075. [Google Scholar] [CrossRef]
- Russomanno, E.; Kalyanov, A.; Jiang, J.; Ackermann, M.; Wolf, M. Effects of Different Optical Properties of Head Tissues on Near-Infrared Spectroscopy Using Monte Carlo Simulations. Adv. Exp. Med. Biol. 2022, 1395, 39–43. [Google Scholar]
- Tran, A.P.; Yan, S.; Fang, Q. Improving Model-Based Functional near-Infrared Spectroscopy Analysis Using Mesh-Based Anatomical and Light-Transport Models. Neurophotonics 2020, 7, 015008. [Google Scholar] [CrossRef]
- Kochunov, P.; Mangin, J.F.; Coyle, T.; Lancaster, J.; Thompson, P.; Rivière, D.; Cointepas, Y.; Régis, J.; Schlosser, A.; Royall, D.R.; et al. Age-Related Morphology Trends of Cortical Sulci. Hum. Brain Mapp. 2005, 26, 210–220. [Google Scholar] [CrossRef]
- Bickle, I. Normal MRI Brain with MRV: Teenager. In Radiopaedia.org; 2016. Available online: https://radiopaedia.org/cases/normal-mri-brain-with-mrv-teenager-1 (accessed on 6 April 2025).
- Fang, Q. Mesh-Based Monte Carlo Method Using Fast Ray-Tracing in Plücker Coordinates. Biomed. Opt. Express 2010, 1, 165–175. [Google Scholar] [CrossRef]
- Fang, Q.; Boas, D.A. Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units. Opt. Express 2009, 17, 20178–20190. [Google Scholar] [CrossRef]
- Seyal, M. Frontal Hemodynamic Changes Precede EEG Onset of Temporal Lobe Seizures. Clin. Neurophysiol. 2014, 125, 442–448. [Google Scholar] [CrossRef]
- Kahane, P.; Merlet, I.; Grégoire, M.C.; Munari, C.; Perret, J.; Mauguière, F. An H215O-PET Study of Cerebral Blood Flow Changes during Focal Epileptic Discharges Induced by Intracerebral Electrical Stimulation. Brain 1999, 122, 1851–1865. [Google Scholar] [CrossRef] [PubMed]
- Ciris, P.A.; Qiu, M.; Constable, R.T. Non-Invasive Quantification of Absolute Cerebral Blood Volume during Functional Activation Applicable to the Whole Human Brain. Magn. Reson. Med. 2014, 71, 580–590. [Google Scholar] [CrossRef]
- Chen, W.L.; Wagner, J.; Heugel, N.; Sugar, J.; Lee, Y.W.; Conant, L.; Malloy, M.; Heffernan, J.; Quirk, B.; Zinos, A.; et al. Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Neuroscience: Advances and Future Directions. Front. Neurosci. 2020, 14, 724. [Google Scholar] [CrossRef]
- Sato, T.; Nambu, I.; Takeda, K.; Aihara, T.; Yamashita, O.; Isogaya, Y.; Inoue, Y.; Otaka, Y.; Wada, Y.; Kawato, M.; et al. Reduction of Global Interference of Scalp-Hemodynamics in Functional near-Infrared Spectroscopy Using Short Distance Probes. Neuroimage 2016, 141, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Saager, R.; Berger, A. Measurement of Layer-like Hemodynamic Trends in Scalp and Cortex: Implications for Physiological Baseline Suppression in Functional near-Infrared Spectroscopy. J. Biomed. Opt. 2008, 13, 034017. [Google Scholar] [CrossRef]
- Rein, N.; Shechter, R.; Arviv, O.; Ekstein, D.; Benoliel, T.; Doufish, D.; Froimovich, N.; Katz, Y.; Rosenthal, G.; Heymann, S.; et al. Ictal and Pre-Ictal Functional Near-Infrared Spectroscopy Ccmbined with Video- or Stereo-Eeg Monitoring. In Proceedings of the American Epilepsy Society Annual Meeting 2024, Los-Angeles, CA, USA, 6–10 December 2024. [Google Scholar]
- Pan, Y.; Borragán, G.; Peigneux, P. Applications of Functional Near-Infrared Spectroscopy in Fatigue, Sleep Deprivation, and Social Cognition. Brain Topogr. 2019, 32, 998–1012. [Google Scholar] [CrossRef] [PubMed]
- De Liao, L.; Tsytsarev, V.; Delgado-Martínez, I.; Li, M.L.; Erzurumlu, R.; Vipin, A.; Orellana, J.; Lin, Y.R.; Lai, H.Y.; Chen, Y.Y.; et al. Neurovascular Coupling: In Vivo Optical Techniques for Functional Brain Imaging. Biomed. Eng. Online 2013, 12, 38. [Google Scholar]
- Kim, H.Y.; Seo, K.; Jeon, H.J.; Lee, U.; Lee, H. Application of Functional Near-Infrared Spectroscopy to the Study of Brain Function in Humans and Animal Models. Mol. Cells 2017, 40, 523–532. [Google Scholar] [CrossRef]
- Nishiyori, R.; Bisconti, S.; Ulrich, B. Motor Cortex Activity During Functional Motor Skills: An FNIRS Study. Brain Topogr. 2016, 29, 42–55. [Google Scholar] [CrossRef]
- Yang, C.L.; Lim, S.B.; Peters, S.; Eng, J.J. Cortical Activation During Shoulder and Finger Movements in Healthy Adults: A Functional Near-Infrared Spectroscopy (FNIRS) Study. Front. Hum. Neurosci. 2020, 14, 260. [Google Scholar] [CrossRef]
- Yao, Y.; Lu, Q.; Jin, L.R.; Zhou, X.Q.; Huang, Y.; Xu, W.H. Real-Time TCD-VEEG Monitoring for Neurovascular Coupling in Epilepsy. Seizure 2015, 29, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Engrand, N.; Cholet, C.; Lebard, C.; De Mesmay, M.; Dinkelacker, V.; Roy-Gash, F. Case Studies in Neuroscience: Transcranial Doppler Assessment of Increased Cerebral Blood Flow during Iterative Seizures. J. Neurophysiol. 2021, 125, 1982–1986. [Google Scholar] [CrossRef]
- Kassab, A.; Hinnoutondji Toffa, D.; Robert, M.; Lesage, F.; Peng, K.; Khoa Nguyen, D. Hemodynamic Changes Associated with Common EEG Patterns in Critically Ill Patients: Pilot Results from Continuous EEG-FNIRS Study. Neuroimage Clin. 2021, 32, 102880. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ayaz, H.; Izzetoglu, M.; Onaral, B. Evaluation of Light Detector Surface Area for Functional Near Infrared Spectroscopy. Comput. Biol. Med. 2017, 89, 68–75. [Google Scholar] [CrossRef]
- Chaudhary, U.J.; Duncan, J.S.; Lemieux, L. Mapping Hemodynamic Correlates of Seizures Using FMRI: A Review. Hum. Brain Mapp. 2013, 34, 447–466. [Google Scholar] [CrossRef]
- Laich, E.; Kuzniecky, R.; Mountz, J.; Liu, H.G.; Gilliam, F.; Bebin, M.; Faught, E.; Morawetz, R. Supplementary Sensorimotor Area Epilepsy. Seizure Localization, Cortical Propagation and Subcortical Activation Pathways Using Ictal SPECT. Brain 1997, 120, 855–864. [Google Scholar] [CrossRef]
- Spanaki, M.V.; Spencer, S.S.; Corsi, M.; MacMullan, J.; Seibyl, J.; Zubal, I.G. Sensitivity and Specificity of Quantitative Difference SPECT Analysis in Seizure Localization. J. Nucl. Med. 1999, 40, 730–736. [Google Scholar] [PubMed]
- Vander, T.; Stroganova, T.; Doufish, D.; Eliashiv, D.; Gilboa, T.; Medvedovsky, M.; Ekstein, D. What Is the Optimal Duration of Home-Video-EEG Monitoring for Patients with <1 Seizure per Day? A Simulation Study. Front. Neurol. 2022, 13, 938294. [Google Scholar] [CrossRef]
- Strangman, G.E.; Zhang, Q.; Li, Z. Scalp and Skull Influence on near Infrared Photon Propagation in the Colin27 Brain Template. Neuroimage 2014, 85, 136–149. [Google Scholar] [CrossRef]
- Holmes, M.; Aalto, D.; Cummine, J. Opening the Dialogue: A Preliminary Exploration of Hair Color, Hair Cleanliness, Light, and Motion Effects on FNIRS Signal Quality. PLoS ONE 2024, 19, e0304356. [Google Scholar] [CrossRef]
- Scarapicchia, V.; Brown, C.; Mayo, C.; Gawryluk, J.R. Functional Magnetic Resonance Imaging and Functional Near-Infrared Spectroscopy: Insights from Combined Recording Studies. Front. Hum. Neurosci. 2017, 11, 419. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Umeyama, S.; Ohashi, M. Removal of Motion Artifacts Originating from Optode Fluctuations during Functional Near-Infrared Spectroscopy Measurements. Biomed. Opt. Express 2015, 6, 4632–4649. [Google Scholar] [CrossRef] [PubMed]
- Brigadoi, S.; Ceccherini, L.; Cutini, S.; Scarpa, F.; Scatturin, P.; Selb, J.; Gagnon, L.; Boas, D.A.; Cooper, R.J. Motion Artifacts in Functional Near-Infrared Spectroscopy: A Comparison of Motion Correction Techniques Applied to Real Cognitive Data. Neuroimage 2014, 85, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cheng, S.; Fukuda, K.; Hu, W.; Xu, X.; Someya, T. Flexible Near-Infrared Organic Photodetectors for Emergent Wearable Applications. Wearable Electron. 2024, 1, 53–77. [Google Scholar] [CrossRef]
Thick-Ness (mm) | Absorption Coefficient μa (mm−1) | Scattering Coefficient μs (mm−1) | Reduced Scattering Coefficient μs′ (mm−1) | Anisotropy (g) | Refraction Index (n) | |
---|---|---|---|---|---|---|
Scalp | 6 | 0.019 | 7.8 | 0.86 | 0.89 | 1.37 |
Skull | 8 | 0.019 | 7.8 | 0.86 | 0.89 | 1.37 |
CSF | 4 | 0.004 | 0.009 | 0.001 | 0.89 | 1.37 |
Grey matter | 10 | 0.02 | 9.0 | 0.99 | 0.89 | 1.37 |
White matter | 72 | 0.08 | 8.5 | 0.85 | 0.9 | 1.37 |
Optode Diameter (mm) | Photon Packet Weights per Detector Diameter (mm) | Photon Packet Weights per Emitter Diameter (mm) | Percent Change in Detected Photon Packet Weights per Detector Diameter (%) | Percent Change in Detected Photon Packet Weights per Emitter Diameter (%) |
---|---|---|---|---|
1 | 5.56 | 5.56 | 2.74 | 2.74 |
2 | 22.9 | 23.2 | 3.01 | 3.11 |
3 | 51.4 | 50.0 | 3.22 | 3.34 |
4 | 90.1 | 88.9 | 3.29 | 3.35 |
5 | 144 | 142 | 3.31 | 3.22 |
EDS | Detected Photon Packet Weights for Diameter of 1 mm for Both Emitter and Detector | Detected Photon Packet Weights for Diameter of 5 mm for Both Emitter and Detector |
---|---|---|
30 mm | 5.18 | 3733.4 |
40 mm | 0.958 | 558.7 |
50 mm | 0.161 | 176.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rein, N.; Shechter, R.; Tsizin, E.; Medvedovsky, M.; Balberg, M. Wide-Based Illumination and Detection in Functional Near-Infrared Spectroscopy for Enhanced Seizure Detection in Grey Matter. Sensors 2025, 25, 3627. https://doi.org/10.3390/s25123627
Rein N, Shechter R, Tsizin E, Medvedovsky M, Balberg M. Wide-Based Illumination and Detection in Functional Near-Infrared Spectroscopy for Enhanced Seizure Detection in Grey Matter. Sensors. 2025; 25(12):3627. https://doi.org/10.3390/s25123627
Chicago/Turabian StyleRein, Netaniel, Revital Shechter, Evgeny Tsizin, Mordekhay Medvedovsky, and Michal Balberg. 2025. "Wide-Based Illumination and Detection in Functional Near-Infrared Spectroscopy for Enhanced Seizure Detection in Grey Matter" Sensors 25, no. 12: 3627. https://doi.org/10.3390/s25123627
APA StyleRein, N., Shechter, R., Tsizin, E., Medvedovsky, M., & Balberg, M. (2025). Wide-Based Illumination and Detection in Functional Near-Infrared Spectroscopy for Enhanced Seizure Detection in Grey Matter. Sensors, 25(12), 3627. https://doi.org/10.3390/s25123627