Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = fullerene dimers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3931 KiB  
Article
Matching Polynomial-Based Similarity Matrices and Descriptors for Isomers of Fullerenes
by Krishnan Balasubramanian
Inorganics 2023, 11(8), 335; https://doi.org/10.3390/inorganics11080335 - 13 Aug 2023
Cited by 3 | Viewed by 1829
Abstract
I have computed the matching polynomials of a number of isomers of fullerenes of various sizes with the objective of developing molecular descriptors and similarity measures for isomers of fullerenes on the basis of their matching polynomials. Two novel matching polynomial-based topological descriptors [...] Read more.
I have computed the matching polynomials of a number of isomers of fullerenes of various sizes with the objective of developing molecular descriptors and similarity measures for isomers of fullerenes on the basis of their matching polynomials. Two novel matching polynomial-based topological descriptors are developed, and they are demonstrated to have the discriminating power to contrast a number of closely related isomers of fullerenes. The number of ways to place up to seven disjoint dimers on fullerene isomers are shown to be identical, as they are not structure-dependent. Moreover, similarity matrices that provide quantitative similarity measures among a given set of isomers of fullerenes are developed from their matching polynomials and are shown to provide robust quantitative measures of similarity. Full article
(This article belongs to the Special Issue Advances in Fullerene Science)
Show Figures

Figure 1

17 pages, 5719 KiB  
Article
(Ro)vibrational Spectroscopic Constants, Lifetime and QTAIM Evaluation of Fullerene Dimers Stability
by Rodrigo A. Lemos Silva, Mateus R. Barbosa, Caio R. Martins, Daniel F. Scalabrini Machado, Luciano Ribeiro, Heibbe C. B. de Oliveira and Demétrio A. da Silva Filho
Molecules 2023, 28(13), 5023; https://doi.org/10.3390/molecules28135023 - 27 Jun 2023
Cited by 1 | Viewed by 1558
Abstract
The iconic caged shape of fullerenes gives rise to a series of unique chemical and physical properties; hence a deeper understanding of the attractive and repulsive forces between two buckyballs can bring detrimental information about the structural stability of such complexes, providing significant [...] Read more.
The iconic caged shape of fullerenes gives rise to a series of unique chemical and physical properties; hence a deeper understanding of the attractive and repulsive forces between two buckyballs can bring detrimental information about the structural stability of such complexes, providing significant data applicable for several studies. The potential energy curves for the interaction of multiple van der Waals buckyball complexes with increasing mass were theoretically obtained within the DFT framework at ωB97xD/6−31G(d) compound model. These potential energy curves were employed to estimate the spectroscopic constants and the lifetime of the fullerene complexes with the Discrete Variable Representation and with the Dunham approaches. It was revealed that both methods are compatible in determining the rovibrational structure of the dimers and that they are genuinely stable, i.e., long-lived complexes. To further inquire into the nature of such interaction, Bader’s QTAIM approach was applied. QTAIM descriptors indicate that the interactions of these closed-shell systems are dominated by weak van der Waals forces. This non-covalent interaction character was confirmed by the RDG analysis scheme. Indirectly, QTAIM also allowed us to confirm the stability of the non-covalent bonded fullerene dimers. Our lifetime calculations have shown that the studied dimers are stable for more than 1 ps, which increases accordingly with the number of carbon atoms. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

28 pages, 11012 KiB  
Review
N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics
by Mahmoud E. Farahat and Gregory C. Welch
Colorants 2023, 2(1), 151-178; https://doi.org/10.3390/colorants2010011 - 21 Mar 2023
Cited by 15 | Viewed by 3476
Abstract
This work covers the development of non-fullerene acceptors for use in organic photovoltaics built using the N-annulated perylene diimide dye. The classic perylene diimide dye has been extensively used to construct non-fullerene acceptors, leading to device power conversion efficiencies of over 10%. Strong [...] Read more.
This work covers the development of non-fullerene acceptors for use in organic photovoltaics built using the N-annulated perylene diimide dye. The classic perylene diimide dye has been extensively used to construct non-fullerene acceptors, leading to device power conversion efficiencies of over 10%. Strong visible light absorption and deep frontier molecular energy levels have made such materials (both molecular and polymeric) near ideal for pairing with narrow-gap conjugated polymers in bulk-heterojunction active layers. The N-annulation of the dye provides an extra site for side-chain engineering and alters the electronic structure of the polycyclic aromatic core. In addition, N-annulation allows for selective bromination of the perylene core, leading to building blocks that are useful for the construction of large molecular frameworks using the atom-economical direct heteroarylation cross-coupling method. Herein, we detail a series of molecules developed by our team that are based on the N-annulated perylene diimide in the form of dimers with different cores (both electron-rich and electron-deficient); dimers with varied side chains; tetramers with varying geometries; and large, asymmetric molecules with internal energy cascades. The use of these molecules as non-fullerene acceptors in organic photovoltaic devices (binary and ternary blends, outdoor and indoor light applications, and spin-coated vs. slot-die-coated photoactive layers) is presented. Full article
(This article belongs to the Special Issue Recent Progress on Functional Dyes and Their Applications)
Show Figures

Figure 1

9 pages, 2330 KiB  
Article
H2O·HF@C70: Encapsulation Energetics and Thermodynamics
by Zdeněk Slanina, Filip Uhlík, Xing Lu, Takeshi Akasaka and Ludwik Adamowicz
Inorganics 2023, 11(3), 123; https://doi.org/10.3390/inorganics11030123 - 15 Mar 2023
Viewed by 1865
Abstract
This report deals with the quantum-chemical evaluation of the energetics and thermodynamics of the simultaneous encapsulation of HF and H2O by the IPR (isolated pentagon rule) C70 fullerene cage, yielding H2O·HF@C70 species which [...] Read more.
This report deals with the quantum-chemical evaluation of the energetics and thermodynamics of the simultaneous encapsulation of HF and H2O by the IPR (isolated pentagon rule) C70 fullerene cage, yielding H2O·HF@C70 species which were synthesized and characterized recently, thus further expanding the family of fullerene endohedrals with non-metallic encapsulates. The structures were optimized at the DFT (density functional theory) M06-2X/6-31++G** level. The encapsulation energetics were further refined by the advanced B2PLYPD/6-31++G** and B2PLYPD/6-311++G** methods. After enhancement of the B2PLYPD/6-311++G** encapsulation energy for the BSSE and steric corrections, the encapsulation energy gain was obtained, as 26 kcal/mol. The equilibrium encapsulation thermodynamics were described using the M06-2X/6-31++G** partition functions. The results correspond to our previous evaluations for the water dimer encapsulation by C84 cages. Full article
(This article belongs to the Special Issue Advances in Fullerene Science)
Show Figures

Figure A1

12 pages, 5411 KiB  
Article
The Various Packing Structures of Tb@C82 (I, II) Isomers in Their Cocrystals with Ni(OEP)
by Wei Dong, Qin Zhou, Wangqiang Shen, Le Yang, Peng Jin, Xing Lu and Yongfu Lian
Nanomaterials 2023, 13(6), 994; https://doi.org/10.3390/nano13060994 - 9 Mar 2023
Cited by 4 | Viewed by 1816
Abstract
Soot-containing terbium (Tb)-embedded fullerenes were prepared by evaporation of Tb4O7-doped graphite rods in an electric arc discharge chamber. After 1,2,4-trichlorobenzene extraction of the soot and rotary evaporation of the extract, a solid product was obtained and then dissolved into [...] Read more.
Soot-containing terbium (Tb)-embedded fullerenes were prepared by evaporation of Tb4O7-doped graphite rods in an electric arc discharge chamber. After 1,2,4-trichlorobenzene extraction of the soot and rotary evaporation of the extract, a solid product was obtained and then dissolved into toluene by ultrasonication. Through a three-stage high-pressure liquid chromatographic (HPLC) process, Tb@C82 (I, II) isomers were isolated from the toluene solution of fullerenes and metallofullerenes. With the success of the growth of cocrystals of Tb@C82 (I, II) with Ni(OEP), the molecular structures of Tb@C82 (I) and Tb@C82 (II) were confirmed to be Tb@C2v(9)-C82 and Tb@Cs(6)-C82, respectively, based on crystallographic data from X-ray single-crystal diffraction. Moreover, it was found that Tb@C82 (I, II) isomers demonstrated different packing behaviors in their cocrystals with Ni(OEP). Tb@C2v(9)-C82 forms a 1:1 cocrystal with Ni(OEP), in which Tb@C2v(9)-C82 is aligned diagonally between the Ni(OEP) bilayers to form zigzag chains. In sharp contrast, Tb@Cs(6)-C82 forms a 2:2 cocrystal with Ni(OEP), in which Tb@Cs(6)-C82 forms a centrosymmetric dimer that is aligned linearly with Ni(OEP) pairs to form one-dimensional structures in the a–c lattice plane. In addition, the distance of a Ni atom in Ni(OEP) to the Cs(6)-C82 cage is much shorter than that to the C2v(9)-C82 one, indicative of a stronger π-π interaction between Ni(OEP) and the C82 carbon cage in the cocrystal of Tb@CS(6)-C82 and Ni(OEP). Density functional theory calculations reveal that the regionally selective dimerization of Tb@CS(6)-C82 is the result of a dominant unpaired spin existing on a particular C atom of the CS(6)-C82 cage. Full article
Show Figures

Figure 1

8 pages, 1180 KiB  
Communication
Efficient Hole Transfer from a Twisted Perylenediimide Acceptor to a Conjugated Polymer in Organic Bulk-Heterojunction Solar Cells
by Hyojung Cha
Materials 2023, 16(2), 737; https://doi.org/10.3390/ma16020737 - 12 Jan 2023
Viewed by 1946
Abstract
Non-fullerene acceptors have recently attracted tremendous interest due to their potential as alternatives to fullerene derivatives in bulk-heterojunction solar cells. Nevertheless, physical understanding of charge carrier generation and transfer mechanism that occurred at the interface between the non-fullerene molecule and donor polymer is [...] Read more.
Non-fullerene acceptors have recently attracted tremendous interest due to their potential as alternatives to fullerene derivatives in bulk-heterojunction solar cells. Nevertheless, physical understanding of charge carrier generation and transfer mechanism that occurred at the interface between the non-fullerene molecule and donor polymer is still behind their enhanced photovoltaic performance. Here we report examples of a non-planar perylene dimer (TP) as an electron acceptor and achieve a power conversion efficiency of 6.29% in a fullerene-free solar cell. Photoluminescence (PL) measurements show high quenching efficiency driven by the excitons of both conjugated polymer and TP molecule, respectively, indicating efficient electron and hole transfer, which can support a highly intermixed phase of blends measured by atomic force microscopy (AFM) and grazing incident wide-angle X-ray diffraction (GIWAXS). Femtosecond transient absorption spectroscopy (fs-TAS) reveals that the fast exciton dissociation process from TP molecule to donor polymer contributes to additionally increasing current density, leading to stronger incident photon to current efficiency in the visible region. Full article
Show Figures

Figure 1

14 pages, 4087 KiB  
Article
Fullerenols Prevent Neuron Death and Reduce Oxidative Stress in Drosophila Huntington’s Disease Model
by Olga I. Bolshakova, Alina A. Borisenkova, Ilya M. Golomidov, Artem E. Komissarov, Alexandra D. Slobodina, Elena V. Ryabova, Irina S. Ryabokon, Evgenia M. Latypova, Elizaveta E. Slepneva and Svetlana V. Sarantseva
Cells 2023, 12(1), 170; https://doi.org/10.3390/cells12010170 - 31 Dec 2022
Cited by 12 | Viewed by 3523
Abstract
Huntington’s disease (HD) is one of the human neurodegenerative diseases for which there is no effective treatment. Therefore, there is a strong demand for a novel neuroprotective agent that can alleviate its course. Fullerene derivatives are considered to be such agents; however, they [...] Read more.
Huntington’s disease (HD) is one of the human neurodegenerative diseases for which there is no effective treatment. Therefore, there is a strong demand for a novel neuroprotective agent that can alleviate its course. Fullerene derivatives are considered to be such agents; however, they need to be comprehensively investigated in model organisms. In this work, neuroprotective activity of C60(OH)30 and C120O(OH)44 fullerenols was analyzed for the first time in a Drosophila transgenic model of HD. Lifespan, behavior, oxidative stress level and age-related neurodegeneration were assessed in flies with the pathogenic Huntingtin protein expression in nerve cells. Feed supplementation with hydroxylated C60 fullerene and C120O dimer oxide molecules was shown to diminish the oxidative stress level and neurodegenerative processes in the flies’ brains. Thus, fullerenes displayed neuroprotective activity in this model. Full article
(This article belongs to the Special Issue Oxidative Stress in Aging and Neurodegenerative Diseases)
Show Figures

Figure 1

10 pages, 2675 KiB  
Article
Fluorination of Terminal Groups Promoting Electron Transfer in Small Molecular Acceptors of Bulk Heterojunction Films
by Tao Chen, Rui Shi, Ruohua Gui, Haixia Hu, Wenqing Zhang, Kangning Zhang, Bin Cui, Hang Yin, Kun Gao and Jianqiang Liu
Molecules 2022, 27(24), 9037; https://doi.org/10.3390/molecules27249037 - 18 Dec 2022
Cited by 2 | Viewed by 2677
Abstract
The fluorination strategy is one of the most efficient and popular molecular modification methods to develop new materials for organic photovoltaic (OPV) cells. For OPV materials, it is a broad agreement that fluorination can reduce the energy level and change the morphology of [...] Read more.
The fluorination strategy is one of the most efficient and popular molecular modification methods to develop new materials for organic photovoltaic (OPV) cells. For OPV materials, it is a broad agreement that fluorination can reduce the energy level and change the morphology of active layers. To explore the effect of fluorination on small molecule acceptors, we selected two non-fullerene acceptors (NFA) based bulk heterojunction (BHJ) films, involving PM6:Y6 and PM6:Y5 as model systems. The electron mobilities of the PM6:Y5 and PM6:Y6 BHJ films are 5.76 × 10−7 cm2V−1s−1 and 5.02 × 10−5 cm2V−1s−1 from the space-charge-limited current (SCLC) measurements. Through molecular dynamics (MD) simulation, it is observed that halogen bonds can be formed between Y6 dimers, which can provide external channels for electron carrier transfer. Meanwhile, the “A-to-A” type J-aggregates are more likely to be generated between Y6 molecules, and the π–π stacking can be also enhanced, thus increasing the charge transfer rate and electron mobility between Y6 molecules. Full article
(This article belongs to the Special Issue Porous Organic Materials: Design and Applications)
Show Figures

Figure 1

12 pages, 2647 KiB  
Article
Distributed Polarizability Model for Covalently Bonded Fullerene Nanoaggregates: Origins of Polarizability Exaltation
by Denis Sh. Sabirov and Alina A. Tukhbatullina
Nanomaterials 2022, 12(24), 4404; https://doi.org/10.3390/nano12244404 - 9 Dec 2022
Cited by 7 | Viewed by 2275
Abstract
Polarizability exaltation is typical for (C60)n nanostructures. It relates to the ratio between the mean polarizabilities of (C60)n and C60: the first one is higher than the n-fold mean polarizability of the original fullerene. [...] Read more.
Polarizability exaltation is typical for (C60)n nanostructures. It relates to the ratio between the mean polarizabilities of (C60)n and C60: the first one is higher than the n-fold mean polarizability of the original fullerene. This phenomenon is used in the design of novel fullerene compounds and the understanding of its properties but still has no chemical rationalization. In the present work, we studied the distributed polarizability of (C60)2 and isomeric (C60)3 nanoaggregates with the density functional theory method. We found that polarizability exaltation increases with the size of the nanostructure and originates from the response of the sp2-hybridized carbon atoms to the external electric field. The highest contributions to the dipole polarizability of (C60)2 and (C60)3 come from the most remote atoms of the marginal fullerene cores. The sp3-hybridized carbon atoms of cyclobutane bridges negligibly contribute to the molecular property. A similar major contribution to the molecular polarizability from the marginal atoms is observed for related carbon nanostructures isomeric to (C60)2 (tubular fullerene and nanopeanut). Additionally, we discuss the analogy between the polarizability exaltation of covalently bonded (C60)n and the increase in the polarizability found in experiments on fullerene nanoclusters/films as compared with the isolated molecules. Full article
(This article belongs to the Special Issue First-Principles Investigations of Low-Dimensional Nanomaterials)
Show Figures

Figure 1

12 pages, 2366 KiB  
Article
Can the Fluxionality in Borospherene Influence the Confinement-Induced Bonding between Two Noble Gas Atoms?
by Ranita Pal and Pratim Kumar Chattaraj
Molecules 2022, 27(24), 8683; https://doi.org/10.3390/molecules27248683 - 8 Dec 2022
Cited by 2 | Viewed by 1619
Abstract
A density functional theory study is performed to determine the stability and bonding in the neon dimer inside the B30N30 fullerene cage, the fluxional B40 cage, and within non-fluxional cages such as B12N12 and C60 [...] Read more.
A density functional theory study is performed to determine the stability and bonding in the neon dimer inside the B30N30 fullerene cage, the fluxional B40 cage, and within non-fluxional cages such as B12N12 and C60. The nature of bonding in the Ne2 encapsulated B40 is compared with the that in other cages in an attempt to determine whether any possible alterations are brought about by the dynamical nature of the host cage apart from the associated confinement effects. The bonding analysis includes the natural bond order (NBO), Bader’s Atoms-in-Molecules electron density analysis (AIM), and energy decomposition analysis (EDA), revealing the non-covalent nature of the interactions between the Ne atoms and that between the Ne and the cage atoms. The formation of all the Ne2@cage systems is thermochemically unfavourable, the least being that for the B30N30 cage, which can easily be made favourable at lower temperatures. The Ne-Ne distance is lowest in the smallest cage and increases as the cage size increase due to steric relaxation experienced by the dimer. The dynamical picture of the systems is investigated by performing ab initio molecular dynamics simulations using the atom-centred density matrix propagation (ADMP) technique, which shows the nature of the movement of the dimer inside the cages, and by the fact that since it moves as a single entity, a weak bonding force holds them together, apart from their proven kinetic stability. Full article
(This article belongs to the Special Issue New Boron Chemistry: Current Advances and Future Prospects)
Show Figures

Figure 1

13 pages, 1955 KiB  
Article
Covalently Bonded Fullerene Nano-Aggregates (C60)n: Digitalizing Their Energy–Topology–Symmetry
by Denis Sh. Sabirov, Ottorino Ori, Alina A. Tukhbatullina and Igor S. Shepelevich
Symmetry 2021, 13(10), 1899; https://doi.org/10.3390/sym13101899 - 9 Oct 2021
Cited by 18 | Viewed by 3428
Abstract
Fullerene dimers and oligomers are attractive molecular objects with an intermediate position between the molecules and nanostructures. Due to the size, computationally assessing their structures and molecular properties is challenging, as it currently requires high-cost quantum chemical techniques. In this work, we have [...] Read more.
Fullerene dimers and oligomers are attractive molecular objects with an intermediate position between the molecules and nanostructures. Due to the size, computationally assessing their structures and molecular properties is challenging, as it currently requires high-cost quantum chemical techniques. In this work, we have jointly studied energies, topological (Wiener indices and roundness), and information theoretic (information entropy) descriptors, and have obtained regularities in triad ‘energy–topology–symmetry’. We have found that the topological indices are convenient to indicating the most and least reactive atoms of the fullerene dimer structures, whereas information entropy is more suitable to evaluate odd–even effects on the symmetry of (C60)n. Quantum chemically assessed stabilities of selected C120 structures, as well as linear and zigzag (C60)n, are discussed. Full article
(This article belongs to the Special Issue Quantum Chemistry)
Show Figures

Figure 1

20 pages, 3253 KiB  
Article
A Path Integral Molecular Dynamics Simulation of a Harpoon-Type Redox Reaction in a Helium Nanodroplet
by Alvaro Castillo-García, Andreas W. Hauser, María Pilar de Lara-Castells and Pablo Villarreal
Molecules 2021, 26(19), 5783; https://doi.org/10.3390/molecules26195783 - 24 Sep 2021
Cited by 12 | Viewed by 5020
Abstract
We present path integral molecular dynamics (PIMD) calculations of an electron transfer from a heliophobic Cs2 dimer in its (3Σu) state, located on the surface of a He droplet, to a heliophilic, fully immersed C60 molecule. Supported [...] Read more.
We present path integral molecular dynamics (PIMD) calculations of an electron transfer from a heliophobic Cs2 dimer in its (3Σu) state, located on the surface of a He droplet, to a heliophilic, fully immersed C60 molecule. Supported by electron ionization mass spectroscopy measurements (Renzler et al., J. Chem. Phys.2016, 145, 181101), this spatially quenched reaction was characterized as a harpoon-type or long-range electron transfer in a previous high-level ab initio study (de Lara-Castells et al., J. Phys. Chem. Lett.2017, 8, 4284). To go beyond the static approach, classical and quantum PIMD simulations are performed at 2 K, slightly below the critical temperature for helium superfluidity (2.172 K). Calculations are executed in the NVT ensemble as well as the NVE ensemble to provide insights into real-time dynamics. A droplet size of 2090 atoms is assumed to study the impact of spatial hindrance on reactivity. By changing the number of beads in the PIMD simulations, the impact of quantization can be studied in greater detail and without an implicit assumption of superfluidity. We find that the reaction probability increases with higher levels of quantization. Our findings confirm earlier, static predictions of a rotational motion of the Cs2 dimer upon reacting with the fullerene, involving a substantial displacement of helium. However, it also raises the new question of whether the interacting species are driven out-of-equilibrium after impurity uptake, since reactivity is strongly quenched if a full thermal equilibration is assumed. More generally, our work points towards a novel mechanism for long-range electron transfer through an interplay between nuclear quantum delocalization within the confining medium and delocalized electronic dispersion forces acting on the two reactants. Full article
(This article belongs to the Special Issue Reactivity and Properties of Radicals and Radical Ions)
Show Figures

Figure 1

19 pages, 2915 KiB  
Article
Exohedral Functionalization of Fullerene by Substituents Controlling of Molecular Organization for Spontaneous C60 Dimerization in Liquid Crystal Solutions and in a Bulk Controlled by a Potential
by Malgorzata Czichy, Alessia Colombo, Pawel Wagner, Patryk Janasik, Claudia Dragonetti, Rathinam Raja, David L. Officer and Leeyih Wang
Polymers 2021, 13(16), 2816; https://doi.org/10.3390/polym13162816 - 22 Aug 2021
Cited by 3 | Viewed by 3518
Abstract
A study was carried out on the possibility of orderly and spontaneous dimerization at room temperature of C60 cages in fullerene liquid crystal fullerene dyads (R-C60). For this purpose, dyads with a structural elements feature supporting π-stacking and Van der [...] Read more.
A study was carried out on the possibility of orderly and spontaneous dimerization at room temperature of C60 cages in fullerene liquid crystal fullerene dyads (R-C60). For this purpose, dyads with a structural elements feature supporting π-stacking and Van der Waals interactions were tested, due to the presence of terthiophene donors linked through an α-position or dodecyloxy chains. In addition, this possibility was also tested and compared to dyads with shorter substituents and the pristine C60. Research has shown that only in dyads with the features of liquid crystals, π-dimerization of C60 units occurs, which was verified by electrochemical and spectroelectrochemical (ESR) measurements. Cyclic voltammetry and differential voltammetry studies reveal π-dimerization in liquid crystal dyad solution even without the possibility of previous polymerization (cathodic or anodic) under conditions in the absence of irradiation and without the availability of reaction initiators, and even with the use of preliminary homogenization. These dyads undergo six sequential, one-electron reductions of π-dimer (R-C60···C60-R), where two electrons are added successively to each of the two fullerene cages and first form two radical anion system (R-C60)•−(R-C60)•− without pairing with the characteristics of two doublets. Similarly, the second reductions of π-dimer occur at potentials that are close to the reduction potential for the conversion to a system of two triplet dianions (R-C60)2−(R-C60)2−. Electron paramagnetic resonance spectra indicate a significant interaction between C60 cages. Interestingly, the strength of intermolecular bonds is so significant that it can overcome Coulombic repulsion, even with such highly charged particles as dianions and trianions. Such behavior has been revealed and studied so far only in covalently bonded C60 dimers. Full article
(This article belongs to the Special Issue Spectroelectrochemistry of Electroactive Polymer Materials)
Show Figures

Graphical abstract

16 pages, 3414 KiB  
Article
Synthesis, Self-Assembly and Characterization of Tandem Triblock BPOSS-PDI-X Shape Amphiphiles
by Yu Shao, Jia Chen, Xiang-Kui Ren, Xinlin Zhang, Guang-Zhong Yin, Xiaopeng Li, Jing Wang, Chrys Wesdemiotis, Wen-Bin Zhang, Shuguang Yang, Bin Sun and Meifang Zhu
Molecules 2019, 24(11), 2114; https://doi.org/10.3390/molecules24112114 - 4 Jun 2019
Cited by 4 | Viewed by 4743
Abstract
In this article, we report the facile synthesis, self-assembly, and characterization of shape amphiphiles (BPOSS-PDI-X) based on isobutyl-functionalized polyhedral oligomeric silsesquioxane (BPOSS), perylene tetracarboxylic diimide (PDI), and (60)fullerene (C60) moieties. Firstly, an asymmetrically functionalized diblock shape amphiphile precursor (BPOSS-PDI-OH) was obtained [...] Read more.
In this article, we report the facile synthesis, self-assembly, and characterization of shape amphiphiles (BPOSS-PDI-X) based on isobutyl-functionalized polyhedral oligomeric silsesquioxane (BPOSS), perylene tetracarboxylic diimide (PDI), and (60)fullerene (C60) moieties. Firstly, an asymmetrically functionalized diblock shape amphiphile precursor (BPOSS-PDI-OH) was obtained through the one-pot reaction between perylene-3,4,9,10-tetracarboxylic dianhydride and two different amines, namely BPOSS-NH2 and 3-amino-1-propanol. It was further conjugated with C60-COOH to give a tri-block shape amphiphile (BPOSS-PDI-C60). Their chemical structures were thoroughly characterized by NMR, IR and MALDI-TOF MS spectrometry. In order to gain insights on the structure-property relationship, their self-assembly in gas phase, in solution, and in solid state were characterized using traveling wave ion mobility mass spectrometry (TWIM-MS), UV/Vis absorption, fluorescence emission spectrophotometer, and transmission electron microscopy, respectively. It was found that BPOSS-PDI-OH formed more complicated dimers than BPOSS-PDI-C60. Both samples showed unique aggregation behaviors in solution with increasing concentration, which could be attributed neither to H- nor to J-type and might be related to the discrete dimers. While BPOSS-PDI-C60 could hardly crystalize into ordered structures, BPOSS-PDI-OH could form nanobelt-shaped single crystals, which may hold potential applications in microelectronics. Full article
(This article belongs to the Special Issue Synthesis of Functional Silicon Compounds)
Show Figures

Figure 1

12 pages, 576 KiB  
Article
Growth of Fullerene Fragments Using the Diels-Alder Cycloaddition Reaction: First Step towards a C60 Synthesis by Dimerization
by Martha Mojica, Francisco Méndez and Julio A. Alonso
Molecules 2013, 18(2), 2243-2254; https://doi.org/10.3390/molecules18022243 - 13 Feb 2013
Cited by 7 | Viewed by 6024
Abstract
Density Functional Theory has been used to model the Diels-Alder reactions of the fullerene fragments triindenetriphenilene and pentacyclopentacorannulene with ethylene and 1,3-butadiene. The purpose is to prove the feasibility of using Diels-Alder cycloaddition reactions to grow fullerene fragments step by step, and to [...] Read more.
Density Functional Theory has been used to model the Diels-Alder reactions of the fullerene fragments triindenetriphenilene and pentacyclopentacorannulene with ethylene and 1,3-butadiene. The purpose is to prove the feasibility of using Diels-Alder cycloaddition reactions to grow fullerene fragments step by step, and to dimerize fullerene fragments, as a way to obtain C60. The dienophile character of the fullerene fragments is dominant, and the reaction of butadiene with pentacyclopentacorannulene is favored. Full article
(This article belongs to the Special Issue Diels-Alder Reaction)
Show Figures

Graphical abstract

Back to TopTop